用户名: 密码: 验证码:
三峡库区消落带土壤理化性质和植被动态变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界高度关注三峡水利枢纽工程,其中库区生态环境问题是最重要的方面,而其重点是消落带的生态环境问题。三峡水库水位变化受水库调度所调控,水位涨落导致消落带周期性出没于水陆交替之中。在这种变化过程中,消落带的土壤不仅受到水位涨落造成的重力侵蚀和水浪的冲击,而且在消落带出露成陆期还会受到雨水冲刷的影响,长期持续的结果必将导致消落带土壤性状发生巨大改变;原生长在消落带的陆生植物,大多数也因难以在短期内改变在长期系统发育过程中形成的生物学和生态习性而受到生存威胁。为了减轻乃至消除消落带的生态环境问题,立足于三峡库区消落带实地特情,按消落带水位高程,因地制宜,选择适宜的植物种类,并进行科学的结构配置,开展消落带的植被恢复和重建,是三峡库区实现充分利用消落带资源,改善消落带生态环境状况,促进库区经济社会可持续发展的重要目标。而揭示三峡水库运行后,消落带土壤理化性质和植被的时空动态变化规律及发展趋势,是实现这一目标的最关键的环节。本文基于连续3年对秭归和巫山消落带监测样地土壤理化性状和植被动态的定位观测,对消落带不同水位高程土壤的理化性质和植被动态变化进行研究。结果表明:
     (1)三峡库区消落带受水位涨落影响后,土壤物理性状发生了很大改变。在消落带海拔156-172m区段,不同土层经历1个水位涨落周期的影响后,土壤密度增加了2.69-16.72%,总孔隙度降低了1.73-16.25%、毛管孔隙度降低了7.09-22.82%、非毛管孔隙度降低了16.26-48.21% ,最大持水量降低了2.79-14.66%、毛管持水量降低了9.31-15.87%、田间持水量降低了5.05-22.71%,0-10cm土层的粗砂粒含量增加了29.43%,细沙粒含量减少了9.17 %,粉砂粒含量减少了10.94%,粘粒含量减少了17.60%。
     在消落带海拔145-156m区段,不同土层经历3年水位涨落影响和经历2年水位涨落影响后的测定结果比较,土壤密度增加了3.58-8.48%,总孔隙度降低了3.59-20.20%、毛管孔隙度降低了5.05-22.65%、非毛管孔隙度降低了12.19-41.60%,最大持水量降低了4.63-26.29%、毛管持水量降低了2.61-28.64%、田间持水量降低了3.30-25.49%。0-10cm土层的粗砂粒含量增加了47.10%,细沙粒含量增加了25.37%,粉砂粒含量减少了64.83%,粘粒含量减少了43.88%。
     方差分析结果表明,土壤表层(0-10cm)受到水位涨落的影响最为显著。
     (2)基于监测样地调查结果表明:受水位涨落的影响,消落带土壤养分含量总体呈下降趋势,但不同养分测定指标的下降速率有所不同。
     在消落带海拔156-172m区段,经历1个水位涨落周期后,不同土层的速效N含量减少了41.53-59.87%,速效P含量减少了5.34-36.57%,速效K含量减少了3.55-45.46%,全N含量减少了5.75-40.11%,全P含量基本上没有变化,全K含量略有减少,有机质含量减少了12.15-37.83%。pH值趋于中性化,变化幅度为1.82-9.53%。与未受影响时比较,土壤速效N含量和土壤有机质含量在p<0.05水平上达到差异显著程度。
     在消落带海拔145-156m区段,对经历2个和3个水位涨落周期影响后的测定结果比较,不同土层的速效N含量减少了34.6 -59.63%,速效P含量减少了30.97-70.32%,速效K含量减少了6.10-17.58%,全N含量减少了14.02-45.60%,全P含量减少了1.34-40.13,全K含量略有减少,土壤有机质含量减少了10.82-34.43%。土壤pH值继续向中性发展,变化幅度为1.63-5.29%。0-10 cm土层,经历2个和经历3个水位涨落影响后的土壤速效N、速效P和全效N含量等,在p<0.05水平上达到差异显著程度。
     (3)在消落带海拔156-172m区段,经历1个水位涨落周期影响后,消落带植物种类数量急剧减少,减少幅度因监测样地而异,总的变化范围在28.30-34.55%,平均约为34%。植物生活型组成发生了较大变化。其中,草本植物种类增加了13.56%,灌木树种减少了72.63%,乔木树种减少了84.62%;受水位涨落影响前后,各监测样地中植物的重要值发生了显著变化,一些较适应的草本植物在样地的重要地位得到提升。草本植物的Shanon-winner多样性指数,Sinmpson优势度指数,PIE种间相遇几率,Pielou均匀度指数等均表现出下降的趋势。
     对消落带海拔145-156m区段所有监测样地的调查资料进行统计的结果表明,2007年(经历1个水位涨落周期)消落带出现了114种植物,2008年(经历2个水位涨落周期)时减少到95种,2009年(经历了3个水位涨落周期)减少到31种。从2007年到2009年植物种类的减少幅度为72.81%。截止2009年调查时,消落带生存下来的物种基本上都是草本植物。随着水位涨落周期的增加,多年生草本所占比例在逐年下降,而一年生草本所占比例逐年增加。消落带草本植物的物种多样性总体仍呈现下降趋势。
     (4)基于监测样地保存植物重要值大小的排序,初步认为以下植物可以作为三峡库区消落带不同海拔区段植被恢复和建设中比较适宜的植物材料:
     在消落带海拔156-172 m区段(消落带的中浅水位区)可供选择的草本植物是:香附子、狗尾草、旱莲草、毛马唐、铁苋菜、斑茅、柔弱斑种草、野茼蒿、粽叶狗尾草、地瓜藤、雾水葛、鼠麴草、马唐、白背莓、青蒿、少花龙葵、狼把草、野菊、酢浆草、矶雉草、野塘蒿、合基苔草、蜈蚣蕨、青葙、雀稗;灌木树种是:君迁子、白毛桐、江南越橘、金樱子、湖北算盘子、马桑、黄荆、盐肤木、假奓苞叶、铁仔、马棘、华东葡萄;乔木树种是:乌桕、复羽叶栾树。
     在消落带海拔145-156 m区段(消落带的深水位区)可供选择的草本植物是:三数马唐、马唐、金色狗尾草、牛鞭草、香附子、狼把草、碎米莎草、苍耳、旱莲草、水牛草、雾水葛、野茼蒿、野塘蒿、狗尾草、苦蘵、粽叶狗尾草、旱稗、狗牙根、空心莲子草、荩草、牛筋草、龙葵、红果黄鹌菜、绿苋。由于此区段淹水时间最长,淹水深度最深,监测结果表明,目前尚未发现可供选择的乔木和灌木树种。
The Three Gorges Project is paid attention in the worldwide, and the ecological environment problems in reservoir area especially in hydro-fluctuation belt is the most important aspect. Changes in the Three Gorges reservoir water level is regulated by the scheduling, and periodic appeared alternating in hydro-fluctuation belt. is caused by water level fluctuations. During the changing progress, the soil in hydro-fluctuation belt is effected not only by gravitational erosion and water wave impact which is caused by fluctuation of water level, but also by rainfall erosion. The long and continuously influence will cause the altering of soil, and most of the terrestrial plants in hydro-fluctuation belt which can not change their biological and ecological habit will get survival crisis. In order to reduce even eliminate the ecological environment problems in hydro-fluctuation belt, based on the fact in Three Gorges reservoir hydro-fluctuation belt, according to water level in hydro-fluctuation belt, local conditions, choosing suitable plants, structure configuration scientifically, developing restoration and reconstruction, which are important goals in making full use of resource in Three Gorges reservoir hydro-fluctuation belt, improving the ecological environment condition and promoting economic and social sustainable development in reservoir ares. Revealing temporal dynamic change law and development trend of soil physical and chemical properties and vegetations in hydro-fluctuation belt after reservoir is the most key problem. This research is based on located monitoring of soil physical and chemical properties and vegetations in Zigui and Wushan hydro-fluctuation belt in the past three years. The result shows that:
     (1) The Three Gorges area of the hydro-fluctuation belt was affected by water level fluctuations, soil physical properties have changed a lot. In hydro-fluctuation belt 156-172 m above sea level section, different layers after 1 year of water level fluctuating, soil density increased 2.69-16.72%, total porosity decreased 1.73-16.25%, capillary porosity deceased 7.09-22.82%, non-capillary porosity decreased 16.26-48.21%, maximum moisture capacity decreased 2.79-14.66%, capillary moisture capacity decreased 9.31-15.87%, field capacity decreased 5.05-22.71%,and in the layer of 0-10cm, thick sand content increased by 29.43% and the fine sand, silly sand and clay content decreased by 9.17%,10.94% and 17.60% separately.
     In hydro-fluctuation belt 145-156 m above sea level section, different layers after 3 years of water level fluctuating, soil density increased 3.58-8.48%, total porosity decreased 3.59-20.20%, capillary porosity deceased 5.05-22.65%, non-capillary porosity decreased 12.19-41.60%, maximum moisture capacity decreased 4.63-26.29%, capillary moisture capacity decreased 2.61-28.64%, field capacity decreased 3.30-25.49%, and in the layer of 0-10 cm, thick sand content increased by 47.10% and the fine sand, silly sand and clay content decreased by25.37%,64.83% and 43.88% separately. The variance analysis showed that the effect of water level fluctuating is most significant in the layer of 0-10 cm,
     (2) The result shows that: the By the influence of water level fluctuating, soil nutrient had reduced in hydro-fluctuation belt generally, but the drawdown speed of each testing index were different.
     In hydro-fluctuation belt 156-172 m above sea level section, different layers after 1 year of water level fluctuating, available N decreased by 41.53 -59.87%, available P decreased by 5.34-36.57%, available K decreased by 3.55-45.46%, total N decreased by 5.75-40.11%, total P had no change generally, total K had decreased a little, content of organic material decreased by 12.15-37.83%, pH value turned to neutral, changed by 1.82-9.53%. Compared with the non-submerged zones, after one year of water level fluctuating, the difference of available N and organic material, was significant at 0.05 level.
     In hydro-fluctuation belt 145-156 m above sea level section, different layers after 3 years of water level fluctuating,, available N decreased by 34.6 -59.63%%, available P decreased by 30.97-70.32%, available K decreased by 6.10-17.58%, total N decreased by 14.02-45.60%, total P decreased by1.34-40.13%, total K had decreased a little, content of organic material decreased by 110.82-34.43%, pH value turned to neutral, changed by 1.63-5.29%. Compared two years of water level fluctuating zones, after three years of water level fluctuating, the difference of available N, P and total N in layer 0-10 cm, was significant at 0.05 level.
     (3) In hydro-fluctuation belt 156-172 m above sea level section, after 1 year of water level fluctuating, the number of plant species had decreased a lot. Each monitoring plot had decreased differently by 28.3-34.55%, mean by about 34%. The life form of plant had changed o lot, herbs increased by 13.56%, shrubs decreased by 72.63%,trees decreased by 84.62%. After 1 year of water level fluctuating, importance value of plants had changed significantly The herbs which were suitable in hydro-fluctuation belt were more important. The diversified index of Shanon-winner,Sinmpson,PIE, and Pielou of herbs were all decreased.
     In all monitoring plots in hydro-fluctuation belt 145-156 m above sea level section, in 2007(after 1 year of water level fluctuating) appeared 114 species of plants, 2008(after 2 years of water level fluctuating) appeared 95 species of plants, 2009(after 3 years of water level fluctuating) appeared 31 species of plants. From 2007 to 2009, the species of plants had decreased by 72.81%. The most of plants were herbs till 2009. And by the increase of water level fluctuating cycle, perennial herbs had decreased, annual herbs had increased by years. The diversified index of herbs in hydro-fluctuation belt were still decreased.
     (4) Based on the importance value of plants in monitoring plots, preliminarily considered the following plants can be options in restoration and reconstruction in Three Gorges reservoir hydro-fluctuation belt. In hydro-fluctuation belt 156-172 m above sea level section(the shallow and middle level), the herbs are: Cyperus rotundus , Bidens tripartita, Setaria viridis, Crassocephalum crepidioides, Eclipta prostrata, Digitaria chrysoblephara, Acalypha australis ,Oxalis corniculata, Saccharum arundinaceum, Bothriospermum tenellum ,Crassocephalum Setaria, crepidioides palmifolia, Ficus tikoua, Conyza bonariensis, Pouzolzia zeylanica, Gnaphalium affine, Digitaria sanguinalis, Rubu innominatu, Artemis caruifolia, Solanum americanum, Chrysanthemum indicum, Leptochloa panicea, Carex sclerocarpa, Pteris vittata, Paspalum thunbergii. The shrubs are:Diospyros lotus, Mallotus barbatus, Vaccinium mandarinorum, Rosa laevigata, Glochidion wilsonii, Coriaria sinica, Vitex negundo, Koelreuteria bipinnata, Rhus chinensis, Discocleidion rufescens, Myrsine africana , Broussonetia papyrifera, Indigofera pseudotinctoria, Vitis pseudoreticulata. The trees are: Sapium sebiferum, Koelreuteria bipinnata. In hydro-fluctuation belt 145-156 m above sea level section(the deep level), the herbs are: Digitaria ternata, Digitaria sanguinalis, Setaria glauca, Hemarthria altissima, Cyperus rotundus, Bidens tripartita,Cyperus iria, Xanthium sibiricum, Eclipta prostrata, Hemarthria compressa, Pouzolzia zeylanica, Crassocephalum crepidioides, Conyza bonariensis, Setaria viridis, Physalis angulata, Setaria palmifolia, Echinochloa crusgalli var hispidula, Cynodon dactylon, Alternanthera philoxeroides, Arthraxon hispidus, Eleusine indica, Solanum nigrum, Youngia erythrocarpa, Amaranthus hybridus. Because of the longest under water time and the deepest water level in this area, the suitable shrubs and trees are not found yet.
引文
[1]丹江口水库移民系统研究课题组.丹江口水库移民系统研究.北京:科学出版社,1993:475
    [2]刁承泰,黄京鸿.三峡水库水位涨落带土地资源的初步研究.长江流域资源与环境,1999,8(1):75-80
    [3]任雪梅,杨达源,徐永辉,周彬.三峡库区消落带的植被生态工程.水土保持通报, 2006, 26(1) :42-43
    [4]王勇,吴金清,黄宏文,等.三峡库区消涨带植物群落的数量分析.武汉植物学研究,2004,22(04) :307-314
    [5]范小华,谢德体,魏朝富.三峡水库消落区生态环境保护与利用对策研究.水土保持学报, 2006, 20(2) :165-169
    [6]王勇,刘义飞,刘松柏,等.三峡库区消涨带植被重建.植物学通报,2005,22(5):513-522
    [7] Boylan KD ,Maclean DR. Linking species loss with wetland loss . National Wetlands Newsletter, 1997,19(6):1,13-17
    [8] Sparks RE ,Nelson JC ,Yin Y. Naturaljzation of the flood regime in regulated rivers.BioScience,1998,48:706-720
    [9] Whigham DF. Ecological issues related to wet-1and preservation ,restoration ,creation and assessment.The Science of the Total Environment, 1999 ,240(1-3):31-40
    [10]徐高福,洪利兴,陈小勇,等.千岛湖区消落带植被恢复初探.林业调查规划,2006,31(6):106-108
    [11]刘云峰.三峡水库库岸生态环境治理对策初探.重庆工学院学报, 2005,19(11):79-82
    [12] Brinson MM . Riverine forests In Lugo AE, Brinson MM, Brown SL (Eds.) Forested Wetlands .Ecosystems of the World,1990,15:87-140
    [13] Mitsch, W. J. and J. G. Gosselink ..Wetlands. New York: John Wiley & Sons, Inc. 2000,920
    [14] Rill T ,Hawes I. Effect of wave exposure on vegetation abundance, richness and depth distribution of shallow water plants in a New Zealand lake.Freshwater biology,2003,48(1):78-88
    [15] Battaglia L.L,Collins B.S. Linking hydroperiod and vegetation response in Carolina bay wetlands .Plant ecology ,2006,184(1):173-185
    [16] Hill N.M,Keeldy P.A,Wishen L.C.A hydrological model for predicting the effects of dams on the shoreline vegetation lakes and reservoirs .Environment management,1998,22(5):723-736
    [17]张建春,彭补拙.河岸带研究及其退化生态系统的恢复与重建.生态学报, 2003,23:56-63
    [18] Stromberg JC. Restoration of riparian vegetation in the south-western United States:importance of flow regimes and fluvial dynamism.Journal of Arid Environments, 2001,49:17-34
    [19] Buijse AD ,Coops H ,Staras M ,etal. Restoration strategies for river flood-plains along large lowland rivers in Europe .Freshwater Biology, 2002, 47:889-907
    [20] Johansson ME ,Nilsson C. Responses of riparian plants to flooding in free-flowing and regulated boreal rivers:an experimental study.Journal of Applied Ecology, 2002,39:971-986
    [21] Sweeneya BW ,Czapka SJ. Riparian forest restoration:why each site needs an ecological prescription.Forest Ecology and Management, 2004,192:36l-373
    [22] Lytle DA ,Poff NL. Adaptation to natural flow regimes.Trends in Ecology and Evolution, 2004,19:94-100
    [23] Whigham DF. Ecological issues related to wetland preservation ,restoration ,creation and assessment.The Science of the Total Environment,1999 ,240(1-3):31-40
    [24] Leyer I. Predicting plant species’responses to river regulation the role of water level fluctuations .Journal of Applied Ecology 2005,42:239-250
    [25] Nilsson C ,Ekblad A ,Gardfjell M ,etal .Long-term effects of river regulation on river margin vegetation . Journal of Applied Ecology 1991,28(3):963-987
    [26] Naiman RJ,Melillo JM,Lock MA . Longitudinal patterns of ecosystem processes and community structure in a subarctic river continuum.Ecology, 1987 ,68:1139-1156
    [27] Nilsson C ,Svedmark M . Basic principles and ecological consequences of Changing water regimes:riparian plant communities.Environmental Management, 2002 ,30:468-480
    [28] Gregory SV ,Swanson FJ ,Mckee WA . An ecosystem perspective of riparian zones .BioScience, 1991 ,41:540-55l
    [29] Burkett V R,Rassa O Draugelis-Dale,etal.Effects of flooding regime and seedling treatment on early survival and growth of Nut tall .Restoration Ecology,2005,13(3):471-479
    [30] Kern Ewing.Tolerance of four wetland plant species to flooding and sediment deposition.Environmental and Experimental Botany,1996,36(2):131-146
    [31] M E Simmons,X B Wu,S G Whisenant. Bottomland hardwood forest species responses to flooding regimes along an urbanization gradient.Ecological Engineering,2007,29(3):223-231
    [32] Capon S J, Brock M A. Flooding, soil seed bank dynamics and vegetation resilience of a hydrologically variable desert floodplain.Freshwater Biology,2006(51):206-223
    [33] Katja Geissler,Axel Gzik.The impact of flooding and drought on seeds of Cnidium dubium, Gratiola officinalis, and Juncus atratus, three endangered perennial river corridor plants of Central European lowlands.Aquatic Botany,2008,89(3):283-291
    [34]张建春,彭补拙.河岸带及其生态重建研究.地理研究,2002(3):373-383
    [35]张建春,史志刚,彭补拙.皖西南大别山麓河岸带滩地生态重建与植物护坡效能分析.山地学报,2002,20(1):85-89
    [36]张建春,彭补拙.河岸带研究及其退化生态系统的恢复与重建.生态学报,2003,23(01):56-63
    [37]刘云峰,刘正学.三峡水库消落区极限条件下狗牙根适生性试验.西南农业大学学报,2005,27(5):661-663
    [38]马利民,唐燕萍,张明,等.三峡库区消落区几种两栖植物的适生性评价.生态学报,2009,29(4):1885-1892
    [39]江明喜,蔡庆华.长江三峡地区干流河岸植物群落的初步研究.水生生物学报,2000,24(5):458-463
    [40]白宝伟,王海洋,李先源,等.三峡库区淹没区与自然消落区现存植被的比较.西南农业大学学报,2005,27(5):684-688
    [41]中国湿地植被编辑委员会.中国湿地植被.北京:科学出版社,1999
    [42]于丹,吴刚,詹存卫,等.山地-水域交错区的生境异质性与水生植物多样性的关系研究.生态学报, 1998, 18:69-75
    [43]刁承泰,黄京鸿.三峡库区水位涨落带土地资源的初步研究.长江流域资源与环境, 1999, 8(1):75-80
    [44]邓红兵,王青春,王庆礼,等.河岸植被缓冲带与河岸带管理.应用生态学报, 2001, 12:951-954
    [45] Santos A M,Assis Esteves Influence of water level fluctuation on the mortality and aboveground biomass of the aquatic macrophyte Eleocharis interstincta (VAHL) Roemer et Schults.Brazilian archives of biology and technology,2004,47(2):281-290
    [46] Azim U Mallik,John S Richardson. Riparian vegetation change in upstream and downstream reaches of three temperate rivers dammed for hydroelectric generation in British Columbia, Canada.Ecological Engineering,2009,35(5):810-819
    [47] Bernard W Sweeney,Stephen J Czapka.Riparian forest restoration: why each site needs an ecological prescription.Forest Ecology and Management,2004,192(2/3):361-373
    [48] Edward P Glenn,Pamela L Nagler.Comparative ecophysiology of Tamarix ramosissima and native trees in western U.S. riparian zones.Arid Environments,2005,61(3):419-446
    [49] Jonathan L Horton, Janelle L Clark. Water table decline alters growth and survival of Salix good dingiiand Tamarix chinensis seedlings.Forest Ecology and Management, 2001, 140(2/3): 239-247
    [50]刘斌,邵东同,刘刚.水库消落区土地利用优化方法研究.武汉水利电力大学学报, 2000, 33(2):34-36
    [51]陈天富,林建平,冯炎基.新丰江水库消涨带岸坡侵蚀研究.热带地理, 2002, 22:166-170
    [52]方华,陈天富,林建平,等.李氏禾的水土保持特性及其在新丰江水库消涨带的应用.热带地理, 2003, 23:214-217
    [53]曹昀,王国祥.土壤水分含量对菖蒲(Acorus calamus)萌发及幼苗生长发育的影响.生态学报,2007,27(05):1748-1755
    [54]陈婷,曾波,罗芳丽,等.外源乙烯和α-萘乙酸对三峡库区岸生植物野古草和秋华柳茎通气组织形成的影响.植物生态学报,2007,31(5):919-922
    [55]张艳红,曾波,付天飞,等.长期水淹对秋华柳(Salix variegata Franch)根部非结构性碳水化合物含量的影响.西南师范大学学报:自然科学版,2006,31(3):153-156
    [56]王海锋,曾波,乔普,等.长期水淹条件下香根草(Vetiveria zizanioides)、菖蒲(Acorus calamus)和空心莲子草(Alternanthera philoxeroides)的存活及生长响应.生态学报,2008,28(06):2571-2580
    [57]罗芳丽,曾波,陈婷,等.三峡库区岸生植物秋华柳对水淹的光合和生长响应.植物生态学报,2007,31(05):910-918
    [58]罗芳丽,王玲,曾波,等.三峡库区岸生植物野古草(Arundinella anomala Steud.)光合作用对水淹的响应.生态学报,2006,26(11):3602-3609
    [59]张小萍,曾波,陈婷,等.三峡库区河岸植物野古草(Arundinella anomaly var.depauperata Keng )茎通气组织发生对水淹的响应.生态学报,2008,28(4):1864-1871
    [60]李娅,曾波,叶小齐,等.水淹对三峡库区岸生植物秋华柳(Salix variegata Franch.)存活和恢复生长的影响.生态学报,2008,28(05):1924-1931
    [61]王海锋,曾波,李娅,等.完全水淹条件下空心莲子草的生长、存活及出水后的恢复动态研究.武汉植物学研究,2008,26(2):147-152
    [62]王海锋,曾波,李娅,等.长期完全水淹对4种三峡库区岸生植物存活及恢复生长的影响.植物生态学报,2008,32(5):977-984
    [64]陈芳清,李永,郄光武,等.水蓼对水淹胁迫的耐受能力和形态学响应.武汉植物学研究,2008,26(2):142-146
    [65]何谨,段义字.退耕还林还草区坝地土壤理化性状分布特征分析.水土保持学报, 2008,22(6):104-107
    [66]王新宇,王庆成.水曲柳落叶松人工林近自然化培育对林地土壤理化性质的影响.林业科学, 2008,44(12):21-26
    [67]聂立水,李吉跃,戴伟.北京西山油松栓皮栎混交林的土壤水分特征.林业科学, 2007,43(增刊1):43-47
    [68]黄志刚,李峰瑞,曹云,等.南方红壤丘陵区杜仲和油桐人工林水土保持效应的比较.林业科学,2007,43(8):8-14
    [69]张猛,张健,徐雄,等.土壤管理方式对果-草人工生态系统土壤性质影响.林业科学,2006,42(8):44-49
    [70]张金洋,王定勇,石孝洪.三峡水库消落区淹水后土壤性质变化的模拟研究.水土保持学报,2004 ,18(6) :120-123
    [71]王改改,傅瓦利,魏朝富,等.消落带土壤铁的形态变化及其对有效磷的影响.土壤通报,2008,39(1):66-70
    [72]石孝洪.三峡水库消落区土壤磷素释放与富营养化.土壤肥料,2004,(1):40-43
    [73]石孝洪.魏世强.谢德体,等.三峡水库消落区土壤磷吸附特征.西南农业大学学报,2004,(3):331-335
    [74]詹艳慧,王里奥,焦艳静.三峡库区消落带土壤氮素吸附释放规律.重庆大学学报(自然科学版), 2006, 8: 10-13
    [75]王里奥,黄川,詹艳慧,等.三峡库区消落带淹水—落干过程土壤磷吸附—解吸及释放研究,长江流域资源与环境, 2006,5:593-597
    [76]傅杨武.三峡库区消落带土壤-水体系统中重金属模拟研究.环境科学与技术,2007,30(10):14-16
    [77]傅杨武,陈明君,祁俊生.重金属在消落带土壤-水体系中的迁移研究.水资源保护,2008,24(5):8-11
    [78]陈梓云,彭梦侠.三峡库区消落带土壤中铅污染调查.土壤与环境, 2001, 1O(2): 165-166
    [79]陈梓云,彭梦侠.三峡库区消落带土壤中镉污染调查及分析.西南民族大学学报(自然科学版),2003,4: 494-495
    [80]陈梓云,彭梦侠,三峡库区消落带土壤中重金属铬调查与分析.四川环境2001,1:53-54
    [81]中国长江三峡集团公司. (2005.6-2009.5) .水情实况(EAOL)[OL] . http ://www.ctgpc.com.cn
    [82]国家林业局.中华人民共和国林业行业标准-森林土壤分析方法.北京:中国标准出版社,2000
    [83]中华人民共和国农业部. NY/T 1121.3—2006,土壤机械组成的测定.北京:中国农业出版社,2006.
    [84]程瑞梅,王晓荣,肖文发,等.三峡库区消落带水淹初期土壤物理性质及金属含量初探.水土保持学报,2009,23(5):156-161
    [85]中国科学院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社,1978
    [86]尹刚强,田大伦,方晰.不同土地利用方式对湘中丘陵区土壤质量的影响.林业科学,2008,44(8):9-15
    [87]章程.典型岩溶泉流域不同土地利用方式土壤营养元素形态及其影响因素.水土保持学报,2009,23(4):165-199
    [88] Adejuwon J O,Ekanade O.A comparison of soil properties under different land use types in a part of the Nigerian Cocoa Belt.Catena,1988,15:319-331
    [89]谢春芳,方炎明.将石自然保护区乌冈栎群落组成与结构分析.西南林学院学报,2009,29(5):1-6
    [90]黄昌勇,土壤学.北京:中国农业出版社,2000,66-69
    [91]王钰,杨少杰贵州喀斯特峡谷地区花椒林地土壤物理性质研究,中国水土保持, 2007,11,48-49,55
    [92]吴建平,袁正科,袁通志,湘西南沟谷森林土壤水文—物理特性与涵养水源功能的研究.水土保持研究,2004,l1(1):74-81
    [93]曾思齐,余济云,肖玉檀,等.马尾松水土保持林水文功能计量研究.中南林学院学报,1996,16(3):22-25
    [94]秦耀东.土壤物理学.北京:高等教育出版社,2003
    [95]何腾兵,刘丛强,王中良,等.贵州乌江流域喀斯特生态系统土壤物理性质研究.水土保持学报, 2006,10,43-47
    [96] Eghball B , Baltensperger D D. Phosphorus movement and adsorption in a soil receiving long2term manure and fertilizer application[J ] . J . Environ. Qual . ,1996 ,25 :1339-1343
    [97]朱祖祥,俞震豫,周鸣铮.土壤学.北京:高等教育出版社,1956
    [98]黄承标,何斌,梁怀军.尾叶桉人工林取代灌草植被对土壤物理性质的影响.西南林学院学报,1999,19(4):215-218
    [99]杨越,孙保平,郭建英,等.黄土丘陵区不同退耕模式对土壤物理性状影响研究-以甘肃定西市为例.中国农学通报.2009,25(16):99-105
    [100]杨会侠,张景根,张雨鹏,等.不同退耕还林模式对地表径流及土壤物理性状影响的研究.吉林林业科技,2007,36(4):29-33
    [101]梁伟,白翠霞,孙保平,等.黄土丘陵沟壑区退耕还林(草)区土壤水分-物理性质研究.中国水土保持,2006,3:17-18
    [102]钟继洪,郭庆荣,谭军,等.坡地赤红壤物理退化及其机理研究.亚热带土壤科学.1998,7(2):154-160
    [103]秦钟,周兆德.土壤物理性质变化简析.海南大学学报自然科学版.2002, 2(4):380-384
    [104]张金池.长江中下游山地丘陵区植被恢复与重建.北京:中国林业出版社, 2007
    [105]吴钦孝,赵鸿雁,韩冰.黄土高原森林枯枝落叶层保持水土的有效性.西北农林科技大学学报:自然科学版,2001,29(5):95-98
    [106]黄承标,罗远周,张建华,等.广西猫儿山自然保护区森林土壤化学性质垂直分布特征研究安徽农业科学.2009,37(1):245—247,354
    [107]张坚.化肥使用和土壤环境污染.土壤农化通报,1998,13(4):13-15
    [108]张世熔.黄元仿,李保国.等.黄淮海冲积平原区土壤速效磷、钾的时空变异特征.植物营养与肥料学报,2003,9(1):3-8
    [109]袁颖红.黄欠如.黄荣珍,等.长期施肥对红壤土有机碳和全氮含量的影响.南昌工程学院学报,2007,26(4):29-33
    [110]北京林业大学.土壤学(上册).北京:中国林业出版社,1982:98-151
    [111]唐炎林,邓晓保,李玉武,等,西双版纳不同林分土壤机械组成及其肥力比较.中南林业科技大学学报(自然科学版)2007,27
    [112]张凤荣.土壤地理学.北京:中国农业出版社,2002.98-99
    [113]骆永明,等.香港地区土壤及其环境.北京:科学出版社,2007
    [114]朱晓芳,关雪晴,付晶莹.庐山土壤全氮含量及其影响因素初探,安徽农业科学.2008,36(16):6868-6869
    [115]于天仁,王振权.土壤分析化学.北京:科学出版社,1988
    [116]高丽丽,蒲玉琳,等,西藏土壤磷素和钾素养分状况及其影响因素.水土保持学报, 2005 19(1):75-88
    [117]徐晓燕,马毅杰,张瑞平.土壤中钾的转化及其与外源钾的相互关系的研究进展.土壤通报,2003,34(5):489-492
    [118]徐仁扣,Coventry D R.某些农业措施对土壤酸化的影响.农业环境保护,2002,21(5):385-388
    [119]王志刚,赵永存,廖启林,等.近20年来江苏省土壤pH值时空变化及其驱动力.生态学报, 2008,28(2):720-727
    [120]吴征镒.中国植被.北京:科学出版社,1980.
    [121]贺金生,陈伟烈,李凌浩.中国中亚热带东部常绿阔叶林主要类型的群落多样性.植物生态学报,1998,22(4):304-311
    [122]尉芹,马希汉,苏印泉.亟待开发的马桑资源.陕西林业科技,1995,4:36-38
    [123]董必慧,董伟,刘岩.沿海生物能源植物-乌桕的生物学特性及其开发利用.安徽农业科学.2009,37(29):14173-14174,1419
    [124]黄键,周浩,樊国盛.复羽叶栾树种子不同处理的发芽试验.云南农业科技。2006,5:14-16
    [125]王鸿,苏卫华.香附子生物生态学特性和防除措施研究.安徽农业科学,1991,(4):371-374
    [126]张建新,赵伯善.香附子提取物B处理作物种子效应初报.应用生态学报,1996,7(2):218-220
    [127]刘旭,程瑞梅,郭泉水.香附子对不同土壤水分梯度的适应性研究.长江流域资源与环境.2008,17(Z1):60-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700