管内单相对流换热的优化和评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于世界性能源短缺日益严重,以节能为目标的传热强化技术受到了人们的广泛关注并得到了快速发展,对于我国而言,工业节能更是当前的重中之重。在我国,工业上对于能量利用的过程中涉及到热交换的工艺和设备所占比重超过90%。因此,本文对基本的对流换热问题进行了主动优化设计,以期获得具有优异的综合换热与阻力特性的流场结构。
     在已有的最小熵产优化原理和最小火积耗散优化原理的基础上进一步提出了最小功损耗优化原理和最小热损耗优化原理,通过泛函变分和求极值,获得了流体的优化场方程。数值求解发现,管内流动中形成了多纵向旋流的流动结构。对其换热与阻力特性进行分析可以发现,这种管内多纵向旋流流场相对于未优化的光管而言,在Re数为200的层流流动下其Nu数增强了170%而其阻力系数增幅不超过10%,在Re数为20000的湍流流动下其Nu数增强了15%而其阻力增幅仅为25%,均获得了优良的综合换热效果。
     通过在管内核心流区域添加扰流体的方法,提出了基于流体的强化传热方式及原则。通过对管内流动区域进行分区并分别给予不同的优化目标和约束条件,获得了支持这一原则的优化方法,并求得了相对于未优化的光管换热增幅与阻力增幅比超过3的数值解。在基于流体的强化传热原则的指导下,提出了一种新型的管外扰流支撑元件用于管壳式换热器的管束间强化,与常用的折流杆换热器在Re数为3000至21000的湍流流动区域进行对比,可以发现扰流叶片换热器可比折流杆换热器的换热系数提高10%-60%的同时阻力系数降低0%-50%,扰流叶片换热器相比于折流杆换热器的综合性能评价指标最高达到了1.5。
     除此之外,从传热过程的不可逆耗散损失的热损耗表征出发,从热力学第二定律的角度提出了传热过程的效率。通过数值计算可以发现,传热效率能够很好地指导对流换热的优化设计。
Along with the worldwide energy shortage increasingly more serious, heattransfer enhancement technologies with energy saving-orientation seize people'sextensive attentions and gain rapid development. Especially for our country, industrialenergy saving is priority for all at current. In our country’s industry, the proportion ofheat transfer crafts and devices in the energy utilization process is more than90%.Therefore, active optimization design for the basic convective heat transfer problem isdiscussed in this thesis, and the flow field structure with excellent comprehensive heattransfer and flow resistance characteristics is expected to obtain.
     On the basis of existing entropy generation minimum principle and entransydissipation minimum principle, the power consumption minimum principle and heatconsumption minimum principle are proposed in this thesis. Optimal field equation forconvective heat transfer can be derived by functional variation and seeking forextreme value. It can be found that from the numerical solution, longitudinal swirlflow structure with multi-vortexes appears in the flow field of pipeline flow.Compared with the heat transfer and resistance characteristics in bare tube withoutoptimization, it can be found that the multi-vortexes flow structure has outstandingcomprehensive heat transfer effect. Specifically, when the Re number is200for thelaminar flow, the the Nusselt number can be increased to170%, while the resistancecoefficient is only increased less than10%compared with the bare tube; when the Renumber is20000for the turbulent flow, the the Nusselt number can be increased to15%, while the resistance coefficient is only increased to25%compared with the baretube.
     Through adding component which can disturb the fluid in the core flow insidetubes in this thesis, the manner and principle of heat transfer enhancement based onfluid is proposed in this thesis. Dividing flow area inside a tube, disparate optimizationobjects and constraint conditions are applied in different flow area, and then,optimization method is obtained which can support above-mentioned principle. Also, asuperduper numerical solution is achieved, whose increasing range of Nusselt numberis three times more than increasing range of resistance coefficient comparing with fluid flow in smooth tube without optimization. Under the guidance of the principle ofheat transfer enhancement based on fluid, heat exchanger with a kind of vane-typespoiler insets for the sake of heat transfer enhancement among pipes inside thetube-and-shell heat exchanger is presented in this thesis. The turbulent simulationresults of the vane-type spoiler heat exchanger show that, when Re number is in thescope of3000-21000, the heat transfer coefficient increases by10%-60%while theresistance coefficient decreases by0%-50%compared with rod baffle heat exchanger.Also, the comprehensive performance evaluation criterion of vane-type spoiler heatexchanger relative to rod baffle heat exchanger reaches up to1.5superlatively.
     In addition, based on the heat consumption characterization of irreversibilitydissipation loss in heat transfer process, efficiency of heat transfer process is proposedin the view of the second law of thermodynamics in this thesis. It can be inferred fromthe numerical calculation, the efficiency of heat transfer process suggested in thisthesis can guide the optimization design of convective heat transfer well.
引文
[1]王大中.21世纪中国能源科技发展展望.北京:清华大学出版社,2007.
    [2]顾维藻,神家锐,马重芳等.强化换热.北京:科学出版社,1990.
    [3] A. E. Bergles. Handbook of heat transfer applications. New York: McGraw-Hill,1985.
    [4] A. E. Bergles. Heat transfer enhancement-the encouragement and accommodationof high heat fluxes. ASME Journal of Heat Transfer,1997,119:8-19.
    [5] R. L. Webb. Principles of enhanced heat transfer. New York: Wiley,1994.
    [6] A. E. Bergles. ExHFT for fourth generation heat transfer technology. ExperimentalThermal and Fluid Science,2002,26:335-344.
    [7] R. L. Webb, E. R. G. Eckert. Application of rough surfaces to heat exchangerdesign. Int. J. Heat Mass Transfer,1972,15:1647-1658.
    [8] A. E. Bergles, R. L. Bunn, G. H. Junkhan. Extended performance evaluationcriteria for enhanced heat transfer surfaces. Letters Heat Mass Transfer,1974,1:113-120.
    [9] R. L. Webb, M. J. Scott. A parametric analysis of the performance of internallyfinned tubes for heat exchanger application. J. Heat Transfer,1980,102:38-43.
    [10] R. L. Webb. Performance evaluation criteria for use of enhanced heat transfersurfaces in heat exchanger design. Int. J. Heat Mass Transfer,1981,24(4):715-726.
    [11] W. Liu, Z. C. Liu, L. Ma. Application of a multi-field synergy principle in theperformance evaluation of convective heat transfer enhancement in a tube. Chin.Sci. Bull.,2012,57(13):1600-1607.刘伟,刘志春,马雷.多场协同原理在管内对流强化传热性能评价中的应用.科学通报,2012,57(10):867-874.
    [12] C. A. Berg. A technical basis for energy conservation. Mech. Engng.,1974,96(5):30-42.
    [13] F. A. McClintock. The design of heat exchangers for minimum irreversibility.ASME Paper,1951:51-108.
    [14] A. Bejan. The concept of irreversibility in heat exchanger design: counterflowheat exchangers for gas-to-gas applications. J. Heat Transfer,1977,99C (3):374-380.
    [15] A. Bejan. General criterion for rating heat exchanger performance. Int. J. HeatMass Transfer,1978,21:655-658.
    [16] A. Bejan. Advanced engineering thermodynamics. New York: Wiley,1988.
    [17] G. Natalini, E. Sciubba. Minimization of the local rates of entropy production in thedesign of air-cooled gas turbine blades. J. Engrg. Gas T. Power,1999,121(3):466-475.
    [18] P. K. Nag, P. Mukherjee. Thermodynamic optimization of convective heat transferthrough a duct with constant wall temperature. Int. J. Heat Mass Transfer,1987,2:401-405.
    [19] J. E. Hesselgreaves. Rationalisation of second law analysis of heat exchangers. Int.J. Heat Mass Transfer,2000,43:4189-4204.
    [20] A. L. London, R. K. Shah. Costs of irreversibilities in heat exchanger design. HeatTransfer Engrg.,1983,4:59-73.
    [21] W. W. Lin, D. J. Lee. Second law analysis on a pin-fin array under crossflow. Int. J.Heat Mass Transfer,1997,40:1937-1945.
    [22] A. Bejan. Entropy Generation through heat and fluid flow. New York: Wiley,1982.
    [23] A. Z. Sahin. Irreversibilities in various duct geometries with constant wall heat fluxand laminar flow. Energy,1998,23:465-473.
    [24] A. Bejan, P. A. Pfister. Evaluation of heat transfer augmentation techniques basedon their impact on entropy generation. Lett. Heat Mass Transfer,1980,7:97-106.
    [25] D. P. Sekulic. The second law quality of energy transformation in a heat exchanger.J. Heat Transfer,1990,112:295-300.
    [26] L. C. Witte, N. Shamsundar. A thermodynamic efficiency concept for heatexchange devices. J. Engrg. Power,1983,105:199-203.
    [27] R. B. Evans, M. R. von Spakovsky. Two principles of differential second-lawanalysis for heat exchanger design. J. Heat Transfer,1998,113:329-336.
    [28] S. Paoletti, F. Rispoli, E. Sciubba. Calculation of exergetic losses in compact heatexchanger passages. ASME-AES,1989,10(2):21-29.
    [29] F. Rispoli, E. Sciubba. Numerical calculation of local irreversibilities in compactheat exchangers. Workshop on Second Law of Thermodynamics, Kayseri, Turkey,1990.
    [30] E. Sciubba. A minimum entropy generation procedure for the discretepseudo-optimization of finned-tube heat exchangers. Rev. Gen. Therm.,1996,35:517-525.
    [31] A. Bejan. A study of entropy generation in fundamental convective heat transfer. J.Heat Transfer,1979,101:718-725.
    [32] G. C. Van Wylen, R. E. Sonntag. Fundamentals of classical thermodynamics. NewYork: Wiley,1985.
    [33] M. W. Zemansky. Heat and thermodynamics.5thed. New York: McGraw-HillBook Company,1975.
    [34] R. C. Prasad, J. H. Shen. Performance evaluation of convective heat transferenhancement devices using exergy analysis. Int. J. Heat Mass Transfer,1993,36(17):4193-4197.
    [35]李大鹏,孙丰瑞,焦增庚.传热与流动系统熵产生的研究与进展.能源研究与信息,2000,16(3):40-46.
    [36]陈维汉,钱壬章.换热器传热过程的熵产分析.华中理工大学学报,1989,17(6):21-27.
    [37] J. C. Ordó ez, A. Bejan. Entropy generation minimization in parallel-platescounterflow heat exchangers. Int. J. Energy Res.,2000,24:843-864.
    [38] A. Bejan. Entropy generation minimization. New York: CRC Press,1996.
    [39] P. Ahmadi, H. Hajabdollahi, I. Dincer. Cost and entropy generation minimizationof a cross-flow plate fin heat exchanger using multi-objective genetic algorithm.Journal of Heat Transfer,2011,133(2):312-318.
    [40] L. N. Zhang, C. X. Yang, J. H. Zhou. A distributed parameter model and itsapplication in optimizing the plate-fin heat exchanger based on the minimumentropy generation. International Journal of Thermal Sciences,2010,49(8):1427-1436.
    [41] R. V. Rao, V. K. Patel. Thermodynamic optimization of cross flow plate-fin heatexchanger using a particle swarm optimization algorithm. International Journal ofThermal Sciences,2010,49(9):1712-1721.
    [42] J. H. Zhou, C. X. Yang, L. N. Zhang. Minimizing the entropy generation rate ofthe plate-finned heat sinks using computational fluid dynamics and combinedoptimization. Applied Thermal Engineering,2009,29:1842-1879.
    [43] I. Kotcioglu, S. Caliskan, A. Cansiz, S. Baskaya. Second law analysis and heattransfer in a cross-flow heat exchanger with a new winglet-type vortex generator.Energy,2010,35(9):3686-3695.
    [44] R. T. Ogulata, F. Doba. Experiments and entropy generation minimizationanalysis of a cross-flow heat exchanger. International Journal of Heat and MassTransfer,1998,41(2):373-381.
    [45] W. W. Lin, D. J. Lee. Second-law analysis on a flat plate-fin array under crossflow. International Communications in Heat and Mass Transfer,2000,27(2):179-190.
    [46] E. Amani, M. R. H. Nobari. A numerical study of entropy generation in theentrance region of curved pipes. Heat Transfer Engineering,2010,31(14):1203-1212.
    [47] T. A. Jankowski. Minimizing entropy generation in internal flows by adjusting theshape of the cross-section. International Journal of Heat and Mass Transfer,2009,52:3439-3445.
    [48] T. Ayhan, B. Karlik, A. Tandiroglu. Flow geometry optimization of channels withbaffles using neural networks and second law of thermodynamics. ComputationalMechanics,2004,33(2):139-143.
    [49] W. A. Khan, J. R. Culham, M. M. Yovanovich. Optimization of microchannel heatsinks using entropy generation minimization method. IEEE Transactions onComponents and Packaging Technologies,2009,32(2):243-251.
    [50] Z. S. Abdel-Rehim. Optimization and thermal performance assessment of pin-finheat sinks. Energy Sources Part A-Recovery Utilization and EnvironmentalEffects,2009,31(1):51-65.
    [51] W. A. Khan, J. R. Culham, A. M. Yovanovich. Optimization of pin-fin heat sinksusing entropy generation minimization. IEEE Transactions on Components andPackaging Technologies,2005,28(2):247-254.
    [52] H. Abbassi. Entropy generation analysis in a uniformly heated microchannel heatsink. Energy,2007,32(10):1932-1947.
    [53] W. A. Khan, J. R. Culham, M. M. Yovanovich. The role of fin geometry in heatsink performance. Journal of Electronic Packaging,2006,128(4):324-330.
    [54] J. F. Guo, L. Cheng, M. T. Xu. Optimization design of shell-and-tube heatexchanger by entropy generation minimization and genetic algorithm. AppliedThermal Engineering,2009,29:2954-2960.
    [55] N. Sahiti, F. Krasniqi, X. Fejzullahu, et al. Entropy generation minimization of adouble-pipe pin fin heat exchanger. Applied Thermal Engineering,2008,28:2337-2344.
    [56] B. N. Taufiq, H. H. Masjuki, T. M. I. Mahlia, et al. Second law analysis foroptimal thermal design of radial fin geometry by convection. Applied ThermalEngineering,2007,27:1363-1370.
    [57] W. A. Khan, J. R. Culham, M. M. Yovanovich. Optimal design of tube banks incrossflow using entropy generation minimization method. Journal ofThermophysics and heat transfer,2007,21(2):372-378.
    [58] C. Balaji, M. Holling, H. Herwig. Entropy generation minimization in turbulentmixed convection flows. International Communications in Heat and Mass Transfer,2007,34(5):544-552.
    [59] T. H. Ko. Analysis of optimal Reynolds number for developing laminar forcedconvection in double sine ducts based on entropy generation minimizationprinciple. Energy Conversion and Management,2006,47(6):655-670.
    [60] E. B. Ratts, A. G. Rant. Entropy generation minimization of fully developedinternal flow with constant heat flux. Journal of Heat Transfer-Transactions of theASME,2004,126(4):656-659.
    [61] P. P. P. M. Lerou, T. T. Veenstra, J. F. Burger, et al. Optimization of counterflowheat exchanger geometry through minimization of entropy generation.Cryogenics,2005,45:659-669.
    [62] N. Allouache, S. Chikh. Second law analysis in a partly porous double pipe heatexchanger. Journal of Applied Mechanics-Transactions of the ASME,2006,73(1):60-65.
    [63] H. Khalkhali, A. Faghri, Z. J. Zuo. Entropy generation in a heat pipe system.Applied Thermal Engineering,1999,19(10):1027-1043.
    [64] A. Bejan. Street network theory of organization in nature. J. AdvancedTransportation,1996,30(2):85-107.
    [65] A. Bejan. How nature takes shape. Mechanical Engng.,1997,10:90-92.
    [66] A. Bejan. Shape and structure, from engineering to nature. Cambridge:Cambridge Univ. Press,2000.
    [67] W. Aung. Cooling technology for electronic equipment. New York: Hemisphere,1988.
    [68] G. P. Peterson, A. Ortega. Thermal control of electronic equipment and devices.Advances in Heat Transfer,1990,20:181-314.
    [69] A. Bejan. Constructal-theory network of conducting paths for cooling a heatgenerating volume. Int. J. Heat Mass Transfer,1997,40(4):799-816.
    [70]周圣兵,陈林根,孙丰瑞.构形理论:广义热力学优化的新方向之一.热科学与技术,2004,3(4):283-292.
    [71] A. Bejan, M. R. Errera. Deterministic tree networks for fluid flow: geometry forminimal flow resistance between a volume and one point. Fractals,1997,5(4):685-695.
    [72] R. A. Nelson, A. Bejan. Constructal optimization of internal flow geometry inconvection. Journal of Heat Transfer-Transactions of the ASME,1998,120(2):357-364.
    [73] G. A. Ledezma, A. Bejan. Constructal three-dimensional trees for conductionbetween a volume and one point. Journal of Heat Transfer-Transactions of theASME,1998,120(4):977-984.
    [74] M. Neagu, A. Bejan. Constructal-theory tree networks of "constant" thermalresistance. Journal of Applied Physics,1999,86(2):1136-1144.
    [75] M. Neagu, A. Bejan. Three-dimensional tree constructs of "constant" thermalresistance. Journal of Applied Physics,1999,86(12):7107-7115.
    [76] A. Bejan, N. Dan. Two constructal routes to minimal heat flow resistance viagreater internal complexity. Journal of Heat Transfer,1999,121:6-14.
    [77] A. Bejan, V. Badescu, A. De Vos. Constructal theory of economics structuregeneration in space and time. Energy Conversion and Management,2000,41:1429-1451.
    [78] A. Bejan, M. Almogbel. Constructal T-shaped fins. Int. J. Heat Mass Transfer,2000,43(12):2101-2115.
    [79] A. Bejan, M. R. Errera. Convective trees of fluid channels for volumetric cooling.Int. J. Heat Mass Transfer,2000,43(17):3105-3118.
    [80] M. Almogbel, A. Bejan. Cylindrical trees of pin fins. Int. J. Heat Mass Transfer,2000,43(23):4285-4297.
    [81] A. Bejan. From heat transfer principles to shape and structure in nature:Constructal theory. Journal of Heat Transfer-Transactions of the ASME,2000,122(3):430-449.
    [82] M. Almogbel, A. Bejan. Constructal optimization of nonuniformly distributedtree-shaped flow structures for conduction. Int. J. Heat Mass Transfer,2001,44(22):4185-4194.
    [83] A. Bejan. Constructal tree-shaped paths for conduction and convection. Int. J.Energy Research,2003,27(4):283-299.
    [84] S. Lorente, W. Wechsatol, A. Bejan. Optimization of tree-shaped flow distributionstructures over a disc-shaped area. Int. J. Energy Res.,2003,27:715-723.
    [85] L. Gosselin, A. Bejan. Tree networks for minimal pumping power. InternationalJournal of Thermal Sciences,2005,44:53-63.
    [86] L. Ghodoossi. Thermal and hydrodynamic analysis of a fractal microchannelnetwork. Energy Conversion and Management,2005,46:771-788.
    [87] W. J. Wu, L. G. Chen, F. R. Sun. Improvement of tree-like network constructalmethod for heat conduction optimization. Sci. China Tech. Sci.,2006,49(3):332-341.伍文君,陈林根,孙丰瑞.导热优化的“树网”构造法的改进.中国科学E辑:技术科学,2006,36(7):773-781.
    [88] W. J. Wu, L. G. Chen, F. R. Sun. Heat-conduction optimization based on constuctaltheory. Applied Energy,2007,84:39-47.
    [89] S. B. Zhou, L. G. Chen, F. R. Sun. Constructal optimization for a solid-gas reactorbased on triangular element. Sci. China Tech. Sci.,2008,51(9):1554-1562.周圣兵,陈林根,孙丰瑞.基于三角形单元体的气-固反应器构形优化.中国科学E:技术科学,2008,38(5):764-772.
    [90] Z. H. Xie, L. G. Chen, F. R. Sun. Geometry optimization of T-shaped cavitiesaccording to constructal theory. Mathematical and Computer Modelling,2010,52:1538-1546.
    [91] Z. H. Xie, L. G. Chen, F. R. Sun. Constructal optimization of a vertical insulatingwall based on a complex objective combining heat flow and strength. Sci. ChinaTech. Sci.,2010,53(8):2278-2290.谢志辉,陈林根,孙丰瑞.基于热流与强度复合目标的立式绝热壁构形优化.中国科学E:技术科学,2011,41(6):809-820.
    [92] Z. H. Xie, L. G. Chen, F. R. Sun. Constructal optimization of twice Y-shapedassemblies of fins by taking maximum thermal resistance minimization as object.Sci. China Tech. Sci.,2010,53(10):2756-2764.谢志辉,陈林根,孙丰瑞.以最大热阻最小化为目标的二级组合Y形肋构形优化.中国科学E:技术科学,2012,42(10):1188-1196.
    [93] S. Tescari, N. Mazet, P. Neveu. Constructal theory through thermodynamics ofirreversible processes framework. Energy Conversion and Management,2011,52(10):3176-3188.
    [94] L. G. Chen. Progress in study on constructal theory and its applications. Sci. ChinaTech. Sci.,2012,55(3):802-820.陈林根.构形理论及其应用的研究进展.中国科学E:技术科学,2012,42(5):505-524.
    [95] G. Lorenzini, C. Biserni, F. L. Garcia, et al. Geometric optimization of a convectiveT-shaped cavity on the basis of constructal theory. Int. J. Heat Mass Transfer,2012,55(23-24):6951-6958.
    [96]过增元,庄文红.对流换热的物理机制分析及其应用.工程热物理学报,1992,13(1):52-56.
    [97] Z. Y. Guo, D. Y. Li, B. X. Wang. A novel concept for convective heat transferenhancement. Int. J. Heat Mass Transfer,1998,41(14):2221-2225.
    [98] Z. Y. Guo, W. Q. Tao, R. K. Shan. The field synergy (coordination) principle and itsapplications in enhancing single phase convective heat transfer. Int. J. Heat MassTransfer,2005,48(9):1797-1807.
    [99] B. Yu, J. H. Nie, Q. W. Wang, et al. Experimental study on the pressure drop andheat transfer characteristics of tubes with internal wave-like longitudinal fins. HeatMass Transfer,1999,35:65-73.
    [100] W. Q. Tao, Z. Y. Guo, B. X. Wang. Field synergy principle for enhancingconvective heat transfer-its extension and numerical verifications. Int. J. Heat MassTransfer,2002,45(18):3849-3856.
    [101] W. Q. Tao, Y. L. He, Q. W. Wang, et al. A unified analysis on enhancing singlephase convective heat transfer with field synergy principle. Int. J. Heat MassTransfer,2002,45(24):4871-4879.
    [102] M. Zeng, W. Q. Tao. Numerical verification of the filed synergy principle forturbulent flow. Journal of Enhanced Heat Transfer,2004,11(4):451-457.
    [103] B. Yu, W. Q. Tao. Pressure drop and heat transfer characteristics of turbulent flowin annular tubes with internal wave-like longitudinal fins. Heat Mass Transfer,2004,40(8):643-651.
    [104] Y. P. Cheng, Z. G. Qu, W. Q. Tao, et al. Numerical design of efficient slotted finsurface based on the field synergy principle. Numerical Heat Transfer, Part A,2004,45(6):517-538.
    [105] Z. G. Qu, W. Q. Tao, Y. L. He. Three dimensional numerical simulation on laminarheat transfer and fluid flow characteristics of strip fin surfaces with X-arrangementof strips. ASME J. Heat Transfer,2004,126(4):697-707.
    [106] Y. L. He, W. Q. Tao, F. Q. Song, et al. Three-dimensional numerical study of heattransfer characteristics of plain plate fin-and-tube heat exchangers from view pointof field synergy principle. Int. J. Heat Fluid Flow,2005,26:459-473.
    [107] J. J. Zhou, W. Q. Tao. Three-dimensional numerical simulation and analysis of theairside performance of slotted fin surfaces with radial strips. EngineeringComputations,2005,22(7-8):940-957.
    [108] L. D. Ma, Z. Y. Li, W. Q. Tao. Experimental verification of the field synergyprinciple. International Communications in Heat Mass,2007,34(3):269-276.
    [109]王娴,宋富强,屈治国等.场协同理论在椭圆型流动中的数值验证.工程热物理学报,2002,23(1):59-62.
    [110]宋富强,屈治国,何雅玲等.低速下空气横掠翅片管换热规律的数值研究.西安交通大学学报,2002,36(9):899-902.
    [111]屈治国,何雅玲,陶文铨.平直开缝翅片传热特性的三维数值模拟及场协同原理分析.工程热物理学报,2003,24(5):825-827.
    [112]周俊杰,陶文铨.椭圆型开缝翅片换热表面特性的三维数值分析.机械工程学报,2005,41(7):90-93.
    [113]陶文铨,何雅玲.对流换热及其强化的理论与实验研究最新进展.北京:高等教育出版社,2005.
    [114]何雅玲,陶文铨.强化单相对流换热的基本机制.机械工程学报,2009,45(3):27-38.
    [115]施明恒,王海,郝英立.离心力场作用下多孔介质中强制对流换热的研究.工程热物理学报,2002,23(4):473-476.
    [116]王海,施明恒.离心流化床干燥过程中传热传质的数值模拟.化工学报,2002,53(10):1040-1045.
    [117]孟继安,陈泽敬,李志信,过增元.管内对流换热的场协同分析及换热强化.工程热物理学报,2003,24(4):652-654.
    [118]申盛,刘伟,陶文铨.多孔介质中自然对流传热的场协同分析.自然科学进展,2003,13(4):439-443.
    [119]吉洪湖.离心力场作用下三维流动和传热的场协同理论探讨.工程热物理学报,2003,24(3):459-462.
    [120] S. Shen, W. Liu, W. Q. Tao. Analysis of field synergy on natural convective heattransfer in porous medium. Int. Communications Heat Mass Transfer,2003,30(8):1081-1090.
    [121] Z. X. Yuan, J. G. Zhang, M. J. Jiang. Study on coordinative optimization ofconvection in tubes with variable heat flux. Science in China Ser. E: Engineering&Materials Science,2004,47(6):651-658.苑中显,张建国,姜明健.变壁温管内对流换热场协同优化分析.中国科学E:工程科学&材料科学,2004,34(9):1003-1010.
    [122] R. X. Cai, C. H. Gou. Discussion on the convective heat transfer and field synergyprinciple. Int. J. Heat Mass Transfer,2007,50:5168-5176.
    [123]傅耀,王彤,谷传纲.圆管内对流换热的场协同理论分析.中国电机工程学报,2008,28(17):70-75.
    [124]冷学礼,张冠敏,田茂诚,程林.场协同原理在对流换热中的应用方法.热能动力工程,2009,24(3):352-354.
    [125] C. H. Gou, R. X. Cai, Q. B. Liu. Field synergy analysis of laminar forcedconvection between two parallel penetrable walls. Int. J. Heat Mass Transfer,2009,52:1044-1052.
    [126] R. X. Cai, Q. B. Liu, C. H. Gou. The non-synergy field of convection. Int. J. HeatMass Transfer,2009,52:4343-4349.
    [127] Q. Chen, M. R. Wang, Z. Y. Guo. Field synergy principle for energy conservationanalysis and application. Advances in Mechanical Engineering,2010:129313.
    [128]李志信,过增元.对流换热优化的场协同理论.北京:科学出版社,2010.
    [129] W. Liu, Z. C. Liu, T. Z. Ming, Z. Y. Guo. Physical quantity synergy in laminarflow field and its application in heat transfer enhancement. Int. J. Heat MassTransfer,2009,52:4669-4672.
    [130] W. Liu, Z. C. Liu, Z. Y. Guo. Physical quantity synergy in laminar flow field ofconvective heat transfer and analysis of heat transfer enhancement. Chin. Sci. Bull.,2009,54:3579-3586.刘伟,刘志春,过增元.对流换热层流流场的物理量协同与传热强化分析.科学通报,2009,54(12):1779-1785.
    [131] W. Liu, Z. C. Liu, S. Y. Huang. Physical quantity synergy in the field of turbulentheat transfer and its analysis for heat transfer enhancement. Chin. Sci. Bull.,2010,55(23):2589-2597.刘伟,刘志春,黄素逸.湍流换热的场物理量协同与传热强化分析.科学通报,2010,55(3):281-288.
    [132]程新广,夏再忠,李志信,过增元.导热优化:热耗散与最优导热系数场.工程热物理学报,2002,23(6):715-717.
    [133]程新广,李志信,过增元.基于最小热量传递势容耗散原理的导热优化.工程热物理学报,2003,24(1):94-96.
    [134] Z. Y. Guo, X. G. Cheng, Z. Z. Xia. Least dissipation principle of heat transportpotential capacity and its application in heat conduction optimization. ChineseScience Bulletin,2003,48(4):406-410.过增元,程新广,夏再忠.最小热量传递势容耗散原理及其在导热优化中的应用.科学通报,2003,48(1):21-25.
    [135]韩光泽,郭平生,李绍新,华贲.势容损耗及熵产与导热优化.华北电力大学学报,2004,31(6):24-27
    [136]程新广,孟继安,过增元.导热优化中的最小传递势容耗散与最小熵产.工程热物理学报,2005,26(6):1034-1036.
    [137]韩光泽,朱宏晔,程新广,过增元.导热与弹性系统及导电的相似性.工程热物理学报,2005,26(6):1022-1024.
    [138]韩光泽,过增元.不同目的热优化目标函数:热量传递势容损耗与熵产.工程热物理学报,2006,27(5):811-813.
    [139]吴晶,程新广,孟继安,过增元.层流对流换热中的势容损耗极值与最小熵产.工程热物理学报,2006,27(1):100-102.
    [140]陈群,任建勋.传质势容耗散极值原理及通风排污过程的优化.工程热物理学报,2007,28(3):505-507.
    [141]韩光泽,过增元.导热能力损耗的机理及其数学表述.中国电机工程学报,2007,27(17):98-102.
    [142]夏再忠.导热和对流换热过程的强化与优化[博士学位论文].北京:清华大学工程力学系,2001.
    [143]孟继安.基于场协同理论的纵向涡强化换热技术及其应用[博士学位论文].北京:清华大学工程力学系,2003.
    [144] J. A. Meng, X. G. Liang, Z. X. Li. Field synergy optimization and enhanced heattransfer by muti-longitudinal vortexes flow in tube. Int J Heat Mass Transfer,2005,48:3331-3337.
    [145]程新广.火积及其在传热优化中的应用[博士学位论文].北京:清华大学工程力学系,2004.
    [146]过增元,梁新刚,朱宏晔.火积—描述物体传递热量能力的物理量.自然科学进展,2006,16(10):1288-1296.
    [147] Z. Y. Guo, H. Y. Zhu, X. G. Liang. Entransy-A physical quantity describing heattransfer ability. Int. J. Heat Mass Transfer,2007,50:2545-2556.
    [148] Z. Y. Guo, Q. Chen. Irreversibility and optimization of transfer processes. TheEighteenth International Symposium on Transport Phenomena, Daejeon, Korea,2007.
    [149]朱宏晔,陈敬泽,过增元.火积耗散极值原理的电热模拟实验研究.自然科学进展,2007,17(12):1692-1698.
    [150]陈群,吴晶,任建勋.对流换热过程的热力学优化与传热优化.工程热物理学报,2008,29(2):271-274.
    [151] Q. Chen, M. R. Wang, N. Pan, Z. Y. Guo. Optimization principles for convectiveheat transfer, Energy,2009,34:1199-1206.
    [152] Q. Chen, J. Wu, M. R. Wang, et al. A comparison of optimization theories forenergy conservation in heat exchanger groups. Chinese Science Bulletin,2011,56(4):449-454.陈群,吴晶,王沫然等.换热器组传热性能的优化原理比较.科学通报,2011,56(1):79-84.
    [153] Q. Chen, H. Y. Zhu, N. Pan, Z. Y. Guo. An alternative criterion in heat transferoptimization. Proc. R. Soc. A,2011,467:1012-1028.
    [154] Q. Chen, J. X. Ren, J. A. Meng. Field synergy equation for turbulent heattransfer and its application. Int. J. Heat Mass Transfer,2007,50:5334-5339.
    [155] Q. Chen, J. X. Ren. Generalized thermal resistance for convective heat transferand its relation to entransy dissipation. Chinese Science Bulletin,2008,53(23):3753-3761.陈群,任建勋.对流换热过程的广义热阻及其与火积耗散的关系.科学通报,2008,53(14):1730-1736.
    [156] Q. Chen, J. X. Ren, Z. Y. Guo. The extremum principle of mass entransydissipation and its application to decontamination ventilation designs in spacestation cabins. Chinese Science Bulletin,2009,54:2862-2870.陈群,任建勋,过增元.质量积耗散极值原理及其在空间站通风排污过程优化中的应用.科学通报,2009,54(11):1606-1612.
    [157] Q. Chen, J. X. Ren, Z. Y. Guo. Field synergy analysis and optimization ofdecontamination ventilation designs. Int. J. Heat Mass Transfer,2008,51:873-881.
    [158] Q. Chen, J. A. Meng. Field synergy analysis and optimization of the convectivemass transfer in photocatalytic oxidation reactors. Int. J. Heat Mass Transfer,2008,51:2863-2870.
    [159] Q. Chen, M. R. Wang, N. Pan, Z. Y. Guo. Mass nature of heat and its applicationⅦ: coupled heat and mass transfer optimization based on the entransy theory.Proceedings of the14th International Heat Transfer Conference, Washington DC,USA,2010.
    [160] Q. Chen, K. D. Yang, M. R. Wang, et al. A new approach to analysis andoptimization of evaporative cooling system Ⅰ: theory. Energy,2010,35:2448-2454.
    [161] Q. Chen, N. Pan, Z. Y. Guo. A new approach to analysis and optimization ofevaporative cooling system Ⅱ: applications.Energy,2011,36:2890-2898.
    [162] Q. Chen, M. R. Wang, N. Pan, Z. Y. Guo. Irreversibility of heat conduction incomplex multiphase systems and its application to the effective thermalconductivity of porous media. Int. J. Nonlinear Sciences and NumericalSimulation,2009,10(1):57-66.
    [163] Q. Chen, Z. Y. Guo. Entransy theory and its application to heat transfer analysesin porous media. Int. J. Nonlinear sciences and numerical simulation,2010,11(1):11-22.
    [164] Q. Y. Li, Q. Chen. Application of entransy theory in the heat transferoptimization of flat-plate solar collectors. Chinese Science Bulletin,2012,57(2-3):299-306.李秦宜,陈群.平板太阳能集热器传热性能的火积理论优化.科学通报,2011,56(33):2819-2826.
    [165] Q. Chen, Y. C. Xu. An entransy dissipation-based optimization principle forbuilding central chilled water systems. Energy,2012,37:571-579.
    [166] Y. C. Xu, Q. Chen. An entransy dissipation-based method for globaloptimization of district heating networks. Energy and Buildings,2012,48:50-60.
    [167] Y. C. Xu, Q. Chen. Minimization of mass for heat exchanger networks inspacecrafts based on the entransy dissipation theory. Int. J. Heat Mass Transfer,2012,55:5148-5156.
    [168]吴晶,柳雄斌,过增元.变比热容介质中的非傅里叶瞬态导热.工程热物理学报,2009,29(9):1351-1533.
    [169] J. Wu, X. G. Liang. Application of entransy dissipation extremum principle inradiative heat transfer optimization. Science in China Series E: TechnologicalSciences,2008,51(8):1306-1314.吴晶,梁新刚.火积耗散极值原理在辐射换热优化中的应用.中国科学E:技术科学,2009,39(2):272-277.
    [170] J. Wu, Z. Y. Guo. Conversion potential energy and its application tothermodynamic optimization. Sci. China Tech. Sci.,2012,55(8):2169-2175.
    [171]柳雄斌,孟继安,过增元.基于火积耗散的换热器热阻分析.自然科学进展,2008,18(10):1186-1190.
    [172] X. B. Liu, Z. Y. Guo. A novel method for heat exchanger analysis. Acta PhysicaSinica,2009,58(7):4766-4771.柳雄斌,过增元.换热器性能分析新方法.物理学报,2009,58(7):4766-4771.
    [173] X. B. Liu, J. A. Meng, Z. Y. Guo. Entropy generation extremum and entransydissipation extremum for heat exchanger optimization. Chinese Science Bulletin,2009,54(6):943-947.柳雄斌,孟继安,过增元.换热器参数优化中的熵产极值和火积耗散极值.科学通报,2008,53(24):3026-3029.
    [174] X. B. Liu, M. R. Wang, J. A. Meng, et al. Minimum entransy dissipationprinciple for optimization of transport networks. Int. J. Nonlinear Sciences andNumerical Simulation,2010,11(2):113-120.
    [175]宋伟明,孟继安,梁新刚,李志信.一维换热器中温差场均匀性原则的证明.化工学报,2008,59(10):2460-2464.
    [176]宋伟明,孟继安,李志信.矩形通道内层流对流换热的最优速度场.工程热物理学报,2011,32(1):133-136.
    [177] W. M. Song, J. A. Meng, Z. X. Li. Optimization of flue gas convective heattransfer with condensation in a rectangular channel. Chinese Science Bulletin,2011,56(3):263-268.宋伟明,孟继安,李志信.矩形通道内伴随冷凝的烟气对流换热的优化.科学通报,2010,55(35):3367-3372.
    [178] W. M. Song, J. A. Meng, Z. X. Li. Optimization of flue gas turbulent heattransfer with condensation in a tube. Chinese Science Bulletin,2011,56(19):1978-1984.
    [179] S. H. Wei, L. G. Chen, F. R. Sun."Volume-Point" heat conduction constructaloptimization with entransy dissipation minimization objective based onrectangular element. Sci. China Tech. Sci.,2008,51(8):1283-1295.魏曙寰,陈林根,孙丰瑞.基于矩形单元体的以火积耗散最小为目标的体点导热构形优化.中国科学E:技术科学,2009,39(2):278-285.
    [180] S. H. Wei, L. G. Chen, F. R. Sun. Constructal multidisciplinary optimization ofelectromagnet based on entransy dissipation minimization. Sci. China Tech. Sci.,2009,52(10):2981-2989.魏曙寰,陈林根,孙丰瑞.以火积耗散最小为目标的电磁体多学科构形优化.中国科学E:技术科学,2009,39(9):1606-1613.
    [181] S. H. Wei, L. G. Chen, F. R. Sun. Constructal optimization of discrete andcontinuous-variable cross-section conducting path based on entransy dissipationrate minimization. Sci. China Tech. Sci.,2010,53(6):1666-1677.魏曙寰,陈林根,孙丰瑞.基于火积耗散率最小地离散和连续变截面导热通道构形优化.中国科学E:技术科学,2010,40(10):1189-1200.
    [182] S. H. Wei, L. G. Chen, F. R. Sun. Constructal entransy dissipation minimizationfor 'volume-point' heat conduction without the premise of optimized last-orderconstruct. International Journal of Exergy,2010,7(5):627-639.
    [183] S. H. Wei, L. G. Chen, F. R. Sun. Constructal entransy dissipation minimizationfor “volume-point” heat conduction based on triangular element. ThermalScience,2010,14(4):1075-1088.
    [184] S. H. Wei, L. G. Chen, F. R. Sun. Constructal entransy dissipation minimizationof round tube heat exchanger cross-section. Int. J. Thermal Sciences,2011,50:1285-1292.
    [185] Z. H. Xie, L. G. Chen, F. R. Sun. Constructal optimization for geometry ofcavity by taking entransy dissipation minimization as objective. Sci. China Tech.Sci.,2009,52(12):3504-3513.谢志辉,陈林根,孙丰瑞.以火积耗散最小为目标的空腔几何构形优化.中国科学E:技术科学,2009,39(12):1949-1957.
    [186] Z. H. Xie, L. G. Chen, F. R. Sun. Constructal optimization on T-shaped cavitybased on entransy dissipation minimization. Chinese Science Bulletin,2009,54(23):4418-4427.谢志辉,陈林根,孙丰瑞. T形腔火积耗散最小构形优化.科学通报,2009,54(17):2605-2612.
    [187] Z. H. Xie, L. G. Chen, F. R. Sun. Comparative study on constructal optimizationof T-shaped fin based on entransy dissipation rate minimization and maximumthermal resistance minimization. Sci. China Tech. Sci.,2011,54(5):1249-1258.谢志辉,陈林根,孙丰瑞. T形肋火积耗散率最小与最大热阻最小构形优化的比较研究.中国科学E:技术科学,2011,41(7):962-970.
    [188] Q. H. Xiao, L. G. Chen, F. R. Sun. Constructal entransy dissipation rate andflow-resistance minimizations for cooling channels. Sci. China Tech. Sci.,2010,53(9):2458-2468.肖庆华,陈林根,孙丰瑞.基于火积耗散率和流阻最小的冷却流道构形优化.中国科学E:技术科学,2011,41(2):251-261.
    [189] Q. H. Xiao, L. G. Chen, F. R. Sun. Constructal entransy dissipation rateminimization for“disc-to-point”heat conduction. Chinese Science Bulletin,2011,56(1):102-112.肖庆华,陈林根,孙丰瑞.基于火积耗散率最小的“盘点”导热构形优化.科学通报,2010,55(24):2427-2437.
    [190] Q. H. Xiao, L. G. Chen, F. R. Sun. Constructal entransy dissipation rateminimization for heat conduction based on a tapered element. Chinese ScienceBulletin,2011,56(22):2400-2410.肖庆华,陈林根,孙丰瑞.基于变截面单元体的火积耗散率最小导热构形优化.科学通报,2011,56(17):1401-1410.
    [191] Q. H. Xiao, L. G. Chen, F. R. Sun. Constructal design for a steam generatorbased on entransy dissipation extremum principle. Sci. China Tech. Sci.,2011,54(6):1462-1468.肖庆华,陈林根,孙丰瑞.基于火积耗散极值原理的蒸汽发生器构形优化.中国科学E:技术科学,2011,41(8):1090-1096.
    [192] Q. H. Xiao, L. G. Chen, F. R. Sun. Constructal entransy dissipation rateminimization for a heat generating volume cooled by forced convection. ChineseScience Bulletin,2011,56(27):2966-2973.肖庆华,陈林根,孙丰瑞.强迫对流换热冷却的产热体火积耗散率最小构形优化.科学通报,2011,56(24):2032-2039.
    [193] Q. H. Xiao, L. G. Chen, F. R. Sun. Constructal entransy dissipation rateminimization for umbrella-shaped assembly of cylindrical fins. Sci. China Tech.Sci.,2011,54(1):211-219.肖庆华,陈林根,孙丰瑞.基于火积耗散率最小的伞形柱状肋片构形优化.中国科学E:技术科学,2011,41(3):365-373.
    [194]肖庆华,陈林根,谢志辉等. Y形肋片火积耗散率最小构形优化.工程热物理学报,2012,33(9):1465-1470.
    [195] H. J. Feng, L. G. Chen, F. R. Sun.“Volume-point” heat conduction constructaloptimization based on entransy dissipation rate minimization withthree-dimensional cylindrical element and rectangular and triangular elements onmicroscale and nanoscale. Sci. China Tech. Sci.,2012,55(3):779-794.冯辉君,陈林根,孙丰瑞.基于火积耗散率最小的三维圆柱形单元体和微、纳米尺度下矩形、三角形单元体体点导热构形优化.中国科学E:技术科学,2012,42(3):257-271.
    [196] H. J. Feng, L. G. Chen, F. R. Sun. Constructal entransy dissipation rateminimization for leaf-like fins. Sci. China Tech. Sci.,2012,55(2):515-526.冯辉君,陈林根,孙丰瑞.基于火积耗散率最小的叶形肋片构形优化.中国科学E:技术科学,2012,42(4):456-466.
    [197] L. G. Chen, S. H. Wei, F. R. Sun. Constructal entransy dissipation minimizationfor 'volume-point' heat conduction. Journal of Physics D: Applied Physics,2008,41(19):195506.
    [198] L. G. Chen, S. H. Wei, F. R. Sun. Constructal entransy dissipation minimizationof an electromagnet. Journal of Applied Physics,2009,105(9):094906.
    [199] L. G. Chen, S. H. Wei, F. R. Sun. Constructal entransy dissipation rateminimization of a disc. Int. J. Heat Mass Transfer,2011,54:210-216.
    [200] S. J. Xia, L. G. Chen, F. R. Sun. Optimization for entransy dissipationminimization in heat exchanger. Chinese Science Bulletin,2009,54:3587-3595.夏少军,陈林根,孙丰瑞.换热器火积散最小优化.科学通报,2009,54(15):2240-2246.
    [201]陈林根,田凤红,肖庆华,孙丰瑞.基于恒截面流道矩形单元体的积耗散率最小传质构形优化.热科学与技术,2012,11(2):136-141.
    [202] S. J. Xia, L. G. Chen, F. R. Sun. Entransy dissipation minimization forliquid-solid phase change processes. Sci. China Tech. Sci.,2010,53(4):960-968.夏少军,陈林根,孙丰瑞.液-固相变过程火积耗散最小化.中国科学E:技术科学,2010,40(12):1521-1529.
    [203] S. J. Xia, L. G. Chen, F. R. Sun. Entransy dissipation minimization for a class ofone-way isothermal mass transfer processes. Sci. China Tech. Sci.,2011,54(2):352-361.夏少军,陈林根,孙丰瑞.一类单向等温传质过程积耗散最小化.中国科学E:技术科学,2011,41(4):515-524.
    [204]程雪涛,徐向华,梁新刚.温度场与温度梯度场的均匀化.中国科学E:技术科学,2009,39(10):1730-1735.
    [205] X. T. Cheng, X. G. Liang, Z. Y. Guo. Entransy decrease principle of heat transferin an isolated system. Chinese Science Bulletin,2011,56(9):847-854.程雪涛,梁新刚,过增元.孤立系统内传热过程的火积减原理.科学通报,2011,56(3):222-230.
    [206] X. T. Cheng, Y. Dong, X. G. Liang. Potential entransy and potential entransydecrease principle. Acta Physica Sinica,2011,60(11):114402.程雪涛,董源,梁新刚.积与积减原理.物理学报,2011,60(11):114402.
    [207] X. T. Cheng, Q. Z. Zhang, X. G. Liang. Analyses of entransy dissipation, entropygeneration and entransy-dissipation-based thermal resistance on heat exchangeroptimization. Applied Thermal Engineering,2012,38:31-39.
    [208] X. T. Cheng, X. H. Xu, X. G. Liang. Application of entransy to optimizationdesign of parallel thermal network of thermal control system in spacecraft. Sci.China Tech. Sci.,2011,54(4):964-971.程雪涛,徐向华,梁新刚.火积在航天器热控系统并联热网络优化中的应用.中国科学E:技术科学,2011,41(4):507-514.
    [209] X. T. Cheng, X. G. Liang. Computation of effectiveness of two-stream heatexchanger networks based on concepts of entropy generation, entransydissipation and entransy-dissipation-based thermal resistance. Energy Conversionand Management,2012,58:163-170.
    [210] X. T. Cheng, X. G. Liang, X. H. Xu. Microscopic expression of entransy. ActaPhysica Sinca,2011,60(6):060512.程雪涛,梁新刚,徐向华.火积的微观表述.物理学报,2011,60(6):060512.
    [211] X. T. Cheng, X. G. Liang. Relationship between microstate number and availableentransy. Chinese Science Bulletin,2012,57(24):3244-3250.程雪涛,梁新刚.微观状态数与可用火积的关系.科学通报,2012,57(14):1263-1269.
    [212] X. T. Cheng, X. H. Xu, X. G. Liang. Principles of potential entransy ingeneralized flow. Acta Physica Sinica,2011,60(11):118103.程雪涛,徐向华,梁新刚.广义流动中的积原理.物理学报,2011,60(11):118103.
    [213] X. T. Cheng, X. H. Xu, X. G. Liang. Radiative entransy flux in enclosures withnon-isothermal or non-grey, opaque, diffuse surfaces and its application. Sci.China Tech. Sci.,2011,54(9):2446-2456.程雪涛,徐向华,梁新刚.非等温、非灰体不透明漫射固体表面组成的封闭空腔中的辐射火积流及其应用.中国科学E:技术科学,2011,41(10):1359-1368.
    [214]程雪涛,梁新刚.辐射火积耗散与空间辐射器温度场均匀化的关系.工程热物理学报,2012,33(2):311-314.
    [215] X. T. Cheng, X. G. Liang. Entransy flux of thermal radiation and its applicationto enclosures with opaque surfaces. Int. J. Heat Mass Transfer,2011,54:269-278.
    [216] X. T. Cheng, W. H. Wang, X. G. Liang. Entransy analysis of openthermodynamics systems. Chinese Science Bulletin,2012,57(22):2934-2940.程雪涛,王文华,梁新刚.开口热力学系统的火积分析.科学通报,2012,57(16):1489-1495.
    [217] X. T. Cheng, X. G. Liang. Entransy loss in thermodynamic processes and itsapplication. Energy,2012,44:964-972.
    [218]王文华,程雪涛,梁新刚.火积耗散与热力学过程的不可逆性.科学通报,2012,57(26):2537-2544.
    [219] X. T. Cheng, W. H. Wang, X. G. Liang. Optimization of heat transfer andheat-work conversion based on generalized heat transfer law. Sci. China Tech.Sci.,2012,55(10):2847-2855.程雪涛,王文华,梁新刚.基于广义传热定律的传热与热功转换优化.中国科学E:技术科学,2012,42(10):1179-1187.
    [220] S. P. Wang, Q. L. Chen, B. J. Zhang. An equation of entransy transfer and itsapplication. Chinese Science Bulletin,2009,54:3572-3578.王松平,陈清林,张冰剑.火积传递方程及其应用.科学通报,2009,54(15):2247-2251.
    [221]王松平,丁志高.导热过程不同优化目标的优化准则.青岛大学学报(工程技术版),2010,25(2):47-51.
    [222]王松平,陈清林.对流换热可控温差场分布原则.华北电力大学学报,2012,39(1):43-48.
    [223] J. F. Guo, L. Cheng, M. T. Xu. Entransy dissipation number and its applicationto heat exchanger performance evaluation. Chinese Science Bulletin,2009,54:2708-2713.郭江峰,程林,许明田.火积耗散数及其应用.科学通报,2009,54(19):2998-3002.
    [224]郭江峰,许明田,程林.基于火积耗散数最小的板翅式换热器优化设计.工程热物理学报,2011,32(5):827-831.
    [225] J. F. Guo, M. T. Xu, L. Cheng. Principle of equipartition of entransy dissipationfor heat exchanger design. Sci. China Tech. Sci.,2010,53(5):1309-1314.郭江峰,许明田,程林.换热器设计中的火积耗散均匀性原则.中国科学E:技术科学,2010,40(6):671-676.
    [226] J. F. Guo, M. T. Xu, L. Cheng. The influence of viscous heating on the entransyin two-fluid heat exchangers. Sci. China Tech. Sci.,2011,54(5):1267-1274.郭江峰,许明田,程林.两流体换热器内黏性热对两流体火积的影响.中国科学E:技术科学,2011,41(5):621-627.
    [227] J. F. Guo, M. T. Xu, L. Cheng. The entransy dissipation minimization principleunder given heat duty and heat transfer area conditions. Chinese Science Bulletin,2011,56(19):2071-2076.郭江峰,许明田,程林.换热量和换热面积给定时的火积耗散最小原则.科学通报,2010,55(32):3141-3146.
    [228] J. F. Guo, M. X. Li, M. T. Xu, L. Cheng. The application of entransy dissipationtheory in optimization design of heat exchanger. Proceedings of the14thInternational Heat Transfer Conference, Washington DC, USA,2010.
    [229] J. F. Guo, M. T. Xu. The application of entransy dissipation theory inoptimization design of heat exchanger. Applied Thermal Engineering,2012,36:227-235.
    [230] J. F. Guo, X. L. Huai. Optimization design of recuperator in a chemical heatpump system based on entransy dissipation theory. Energy,2012,41:335-343.
    [231] J. F. Guo, X. L. Huai. The application of entransy theory in optimization designof isopropanol-acetone-hydrogen chemical heat pump. Energy,2012,34:355-360.
    [232]许明田,程林,郭江峰.火积耗散理论在换热器设计中的应用.工程热物理学报,2009,30(12):2090-2092.
    [233] X. F. Li, J. F. Guo, M. T. Xu, L. Cheng. Entransy dissipation minimization foroptimization of heat exchanger design. Chinese Science Bulletin,2011,56(20):2174-2178.李雪芳,郭江峰,许明田,程林.换热器优化设计的最小火积耗散方法.科学通报,2011,56(11):869-873.
    [234] M. T. Xu, L. Cheng. From the extremum principle of entransy dissipation tosteady balance equations of fluid mechanics. Proceedings of the14thInternational Heat Transfer Conference, Washington DC, USA,2010.
    [235] M. T. Xu. The thermodynamic basis of entransy and entransy dissipation. Energy,2011,36:4272-4277.
    [236] M. T. Xu. Variational principles in terms of entransy for heat transfer. Energy,2012,44:973-977.
    [237]刘明艳,徐向华,梁新刚.高热流密度下矩形微小通道对流换热的模拟与优化.工程热物理学报,2010,31(4):633-636.
    [238]李梦寻.火积耗散理论在管壳式换热器优化设计中的应用[硕士学位论文].济南:山东大学工程热物理系,2010.
    [239]李梦寻,郭江峰,许明田,程林.火积耗散理论在管壳式换热器优化设计中的应用.工程热物理学报,2010,31(7):1189-1192.
    [240]富丽.火积耗散理论在板翅式换热器多目标优化设计中的应用[硕士学位论文].济南:山东大学工程热物理系,2011.
    [241]陈宏瑜.基于火积耗散极值原理的弯管管内流场优化研究[硕士学位论文].济南:山东大学工程热物理系,2011.
    [242]陈宏瑜,田茂诚,冷学礼等.基于火积耗散极值原理的弯管内流动优化与场协同分析.化工学报,2011,62(11):3088-3092.
    [243]郭春生,程林,杜文静.换热器新评价标准—火积耗散均匀性系数.哈尔滨工业大学学报,2012,44(3):144-148.
    [244]张涛,刘晓华,涂壤,江亿.热学参数在建筑热湿环境营造过程中的适用性分析.暖通空调,2011,41(3):13-21.
    [245]江亿,谢晓云,刘晓华.湿空气热湿转换过程的热学原理.暖通空调,2011,41(3):51-64.
    [246]陈彦龙,王馨,滕小果.基于火积与熵产分析的最优相变温度研究.工程热物理学报,2012,33(9):1597-1560.
    [247]胡帼杰,过增元.传热过程的效率.工程热物理学报,2011,32(6):1005-1008.
    [248] G. J. Hu, B. Y. Cao, Z. Y. Guo. Entransy and entropy revisited. Chinese ScienceBulletin,2011,56(27):2974-2977.胡帼杰,曹炳阳,过增元.系统的火积与可用火积.科学通报,2011,56(19):1575-1577.
    [249]冷学礼,田茂诚,张冠敏.对流换热中的准火积耗散函数.工程热物理学报,2011,32(8):1361-1364.
    [250] F. Yuan, Q. Chen. Optimization criteria for the performance of heat and masstransfer in indirect evaporative cooling systems. Chinese Science Bulletin,2012,57(6):687-693.袁芳,陈群.间接蒸发冷却系统传热传质性能的优化准则.科学通报,2012,57(1):88-94.
    [251] F. Yuan, Q. Chen. A global optimization method for evaporative cooling systemsbased on the entransy theory. Energy,2012,42:181-191.
    [252] F. Yuan, Q. Chen. Two energy conservation principles in convective heattransfer optimization. Energy,2011,36:5476-5485.
    [253] X. D. Qian, Z. X. Li. Analysis of entransy dissipation in heat exchangers. Int. J.Thermal Sciences,2011,50:608-614.
    [254] X. D. Qian, Z. Li, Z. X. Li. Entransy-dissipation-based thermal resistanceanalysis of heat exchanger networks. Chinese Science Bulletin,2011,56(31):3289-3295.
    [255] X. D. Qian, Z. Li, J. A. Meng, Z. X. Li. Entransy dissipation analysis andoptimization of separated heat pipe system. Sci. China Tech. Sci.,2012,55(8):2126-2131.
    [256]李震,田浩,张海强等.用于高密度显热机房排热的分离式热管换热器性能优化分析.暖通空调,2011,41(3):38-43.
    [257]苟秋平,吴学红,吕彦力等.复合翅片传热与流动特性的数值模拟.热科学与技术,2011,10(4):317-323.
    [258] G. M. Chen, C. P. Tso. A thermal resistance analysis on forced convection withviscous dissipation in a porous medium using entransy dissipation concept. Int. J.Heat Mass Transfer,2012,55:3744-3754.
    [259]沈维道,蒋智敏,童钧耕合编.工程热力学(第三版).北京:高等教育出版社,2001.
    [260] W. Liu, Z. C. Liu, H. Jia, et al. Entransy expression of the second law ofthermodynamics and its application to optimization in heat transfer process. Int. J.Heat Mass Transfer,2011,54:3049-3059.
    [261] W. Liu, H. Jia, Z. C. Liu, et al. Minimum dissipation principle and itsapplication in heat transfer process optimization. Int. Forum on Frontier Theoriesof Thermal Science, Beijing, China,2011.
    [262] W. Liu, H. Jia, Z. C. Liu, et al. The approach of minimum heat consumption andits applications in convective heat transfer optimization. Int. J. Heat MassTransfer,2013,57:389-396.
    [263] G. K. Batchelor. An introduction to fluid dynamics. London: CambridgeUniversity Press,1994.
    [264]杨东华.不可逆过程热力学原理及工程应用.北京:科学出版社,1989.
    [265]钱伟长.广义变分原理.上海:知识出版社,1985.
    [266]陈群,任建勋,过增元.流体流动场协同原理及其在减阻中的应用.科学通报,2008,53:489-492.
    [267] H. Jia, W. Liu, Z. C. Liu. Enhancing convective heat transfer based on minimumpower consumption principle. Chemical Engineering Science,2012,69:225-230.
    [268]贾晖,刘志春,刘伟.最小火积耗优化在椭圆管换热中的应用.工程热物理学报,2012,33(6):1000-1002.
    [269] S. Pethkool, S. Eiamsa-ard, S. Kwankaomeng, P. Promvonge. Turbulent heattransfer enhancement in a heat exchanger using helically corrugated tube.International Communications in Heat and Mass Transfer,2011,38:340-347.
    [270] V. Yakhot, S. A. Orszag, S. Thangam, et al. Development of turbulence modelsfor shear flows by a double expansion technique. Physics of Fluids A,1992,4(7):1510-1520.
    [271]陈群.对流传递过程的不可逆性及其优化[博士学位论文].北京:清华大学动力工程及工程热物理系,2008.
    [272] W. Liu, K. Yang. Mechanism and numerical analysis for heat transferenhancement in the core flow along a tube. Science in China Series E:Technological Science,2008,51(8):1195-1202.刘伟,杨昆.管内核心流强化传热的机理与数值分析.中国科学E:技术科学,2009,39(4):661-666.
    [273] D. Weerapun, W. Somchai. An experimental investigation of the heat transferand pressure drop characteristics of a circular tube fitted with rotatingturbine-type swirl generators. Experimental Thermal and Fluid Science,2013,45:8-15.
    [274] A. S. Betül, B. Tulin. An experimental study on heat transfer and pressure dropcharacteristics of decaying swirl flow through a circular pipe with a vortexgenerator. Experimental Thermal and Fluid Science,2007,32:158-165.
    [275] E. Smith, P. Pongjet. Experimental investigation of heat transfer and frictioncharacteristics in a circular tube fitted with V-nozzle turbulators. InternationalCommunications in Heat and Mass Transfer,2006,33:591-600.
    [276] E. Smith, T. Chinaruk, E. Petpices, P. Pongjet. Convective heat transfer in acircular tube with short-length twisted tape insert. International Communicationsin Heat and Mass Transfer,2009,36:365-371.
    [277] R. Masoud, R. S. Sayed, A. A. Ammar. Experimental and CFD studies on heattransfer and friction factor characteristics of a tube equipped with modifiedtwisted tape inserts. Chemical Engineering and Processing,2009,48:762-770.
    [278] N. Paisarn. Effect of coil-wire insert on heat transfer enhancement and pressuredrop of the horizontal concentric tubes. International Communications in Heatand Mass Transfer,2006,33:753-763.
    [279] G. Alberto, P. S. Juan, G. V. Pedro, V. Antonio. Enhancement of laminar andtransitional flow heat transfer in tubes by means of wire coil inserts. InternationalJournal of Heat and Mass Transfer,2007,50:3176-3189.
    [280] P. Sivashanmugam, S. Suresh. Experimental studies on heat transfer and frictionfactor characteristics of laminar flow through a circular tube fitted with helicalscrew-tape inserts. Applied Thermal Engineering,2006,26:1990-1997.
    [281] P. Sivashanmugam, S. Suresh. Experimental studies on heat transfer and frictionfactor characteristics of laminar flow through a circular tube fitted with regularlyspaced helical screw-tape inserts. Experimental Thermal and Fluid Science,2007,31:301-308.
    [282] J. Z. Gregory, M. C. Louay, J. M. Pedro. Experimental determination of heattransfer and friction in helically-finned tubes. Experimental Thermal and FluidScience,2008,32:761-775.
    [283] P. Bharadwaj, A. D. Khondge, A. W. Date. Heat transfer and pressure drop in aspirally grooved tube with twisted tape insert. International Journal of Heat andMass Transfer,2009,52:1938-1944.
    [284] Q. Liao, M. D. Xin. Augmentation of convective heat transfer inside tubes withthree-dimensional internal extended surfaces and twisted-tape inserts. ChemicalEngineering Journal,2000,78:95-105.
    [285] V. Zimparov. Enhancement of heat transfer by a combination of a single-startspirally corrugated tubes with a twisted tape. Experimental Thermal and FluidScience,2002,25:535-546.
    [286] V. Zimparov. Enhancement of heat transfer by a combination of a three-startspirally corrugated tubes with a twisted tape. International Journal of Heat andMass Transfer,2001,44:551-574.
    [287] L. Syam Sundar, N. T. Ravi Kumar, M. T. Naik, K. V. Sharma. Effect of fulllength twisted tape inserts on heat transfer and friction factor enhancement withFe3O4magnetic nanofluid inside a plain tube: an experimental study.International Journal of Heat and Mass Transfer,2012,55:2761-2768.
    [288] M. Chandrasekar, S. Suresh, A. C. Bose. Experimental studies on heat transferand friction factor characteristics of Al2O3/water nanofluid in a circular pipeunder laminar flow with wire coil inserts. Experimental Thermal and FluidScience,2010,34:122-130.
    [289] X. W. Li, J. A. Meng, Z. X. Li. Experimental study of single-phase pressure dropand heat transfer in a micro-fin tube. Experimental Thermal and Fluid Science,2007,32:641-648.
    [290] J. Guo, A. W. Fan, X. Y. Zhang, W. Liu. A numerical study on heat transfer andfriction factor characteristics of laminar flow in a circular tube fitted withcenter-cleared twisted tape. International Journal of Thermal Sciences,2011,50:1263-1270.
    [291] X. Y. Zhang, Z. C. Liu, W. Liu. Numerical studies on heat transfer and flowcharacteristics for laminar flow in a tube with multiple regularly spaced twistedtapes. International Journal of Thermal Sciences,2012,58:157-167.
    [292] A. W. Fan, J. J. Deng, J. Guo, W. Liu. A numerical study on thermo-hydrauliccharacteristics of turbulent flow in a circular tube fitted with conical strip inserts.Applied Thermal Engineering,2011,31:2819-2828.
    [293] A. A. Mohamad. Heat transfer enhancements in heat exchangers fitted withporous media Part I:constant wall temperature. International Journal of ThermalScience,2003,42(4):385-395.
    [294] B. I. Pavel,A. A. Mohamad. An experimental and numerical study on heattransfer enhancement for gas heat exchangers fitted with porous media.International Journal of Heat and Mass Transfer,2004,47(23):4939-4952.
    [295] T. Z. Ming, Y. Zheng, J. Liu, et al. Heat transfer enhancement by filling metalporous medium in central area of tubes. Journal of the Energy Institute,2010,83(1):17-24.
    [296] Z. F. Huang, A. Nakayama, K. Yang, et al. Enhancing heat transfer in the coreflow by using porous medium insert in a tube. Int. J. Heat Mass Transfer,2010,53:1164-1174.
    [297] S. Wang, Z. Y. Guo, Z. X. Li. Heat transfer enhancements by using metallicfilament insert in channel flow. International Journal of Heat and Mass Transfer,2001,44(7):1373-1378.
    [298]刘伟,明廷臻.叶片旋流管内核心流强化传热分析与结构优化.中国电机工程学报,2009,29(5):72-77.
    [299]刘志春,刘伟,杨昆等.纵向扰流管壳式换热器.专利号: ZL200810236717.0.
    [300]贾晖,刘伟,刘志春,范爱武.换热器管束间添加叶片的数值分析与结构优化.工程热物理学报,2010,31(9):1547-1550.
    [301]王英双,刘志春,黄素逸,刘伟.新型折流杆换热器的流动与传热数值模拟.化工进展,2010,29(7):1205-1208.
    [302]马雷,王英双,杨杰等.变截面折流杆换热器的流动与传热分析.工程热物理学报,2012,33(1):113-116.
    [303]马雷,王英双,杨杰等.折流杆换热器的数值模拟及优化设计.工程热物理学报,2011,32(3):462-464.
    [304] W. Liu, Z. C. Liu, Y. S. Wang, et al. Flow mechanism and heat transfer enhancement in longitudinal-flow tube bundle of shell-and-tube heat exchanger. Sci.China Tech. Sci.,2009,52(10):2952-2959.刘伟,刘志春,王英双,黄素逸.管壳式换热器纵流管束内的扰流机制与传热强化研究.中国科学E:技术科学,2009,39(11):1850-1856.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700