天然气水合物地层井壁稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气水合物是由水分子和天然气分子在一定温度和压力下形成的似冰雪状结晶化合物,又称笼形水合物或“可燃冰”。由于形成天然气水合物的气体主要为甲烷,因而也常被称为甲烷水合物。自然界中的天然气水合物主要分布在海洋的大陆边缘和陆上永冻地区,前者占了已发现数量的绝大多数。天然气水合物研究已成为当代地球科学研究和能源工业发展的一大热点,该研究涉及到新一代能源的探查开发、温室效应、全球碳循环和气候变化、古海洋、海洋地质灾害、天然气运输、油气管道堵塞、船艇能源更新和军事防御等,并有可能对地质学、环境科学和能源工业的发展产生深刻的影响。因而世界上许多国家都从各自的关注点对天然气水合物展开了广泛的调查研究。特别是近来能源短缺日益加剧,油气价格又居高不下,使得各国更加关注具有能量密度高、储量大和分布广等特点的天然气水合物,纷纷加大对其勘探和开发研究的力度。对于我国来说,本身油气资源就不足,加之经济的快速发展,导致能源缺口越来越大。专家预测到2010年我国需进口原油接近2亿吨才能满足经济发展需求,仅此一项就要花费好几百亿美元的外汇储备。加之能源结构不合理以及《京都议定书》的正式生效,都迫使我们去寻求可替代的清洁环保新能源。因此,从我国能源战略安全和经济可持续发展角度来说,也应加大对天然气水合物勘探开发的力度。
     而要对赋藏在地下一定深处的天然气水合物进行勘探和开发,钻井是必不可少的。天然气水合物的热压力特性决定了此类地层钻井与一般油气地层钻井有很大不同,也导致这类地层钻井面临更加复杂的井内问题。首先在钻井(进)时,储层井壁和井底附近地层应力会释放,地层压力会降低;同时,钻头切削岩石、井底钻具与井壁及岩心的摩擦都会产生大量的热能,此外循环泥浆温度控制不当,这些都可能使孔内温度升高。因此在钻井过程中井壁地层压力和温度的变化将不可避免地导致天然气水合物发生分解。当固态水合物起胶结或骨架支撑作用时,分解本身就会使井壁坍塌。而分解产生的水增加了井壁地层的含水量,使颗粒间的联系减弱,导致井壁不稳;逸出的气体又影响了钻井液的比重和流变性,对井壁稳定愈发不利,甚至还可能引发井涌和井喷等钻井事故。其次钻井过程是一个非绝热过程,钻井液和地层之间的热交换以及水合物的分解吸热都会使井内流体温度和井壁温度发生变化,这种温度变化会影响钻井液的粘度、密度、化学稳定性、井眼周围的应力和孔隙水压力,进而影响井壁稳定和井内安全。最后分解进入井内的气体同钻井液一起上返到地面,在这过程中如果井内温压条件合适,它们又会重新在钻井管线和阀门特别是防喷器内形成水合物,导致意想不到的钻井事故发生。因此井壁稳定和井内安全控制是天然气水合物地层钻井所面临的主要难题。加之水合物地层骨架一般为未固结和半固结的砂岩或泥质砂岩,使得在此类地层钻井时井壁稳定问题尤为突出。而井壁不稳定会导致井壁坍塌,钻具卡钻,井壁破裂,泥浆漏失,以致井的报废,损失大量人力物力。据有关资料
Gas hydrate is a ice-like crystalline compound, formed by water molecules and natural gas molecules under certain temperature and pressure conditions, also called clathrate hydrate or "fire ice". For the gas forming gas hydrate is mainly methane, it is also called methane hydrate. Natural gas hydrate distributes mainly in the marine continental margin sediments and permafrost environments, and most of found gas hydrate existed in the former. The research of gas hydrate has become the hotspot of the development of the geosciences research and the energy industry of the present age. The research is involved with many fields, such as the exploration of a new type of energy, greenhouse effect, global carbon cycle, climatic change, ancient ocean, the ocean geological calamity, oil gas transportation, the blockage in the pipeline, the renewal of ship energy and military defense, and may also have the profound influence on the development of geology, environmental sciences and the energy industry. So many countries in the world research gas hydrate broadly from their respective different attention aspects. Especially for the severity shortage of energy resources and the high oil gas price in the recent years, many countries pay more attention to gas hydrate, with the traits of high energy density, large reserves and wide-ranging distribution, and the exploration and the research of gas hydrate .For our country, the shortage of oil gas resources and the fast economy development make the gap of energy resources bigger and bigger. Experts predict petroleum crude will be imported 2 hundreds million tons in 2010, which costs hundreds million foreign exchange reserves. Moreover, the inconsequence of the energy configuration and the becoming effective of the Kyoto Protocol force us to find a new type of substituted clear energy .From the aspects of the security of our country energy strategy and the economy's persistent development, the extent of the exploration and the research of gas hydrate will be enlarged.
    In order to explore and exploit gas hydrate in the certain underground depth, drilling wells are absolutely necessary. The temperature and pressure characteristics of gas hydrate make the wells in these sediments different from the wells in the general oil gas sediments, and also make the wells confronted with the more difficult problems. Firstly, while drilling, the stratum stress near the borehole and the bottom of hole is released and depresses. At the same time, the heat energy generated by the friction of the bit cutting rocks and the friction of the drilling tools, the
引文
1.蒋国盛,王达,汤凤林等.天然气水合勘探与开发[M].武汉:中国地质大学出版社,2002
    2.宋召军,刘立.天然气水合物研究现状与展望[J].吉林地质,2003,22(4):64-68
    3.陈汉宗,周蒂.天然气水合物与全球变化研究[J].地球科学进展,1997,12(1):37-41
    4. Kvenvolden K A. Gas Hydrate—Geological perspective and global change[J]. Rev. Geophys., 1993, (31): 173-187
    5.姚伯初.南海北部陆缘天然气水合物初探[J].海洋地质与第四纪地质,1998,18(4):11-18
    6.张光学,黄永祥,陈邦彦.海域天然气水合物地震学[M].北京:海洋出版社,2003
    7.何拥军,陈建文,曾繁彩,吴琳.世界天然气水合物调查研究进展[J].海洋地质动态,2004,20(6):43-46
    8. http://woodshole.er.usgs.gov/project-pages/hydrates/what.html
    9.马在田,宋海斌,孙建国.海洋天然气水合物的地球物理探测高新技术[J].地球物理学进展,2000,15(3):1-5
    10.马在田,耿建华,董良国,等.海洋天然气水合物的地震识别方法研究[J].海洋地质与第四纪地质,2002,22(1):1-8
    11. http://www.netl.doe.gov/scngo/Natural%20Gas/hydrates/projects/DOEProjects/CharHydGOM-41330.html
    12.市川祜一郎著,庞馨萍译.日本《资源与环境》[J],1999(5):57-64页
    13.程远方,徐同台.安全泥浆密度窗口的确立及应用[J].石油钻探技术.1999,27(3):16-18
    14. Cheng Y F, Yan J, Wang G. A Comprehensive Study of Wellbore Stability in Shale Formation and Its Application to Horizontal Drilling Operationsl[J]. SPE37080, 1996
    15.丰全会,程远方,张建国.井壁稳定的弹塑性模型及其应用石油钻探技术[J],2000 28(4):9-10
    16.徐同台,赵忠举.21世纪初国外钻井液和完井液技术[M].北京:石油工业出版社,2004
    17.黄文件,刘道平,周文铸,宋玫峰.天然气水合物的热物理性质[J].天然气化工,2004,29(4):66-70
    18.金春爽,汪集旸.天然气水合物的地热研究进展[J].地球科学进展,2001,16(4):540-543
    19.黄犊子,樊栓狮,石磊.天然气水合物的导热系数[J].化学通报,2004,(10):737-742
    20. Stoll R D, Bryan G M. Physical properties of the sediments containing gas hydrates[J]. Geophysical Res, 1979, 84(B4): 1629-1634
    21. Osamu Matsubayashi, Nigel Edwards R. Relationship between electrical and thermal conductivities for evaluating thermal regime of gas hydrate bearing sedimentary layers[J]. The Annals of the New York Academy of Sciences. 1999, (912): 167-172
    22. W F Waite, J Pinkston, S H Kirby. Proceedings of the Fourth International Conference on Gas Hydrate(C). Yokohama, 2002: 728-733
    23. Sloan E D. Clathrate Hydrates of Natural Gases (2nd edit) [M]. New York: Dekker, 1998
    24.史斗,孙成权,朱岳年.国外天然气水合物研究进展[M].兰州:兰州大学出版社,1992
    25. Handa Y P. Composition, enthalpy of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of methane, ethane, and propane, and enthalpy of dissociation of isobutene hydrate, as determined by heat-flow calorimeter[J]. Chem Thermodynamics, 1986, (18): 915-921
    26. R M Reuff. The heat capacity and heat of dissociation of methane hydrates: a new approach[B]. Colorado: Colorado School of Mines, PhD Thesis, 1985
    27. Rueff R M, sloan E D, Yesavage V F. Heat capacity and heat of dissociation of methane hydrate[J]. AIChE Journal, 1988, 34(9): 1468-1476
    28. Lievois J S. Development of an automated, high pressure heat flux calorimeter and its application to measure the heat of dissociation of methane hydrate[D]. Houston, TX: Rice University, PhD Thesis, 1987
    29.周怀阳,彭小彤,叶瑛.天然气水合物[M].北京:海洋出版社.2000
    30. Anderson G K. Enthalpy of dissociationand hydration number of carbon dioxide hydrate from the Clapeyron equation[J]. Chem Thermodynamics, 2003, (35): 1171-1183
    31.孙志高,樊栓狮,郭开华等.天然气水合物分解热的确定[J].分析测试学报,2002,21(3):7-9
    32. John L Cox. Natural Gas Hydrates: Properties, Occurrence and Recovery[M]. Boston: Butterworth, 1983
    33. Dvorkin J, Helgerud M B, Waite W F, et al. Introduction to physical properties and elasticity model[A]. Natural gas hydrate in oceanic and permafrost environments[C], 2000, 245-260
    34.吴志强等.海域天然气水合物的岩石物性研究[J].海洋地质动态,2004,20(6):13-17
    35. Ecker C, Dvorkin J, Aura M. Estimating the amount of gas hydrate and free gas from marine seismic data[J]. Geophysics, 2000, 65: 565-573
    36.龚建明,王红霞.天然气水合物在沉积地层中的分布模式[J].海洋地质动态,2004,20(6):6-8
    37.赵洪伟,陈建文,龚建明等.天然气水合物饱和度的预测方法[J].海洋地质动态,2004,20(6):22-24
    38.G.邦特巴思著;易志新,熊亮萍译.地热学导论[M].北京:地震出版社,1988
    39.胡湘炯,高德利.油气井工程[M].北京:中国石化出版社,2003
    40.徐同台.钻井工程井壁稳定新技术[M].北京:石油工业出版社,1999
    41.李天太,高德利.井壁稳定性技术研究及其在呼图壁地区的应用.西安石油学院学报(自然科学版)[J],2002,17(3):23-26
    42.佟曼丽.油田化学[M].山东东营:石油大学出版社,1992
    43.雷正义.沙泥岩地层井壁力学稳定性研究及软件编制[硕士学位论文[B].四川:西南石油学院,2004
    44.周保中.吉林大情字井地区井壁稳定技术研究[工程硕士学位论文EB].黑龙江:大庆石油学院,2003
    45.高德利,陈勉.谈谈定向井井壁稳定问题[J].石油钻采工艺,1997,19(1):1-4
    46.李志明,张金珠编著.地应力与油气勘探开发[M].北京:石油工业出版社,1997
    47.刘向君,罗平亚编著.石油测井与井壁稳定[M].北京:石油工业出版社,,1999
    48.王力,刘春雨,杨锐等.利用测井资料计算井壁稳定条件研究[J].西部探矿工程,2003,11:59-61
    49.黄荣樽,邓金根,王康平.井眼系统稳定性分析-三个地层压力剖面的确定.中国石油工程学会钻井基础理论学组第三届年会论文集[C].
    50. Kaul N, Rosenberger A, Villinger H. Comparison of measured and BSR-derived heat flow values, Makramaccretionary prism, Pakistan[J]. Marine Geology, 2000, 164(12): 37-51
    51. Treh AM, Lin G, Maxwell E, et al. A seismic reflection profile across the Cascadia subduction zone offshore central Oregon: New constraints on methane distribution and crystal structure[J]. Journal of Geophysics Research, 1995, 100(B6): 15 101—15 116
    52. Davis E E, Hyndman K D, Villinger H. Rates of fluid expulsion across the northern Cascadia accretionary prism: constrains from new heat flow and multi-channel seismic reflection data[J]. Journal of Geophysics Research, 1990, 95(B6): 8 869—8 889
    53.范德江,杨作升.冲绳海槽天然气水合物的发育与分布[J].石油学报,2004,25(3):11-17
    54.黄荣樽,邓金根,陈勉.井壁坍塌压力和破裂压力的计算模型[J].钻井工程井壁稳定新技术[M].北京:石油工业出版社,1999:104-112
    55.徐芝纶.弹性力学(第三版)[M].北京:高等教育出版社,1998年
    56.陈秀云,汤洪杰.垂直井眼井壁稳定的理论分析[J].石油钻探技术,1999,27(4):21-23
    57.楼一珊,刘刚.大斜度井泥页岩井壁稳定的力学分析[J].江汉石油学院学报,1997,19(1):61-64
    58.刘向君,叶仲斌,王国华等.流体流动和岩石变形耦合对井壁稳定性的影响[J].西南石油学院学报,2002,24(2):50-52
    59.刘玉石,白家祉,黄荣樽等.硬脆性泥页岩井壁稳定问题研究[J].石油学报,1998,19(1):85-88
    60.邓金根,张洪生.钻井工程中井壁失稳的力学机理[M].北京:石油工业出版社,1998
    61.李白俊译.预测破裂压力梯度的新发展[J].国外钻井技术,1998,15(4):39-44
    62.梁何生等.一种地层破裂压力估算方法及应用[J].石油钻探技术,1999,27(6):14-15
    63.邓兴德.利用测井曲线预测地层压力[J].石油钻采工艺,1996。18(4):35-38
    64.孙涛等.天然气水合物勘探低温钻井液体系与性能研究[J].天然气工业,2004;24(2):61-63
    65.刘向君.井壁力学稳定性原理及影响因素分析[J].西南石油学院学报.1995,17(4):51-57
    66.黄隆基,石玉江.含气储集层泥浆侵入的动力学特征及其对补偿中子和补偿密度测井响应的影响[J].地球物理学报,1998,41(6):856~863
    67.张建华,胡启,刘振华.钻井泥浆滤液侵入储层的理论计算模型[J].石油学报,1994,15(4):73-78
    68.罗利.用测井资料计算油/气层泥浆侵入深度[J].测井技术,1998,22(增刊):24-27
    69. Zhang Jianhua, Hu Qi, Liu Zhen hua. Estimation of true formation resistivity and water saturation with a time21apse induction logging method[J]. The log analyst, 1999, 40 (2): 138-148
    70.欧阳健,王贵文,吴继余等.测井地质分析与油气层定量评价[M].北京:石油工业出版社,2000
    71.张松扬,陈玉魁.钻井液侵入机理特征及影响因素研究[J].勘探地球物理进展,2002,25(6):28-31
    72.陈福煊,孙嘉戊.泥浆滤液侵入孔隙地层径向导电特笥的模拟实验[J].地球物理学报,1996,39(增刊):371-378
    73.范翔宇等.测井计算钻井泥浆侵入深度的新方法研究[J].天然气工业,2004,24(5):68-70
    74.范德江,杨作升.冲绳海槽天然气水合物的发育与分布[J].石油学报.2004,25(3),11-17
    75. Matthew Clarke, P. R. Bishnoi. Chem. Eng. Sci., 55(2000) 4869-4883
    76. Sloan J. Clathrate hydrates of natural gas[H]. New York, 1998: 159-226
    77. Dickens G R, Quinby, Hunt M S. Methane hydrate stability in seawater[J]. Geophysics Research Letter, 1994, 21(19): 2115-2118
    78. Miles P R. Potential distribution of metyane hydrate beneath the European continental margins[J]. Geophysical research Letter, 1995, 22(23): 3179—3182
    79. Kamath V A, Holder G D, Angert P F. Three Phase Interfacial Heat Transfer During the Dissociation of Propane Hydrates[J]. Chem. Eng. Sci., 1984, 39(10): 1435-1442
    80. Kamath V A, Holder G D. Dissociation Heat Transfer Characteristics Methane Hydrates [J]. AIChE J., 1987, 33(2): 347-350
    81. Ullerich J W, Selim M S, Sloan E D. Theory and Measurement of Hydrate Dissociation [J]. AIChE J., 1987, 33(5): 747-752
    82. Selim M S, Sloan E D. Heat and Mass Transfer During the Dissociation of Hydrates in Porous Media [J]. AIChE J., 1989, 35(6): 1049-1052
    83. Kim H C, Bishnoi P R, Heidemann R A. Kinetics of Methane Hydrate Decomposition [J]. Chem. Eng. Sci., 1987, 42(7): 1645-1653
    84. Jamaluddin A K M, Kalogerakis N, Bishnoi P R. Modeling of Decomposition of A Synthetic Core of Methane Gas Hydrate by Coupling Intrinsic Kinetics with Heat Transfer Rates[J]. Phys. Chem., 1989, 67(6): 948-954
    85. Matthew A C, Bishnoi P R. Determination of the Intrinsic Rate of Ethane Gas Hydrate Oecomposition[J]. Chem. Eng. Sci., 2000, 55(21): 4869-4883
    86. Matthew A C, Bishnoi P R. Measuring and Modeling the Rate of Decomposition of Gas Hydrates Formed from Mixtures of Methane and Ethane[J]. Chem. Eng. Sci., 2001, 56(16): 4715-4724
    87. Matthew A C, Bishnoi P R. Determination of the Activation Energy and Intrinsic Rate Constant of Methane Gas Hydrate Decomposition[J]. Can. J. Chem. Eng., 2001, 79(2): 143-147
    88.孙长宇,陈光进,郭天民等.甲烷水合物分解动力学[J].化工学报,2002,53(9):899-903
    89.孙长宇,陈光进,郭天民.甲烷水合物恒温恒压分解过程研究[J].地球化学,2003,32(2):113-116
    90. susan Circone, Laura A. Stern, Stephen H. Kirby. The effect of elevated methane pressure on methane hydrate dissociation[J]. American Mineralogist, 2004, (89): 1192-1201
    91. Selim M S, Sloan E D. Modeling of the dissociation of an in-situ hydrate[C]. Proceedings of the SPE 1985 California Regional Meeting, 1985, Society of Petroleum Engineers of AIME, Bakersfield, California, p. 75-79
    92. Ahmadi G, Ji C, Smith D. A simple model for natural gas production from hydrate decomposition[J]. In Gas Hydrates, Challenges for the Future, Annals of the New York Academy of Sciences, 2000,912 (G. D. Holder, P. R. Bishnoi, eds.), New York
    93. Tsypkin G G. Mathematical models of gas hydrates dissociation in porous media[J]. In Gas Hydrates, Challenges for the Future, Annals of the New York Academy of Sciences, 2000, 912(G. D. Holder, P. R. Bishnoi, eds.), New York
    94. Tomutsa L, Freifeld B M, Kneafsey T J, Stern L A. X-ray computed tomography observation of methane hydrate dissociation[J]. Proceedings of the SPE 2002 Gas Technology Symposium, Calgary, Alberta, Canada
    95. Gudmundsson J S, Parlaktuna M, Khokhar A A. Storage of Natural Gas as Frozen Hydrate [A]. Proceedings of 67th Annual Technical Conference and Exhibition: Prod.&Facilities[C]. SPE Paper 24924, 1994. 699-707
    96. Stern L A, Susan C, Stephen H K. Anomalous Preservation of Pure Methane Hydrate at 1 atm[J]. Phys. Chem. B, 2001, 105(9): 1756-1762
    97. Hideyuki Shirota, Izuo hya, Sadahiro Namie. Measurement of Methane Hydrate Dissociation for Application to Natural Gas Storage and Transporation [A]. Yasuhiko H Mori. Proceedings of the Fourth International Conference on Gas Hydrates [C]. Yokohama Japan: Yokohama Symposia, 2002. 972-977
    98.林微,陈光进.气体水合物分解动力学研究现状[J].过程工程学报,2004,4(1):69-74
    99. Yakushev V, Istomin V. Gas-Hydrates Self-Preservation Effect, Physics and Chemistry of Ice[M]. Hokkaido University Press, Sapporo, 1992, p. 136-139
    
    
    100.Gudmundsson J S, Parlaktuna M, Khokhar A A. Storing Natural Gas as Frozen Hydrate[M].SPE Production and Facilities, 1994, p.69-73
    
    101. Gudmundsson J, Borrehaug A. Frozen Hydrate for Transport of Natural Gas[C]. 2nd International Conference on Natural Gas Hydrates, 1996, p. 415-422
    
    102. Gudmundsson J S, Andersson V, Levik O I, Mork M. Hydrate Technology for Capturing Stranded Gas, Gas Hydrate[J] . Challenges for the Future, Annals of the New York Academy of Sciences, 2000, 912, p. 403-410
    
    103.Makogon Y F. Hydrates of Natural Gas[M]. tr. from Russian by Cieslesicz , W. J. .Penn Well Books, Tulsa, Oaklahoma, 1981
    
    104. Yousif M H, Sloan E D. Experimental and Theoretical Investigation of Methane - Gas - Hydrate Dissociation in Porous Media[J]. SPE Reservoir Eng., 1991, 6(4): 452-458
    
    105. Handa, P. Y., Stupin, D. (1992) Thermodynamic properties and dissociation characteristics of methane and propane hydrate in 70-(?)-radius silica gel pores. J. Phys. Chem. 96, 8599-8603
    
    106. Melnikov V, Nesterov A. Proceeding of the 2nd International Conference on Gas Hydrates, Toulouse, France, 1996, p. 541-549.
    
    107. Uchida T, Ebinuma T, Ishizaki T. Dissociation condition measurements of methane hydrate in confined small pores of porous glass[J]. J. Phys. Chem., 1999 B103, 3659-3662
    
    108. Clennell B M, Hovland M, Booth J S, Henry P, Winters W J. Formation of natural gas hydrates in marine sediments:Conceptual model of gas hydrate growth conditioned by host sediment properties [J]. Journal of Geophysical Research, 1999,104(B10):22985-23003
    
    109. Seshadri K, Wilder J W, Smith D H. Measurements of equilibrium pressures and temperatures for propane hydrate in silica gels with different pore-size distributions[J]. J. Phys. Chem. ,2001, (B105):2627-2631
    
    110. Anderson, R., et al. Experimental Measurement of Gas Hydrate Stability in Porous Media[C]. EAGE 63rd Conference & Technical Exhibition-Amsterdam, The Netherlands, 2001, P567
    
    111.Doug Turner, Dendy Sloan. Hydrate Phase Equilibria Measurements and Predictions in Sediments
    112.Kastner M. Gas hydrates in convergent margins: Formation, occurrence, geochemistry, and global significance[M]. In Natural Gas Hydrates:Occurrence, Distribution, and Detection (Paull, C. K, Dillon, W. P ed.) American geophysical Union, 2001, Washington, DC, p. 67-86
    113. Maria Llamedo, Ross Anderson, Bahman Tohidi. Thermodynamic prediction of clathrate hydrate dissociation conditions in mesoporous media[J]. American Mineralogist, 2004, (89): 1264-1270
    114. Masuda Y, Fujinaga Y, Naganawa S, et al. Modelling and Experimental Studies on Dissociation of Methane Gas Hydrates in Berea Sandstone Cores[A]. Proceedings of the 3rd International Conference on Gas Hydrates [C]. 1999, 18-22
    115.刘犟,阎立军.活性炭中甲烷水合物的分解动力学[J].化学学报,2002,60(8):1385-1389
    116. Holder G D, Angert P F, Godbole S P. Simulation of Gas Production from a Reservoir Containing Both Gas Hydrates and Free Natural Gas [A]. Proceedings of 57th Society of Petroleum Engineers Technology Conference[C]. SPE Paper11005, 1982, 26-29
    117. Makogon Y F. Hydrates of Hydrocarbons [M]. Tulsa: Penn Well Books, 1997, P. 246
    118. Chuang Ji, Goodarz A, Duane H S. Natural Gas Production from Hydrate Decomposition by Depressurization[J]. Chem. Eng. Sci., 2001, 56(20): 5801-5814
    119. Chuang Ji, Ahmadi G, Smith D H. Constant rate natural gas production from a well in a hydrate reservoir[J]. Energy, Conversion and Management, 2003, (44), 2403-2423
    120. Goel M W, Subhash Shah. Analytical Modeling of Gas Recovery from in Situ Hydrate Dissociation[J]. Petro. Sci. Eng., 2001, 29(2): 115-127
    121. WenYue Xu. Modeling dynamic marine gas hydrate systems[J]. American Mineralogist, 2004, (89): 1271-1279
    122. Henry P, Thomas M, Clennell B M. Formation of natural gas hydrates in marine sediment: Thermodynamic calculations of stability conditions in porous sediments[J]. Journal of Geophysical Research, 104, 23, 005-23, 022
    123. Stephen H. Kirby, Susan Circone, Laura A. Stern, et al. NETL-The Fire in the Ice Newsletter, summer 2004, p. 8
    124. Ecker C., Dvorkin J, Nur A. Sediments with gas hydrates: Internal structure from seismic AVO[J].1995, SEP-89, 1-24
    125. E.a. bondarev, T a kapitonova. Simulation Of multiphase Flow in porous media Accompanied by gas Hydrate formation And dissociation[J]. Russ. J. Eng. Thermophys., 1999, (9): 1-2
    126. Bondarev, E. A., Vasiliev, V. I., Voevodin, A. F., et. al., Thermohydrodynamics of Gas Production and Transportation Systems[M]. Novosibirsk, 271 p., 1988
    127.孔祥言.高等渗流力学[M].安徽:中国科学技术大学出版社,1999,P21
    128.朱谷君.工程传热传质学[M].北京:航空工业出版社,1989,P4-6
    129.韩大匡,陈钦雷,闫存章.油藏数值模拟基础[M].北京:石油工业出版社,2000
    130.方银霞,申屠海港,金翔龙.冲绳海槽天然气水合物稳定带厚度的计算[J].矿床地质,2002,21(4),414-418
    131.龚建明,陈建文,赵洪伟,王家生.天然气水合物稳定带顶底界线及厚度预测[J].海洋地质动态,2004,20(6):18-21
    132.巫江虹,刘莉,李芳明等.蓄冷工质R142B水合物分解数学模型及实验研究[J].天然 气工业,1998,18(6):83-85
    133. Paslay P R, Cheatham J B. Rock Stresses Induced by Flow of Fluids into Boreholes[J]. Soc. Petvd. Engrs. J. 1963: 3 (1)
    134.刘玉石,黄克累.孔隙流体对井眼稳定的影响[J].石油钻探技术,1995,23(3):4-6
    135.李敬元.李子丰.渗流作用下井筒周围岩石弹塑性应力分布规律及井壁稳定条件[J].工程力学,1997,14(1):131-137
    136.李建春,俞茂宏,王思敬.井筒在孔隙压力和渗流作用下的统一极限分析[J].机械强度,2001,23(2):239-242
    137.曾流芳,刘建军.裸眼井出砂预测模型的解析分析[J].石油钻采工艺,2002,24(6):42-44
    138.李忠华,潘一山.有渗流作用的油井井壁稳定性的解析分析[J].工程力学,2002,19(3):105-108
    139. TerzaghiK. Theoretical soil mechanics[M]. Wiley, NewYork, 1943.
    140. Blot M A. Theory of elasticity and consolidation for a porous anisotropic solid [J]. J. Appl. Phys., 1954, (26): 182
    141. Biot M A. Mechanics of deformation and acoustic propagation in porous media [J]. J. Appl. Phys., 1962, 33: 1482.
    142.董平川,徐小荷,何顺利.流固耦合问题及研究进展[J].地质力学学报,1999,5(1):17-25
    143. Noorishad J, Ayatollahi M S, Witherspoon P A. A finite element method for coupled stress and fluid flow analysis in fractured rock masses[J]. Int J Rock Mech Min Sci &Geomech Abstr. 1982, (19): 185-193
    144. Noorished J, Tang C F, Witherspoon P A. Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous rocks: numerical approach[J]. J. Geophy. Res., 1984, (89): 10365-10373
    145. Zienkiewicz, Shiomi. Dynamic behaviour of saturated porous media: the generalized Biot formulation and its numerical solution[J]. Int. J. Num. and Analy. Meth. in Geomech. 1984, 8: 71-96.
    146.李锡夔,朴光虎,邓子辰.考虑固结效应的结构—土壤相互作用分析及其有限元解[J].计算结构力学及其应用,1990,7(3):1~11
    147.张洪武,钟万勰,钱令希.饱和土壤固结分析的算法研究[J].力学与实践,1993,15(1):20-22
    148.陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994,13(4):299-308
    149.黎水泉,徐秉业.双重介质裂缝型油气藏油水两相流动与固体变形藕合数学模型.天然气工业,1999:19(4):43-45
    150.徐增和,徐小荷,二维应力场下承压地层中液固耦合问题[J],岩石力学与工程学报,1999,18(6):645-650
    151.王援,徐志英.复杂裂隙岩体渗流与应力弹塑性全耦合分析[J],岩石力学与工程学报,2000,19(2):177-181
    152.冉启全,李士伦.流固耦合油藏数值模拟理论与方法研究[C].全国第5届渗流流体力学论文集,1996
    153.薛世峰,宋惠珍.非混溶饱和两相渗流与孔隙介质耦合作用的理论研究-数学模型[J].地震地质,1999,21(3):243-252
    154.刘建军,刘先贵.煤储层流固耦合渗流的数学模型[J].焦作工学院学报,1999,18(6):397-401
    155.刘建军.天然气流固耦合渗流计算的有限元方法[J].新疆石油地质,2000,21(6):487-490
    156.熊伟,田根林,黄立信等.变形介质多相流动流固耦合数学模型[J].水动力学研究与进展,2002,17(12):770-776
    157.孙可明,梁冰,薛强.煤层气非饱和流阶段非稳态流固耦合渗流的一维摄动解析解[J].湘潭矿业学院学报,2002,17(2):12-16
    158.薛强,梁冰,刘晓丽,李宏艳.污染物在非饱和带内运移的流固耦合数学模型及其渐进解应[J].用数学和力学,2003,24(12):1309-1318
    159.梁冰,刘晓丽,薛强.低渗透地下环境中水-岩作用的渗流模型研究[J].岩石力学与工程学报,2004,23(5):745-750
    160.梁冰,薛强,刘晓丽.多孔介质非线性渗流问题的摄动解[J].应用力学学报,2003,20(4):28-32
    161.范学平,李秀生,张士诚等.低渗透气藏整体压裂流固耦合数学模拟[J].石油勘探与开发,2000,27(1):76-79,83
    162.刘建军.裂缝性低渗透油藏流固耦合理论及应用[D].廊坊:中国科学院渗流流体力学研究所,2001
    163.周志军.低渗透储层流固耦合渗流理论及运用研究[D].大庆:大庆石油学院,2003
    164.杨立中,黄涛.初论环境地质中裂隙岩体渗流-应力-温度耦合作用研究.水文地质工程地质,2000(2):33-35
    165.王自明.油藏热流固耦合模型研究及运用初探[D].成都:西南石油学院,2002.
    166.柴军瑞.岩体渗流-应力-温度三场耦合的连续介质模型[J].红水河,2003,22(2):18-20
    167. Wong S W, Heidug W K. Borehole stability in shales: a constitutive model for the mechanical and chemical effects of drilling fluid invasion [J]. Eurock' 94: 251
    168. Maclellan P J, Wang Y. Predicting the effects of pore pressure penetration on the extent of wellbore in instability: application of a versatile poro-elstoplastic model[J]. Eurock' 94: 205-14
    169. Bol G M, Wong S W, et. al. Borehole stability in shales[J]. SPE D. C., June, 1994: 87-94
    170.李晓江,张文飞.井眼稳定的耦合解法[J].钻采工艺,1996,19(1):17-20
    171.董平川.油气储层流固耦合理论、数值模拟及应用[D].沈阳:东北大学,1998
    172.薛世峰.非混溶饱和两相渗流与变形孔隙介质耦合作用的理论研究及其在石油开发中的应用[D].北京:中国地震局地质研究所,2000
    173.范学平、吴宏.近井地应力场及其对渗透率的伤害[J].石油钻采工艺,2001,23(4):42-45
    174.尹中民,武强,刘建军等.注水井泄压对井壁围岩应力场的影响[J].岩土力学,2004,25(3):363-368
    175. Rice J R, Cleary. Some Basic Stress diffusion Solutions for fluid-saturated elastic porous media with compressible constituents[J]. Rev. Geophys. And Space Phys., 1976, (14): 227-241
    176.徐志英.岩石力学[M].北京:水利水电出版社,1993。
    177.冉启全,李士伦.流固耦合油藏数值模拟中物性参数动态模型研究[J].石油勘探与开发,1997,24(3):61-65
    178.孙涛等.天然气水合物勘探低温钻井液体系与性能研究[J].天然气工业,2004,24(2):61-63
    179.邱存家,陈礼仪,朱宗培.天然气水合物钻探中钻井液的使用[J].探矿工程,2002,(4):36-37
    180.胡友林,王建华,张岩等.海洋深水钻井的钻井液研究进展[J].海洋石油。2004,24(4):83-86
    181.白小东,黄进军,侯勤立.深水钻井液中天然气水合物的成因分析及其防治措施[J].精细石油化工进展,2004,5(4):52-54
    182.蒋国盛,王荣景,黎忠文.天然气水合物的钻进过程控制和取样技术[J].探矿工程(岩土钻掘工程),2001,(3):33-35
    183.蒋国盛,宁伏龙,黎忠文.钻进过程中天然气水合物的分解抑制和诱发分解[J].地质与勘探,2001,37(6):86-87
    184.蒋国盛,张凌,黎忠文等.深水海底钻进泥浆中使用的天然气水合物抑制剂[J].中国海上油气(地质),2001,15(5):368-370
    185.孙长宇等.多相混输管线中的水合物抑制研究现状[J].天然气工业,2003,23(5):105-108
    186.陈赓良.天然气采输过程中水合物的形成与防止[J].天然气工业,2004,24(8):89-91
    187. Yousif M H. Effect of underinhibition with methanol and ethylene glycol on the hydrate2control process[J]. SPE Production&Facilities, 1998, 13(3): 184-189
    188.税碧垣.管道天然气水合物的防治技术[J].油气储运,2001,20(5):9-14
    189.吴德娟等.天然气水合物新型抑制剂的研究进展[J].天然气工业,2000,20(6):95-98
    190.裘俊红,张金锋.水合物动力学抑制研究现状[J].化学工程,2004,32(6):23-26
    191. Duncum S N et al. Eur. Pat., 1993: 536-950
    192. Anselme M J et al. World Pat. WO1993, 93/25798
    193. Sloan E D. World Pat. WO1994, 94/12761
    194. Kelland M A et al. Control of gas hydrate formation by surfactants and polymers[J]. SPE28506, 1994
    195. Hutter J L, et. al. Anomalous surface conformation for polymeric gas hydrate crystal inhibitors[J]. Materials Research Society Symposium Proceedings, 2001, 651: T8.4.1-T8.4.10
    196. Kvamme B. Molecular dynamics simulations as a tool for the selection of candidates for kinetic hydrate inhibitors[J]. Proceedings of the International Offshore and Polar Engineering Conference, 2001, (1): 517-527
    197. Edwards A R. A molecular modeling study of the winter flounder antifreeze peptide as a potential kinetic hydrate inhibitor[J]. Annals of the New York Academy of Science, 1994, 715: 543-544
    198. Kvamme B, Huseby G, Forrisdahl O K. Molecular dynamics simulations of PVP kinetic inhibitor in liquid water and hydrate/liquid water systems[J]. J Molecular Physics, 1997, 90(6): 979-992
    199. Freer E M, Sloan E D Jr. An engineering approach to kinetic inhibitor design using molecular dynamics simulations[J]. Annals of the New York Academy of Sciences, 2000, 912: 651-657
    200. Carver T J, Drew M G, Rodger P M. Configuration biased monte carlo simulations of poly(vinylpyrrolidone) at gas hydrate crystal surface[J]. Annals of the New York Academy of Sciences, 2000, 912: 658-668
    201. Lederhos J P, Long J P, Sum A, et al. Effective kinetic inhibitors for natural gas bydrates[J]. Chem Eng Sci, 1996, 51(8): 1221-1228.
    202.刘平德等.水基聚乙二醇钻井液页岩稳定性研究[J].天然气工业,2001,21(6):57-59
    203.蒲晓林等.深井高密度水基钻井液流变性、造壁性控制原理[J].天然气工业,2001,21(6):48-51
    204.程远方,徐同台.安全泥浆密度窗口的确立及应用[M].石油钻探技术,1999,27(3):16-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700