太阳电池用晶体硅中金属杂质与缺陷的相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光伏发电是近年来发展最快的可再生能源技术之一,而晶体硅太阳电池占据了全球光伏市场90%以上的份额。硅材料尤其是多晶硅材料内的金属杂质和缺陷对于硅片质量及太阳电池的性能影响较大,是学术界和产业界关注的重点和热点问题之一。因此,研究硅中金属杂质与缺陷具有重要的理论意义和实际应用背景,也是适应硅太阳电池低成本、高效率的发展趋势的必然要求。
     本文在综述前人研究成果的基础上,利用少子寿命测试仪、电流-电压/电容-电压测试仪、光学显微镜等技术,结合铸造多晶硅生产实际中的问题,系统地研究了金属杂质与位错的相互作用、金属杂质与晶界的相互作用及金属杂质对于对硅片和太阳电池电学性能的影响,取得了如下主要的创新成果:
     (1)研究了铸造多晶硅边缘区域(红边区)低少数载流子寿命的起因及对太阳电池性能的影响。实验发现:来自坩埚与坩埚涂层中间隙铁杂质的扩散是导致边缘区域硅晶体少子寿命降低的主要原因;通过磷扩散吸杂,可以有效减少边缘区域的间隙铁浓度,从而提高该区域的有效载流子寿命;经历太阳电池制备工艺后,含边缘区域的太阳电池片的性能可以得到大幅度改善,仅仅比普通电池片效率略低。
     (2)研究了金属杂质对硅中晶界电学性能的影响。阐述了Fe、Cu、Ni、Cr、 Co、Mn几种金属沾污对于(110)/(100)大角晶界的电学性能参数的影响规律。发现:在几种金属沾污后,晶界的能级分布均向深能级范围移动,晶界态密度有不同程度的提高,载流子捕获截面也有所增大,其中Fe杂质对于晶界态密度的影响最大;随着金属沾污含量的增大,导致晶界的能级分布更深、晶界态密度增大;Cu/Ni在共沾污时晶界的缺陷能级分布比Cu与Ni单种金属沾污导致的晶界能级位置更深,晶界态密度略有增大。实验还指出:通过特定条件的热处理,可以降低金属沾污晶界的态密度及载流子捕获截面;通过低温退火调控晶界上金属沉淀的尺寸及密度分布,进而可以调控晶界的电学性能、改善金属沾污晶界的多晶硅器件性能;通过氢钝化,晶界引入的能级分布在更窄的范围,空穴捕获截面也降低了两个数量级左右,晶界态密度略有降低。
     (3)研究了位错对晶体硅电池性能的影响。结合普通铸造多晶硅、高效铸造多晶硅以及铸造单晶硅,得到了位错分布对于硅片质量及太阳电池的性能影响。实验发现:高效多晶硅由于具有更低的位错密度,更均匀的晶粒分布,表现出均匀的少子寿命分布,电池效率高于普通多晶硅电池;铸造准单晶硅材料硅锭中间的单晶区域不含有晶界,位错密度较低,硅片性能最好、电池效率最高;而铸造准单晶硅边缘含有多晶和大量的位错聚集体,缺陷密度极高,对少子寿命影响很大、电池效率也最低。实验还说明:位错密度与位错分布的均匀性对于硅材料的质量以及太阳电池的性能有着显著地影响,位错密度越高、位错的聚集体越多,电池的效率越低。
     (4)研究了硅中金属杂质的磷扩散吸杂效应。实验发现:对于n型硅晶界上的金杂质沾污,磷扩散吸杂可以有效吸杂出晶界处的杂质,但吸杂效率受沾污程度影响;在低浓度沾污下,一步磷吸杂可以有效吸杂出晶界上的金杂质;而在严重沾污下,两步变温磷吸杂更为有效。实验证明:在普通工艺磷扩散样品中,表面死层中会存在SiP沉淀,显著增强载流子的复合及电池性能;增加后续退火以及改变扩磷工艺参数两种方法可以通过消除SiP沉淀有效改善太阳电池的性能。
Cast multicrystalline silicon (mc-Si) occupies more and more market shares of solar cells because of its higher cost-effectiveness. However, since me silicon inevitably contains large quantities of metallic impurities and structural defects, solar cells based on such materials usually have lower photoelectric conversion efficiency than those based on single crystalline Czochralski (CZ) silicon. It is necessary to engineer the impurities and defects for improving the wafer quality and hence the cell performances.
     In this dissertation, based on some important problems associated with the practical solar cell manufacturing, we have studied the interactions between metallic impurities and structural defects in crystalline silicon and their impact on the performances of solar cells by combining microwave photocurrent decay, current/capacitance-voltage, optical microscope, and spreading resistance profiling techniques. Some innovative results have been achieved, which are illustrated below:
     (1) The causes of low minority carrier lifetime regions corresponding to the edge of casting me silicon ingots and its influence on the performance of solar cells have been explored. It is found that the distribution of interstitial iron exactly coincides with the minority carrier lifetime, indicating that iron contamination is mainly responsible for the lifetime degradation. After phosphorus diffusion gettering process, the low carrier lifetime region became narrower, and the concentration of interstitial iron was reduced by nearly one order of magnitude. After the celling process, the internal quantum efficiency of the edge zone has a lower response to the long wavelength light, in accordance with the minority carrier lifetime distribution. As a result, the solar cells based on edge zone wafers exhibit slightly lower efficiency than those conventional ones.
     (2) The effect of various kinds, forms and concentrations of metallic impurities on the electrical properties of a silicon grain-boundary (GB) formed by direct bonding technology has been investigated. It is found that compared to that of the clean GB, the density of interface states and their majority carrier capture cross-section for the contaminated GB are increased at different levels, dependent on the contaminated metal type. Meanwhile, the density of GB states in metal contaminated samples increases with the increase of metal content. The detrimental effect of a metal-contaminated GB on the electrical properties of me silicon solar cells can be minimized by engineering the metal precipitate density and size distribution. Compared to the clean GB, the energy distribution of interface states at the GB subjected to hydrogenation becomes shallower, and the carrier capture cross-section can be reduced by about two orders of magnitude, while the density of GB states varies slightly.
     (3) Influence of dislocations in silicon on solar cell performance has been studied. It is found that in high performance me silicon wafer, the wafer quality and the solar cell efficiency are both higher than normal me silicon solar cell, due to the lower dislocation density and the more uniform grain size distribution. Generally, the normal quasi-mono solar cell presents the best performance, as a result of low dislocation density and absence of grain boundary. However, the conversion efficiency of the defective quasi-mono solar cell is even lower than normal me cell, due to the existence of high density dislocations.
     (4) Effect of phosphorus diffusion gettering on metallic impurites has been studied. It is found that at a low level contamination, a single-step phosphorus gettering can be effective for most of metal impurities at the GB by extending the diffusion time. However, at a high level contamination, a two-step phosphorus gettering is more effective to getter out the gold impurities at the GB. After the effective phosphorus gettering for metallic impurities, the GB electrical characteristics could be recovered to the original level. However, during the phosphorus diffusion process, the present of SiP precipitates has strong influence on the performance of junction. By modifying phosphorus diffusion technology, the SiP precipitates can be eliminated, and therefore the conversion efficiency of solar cells gets improved.
引文
[1]SEMI中国团队,陆郝安,何新宇,刘涛,中国光伏产业联盟团队.2013年中国光伏发展报告中国环境科学出版社;2013.
    [2]W. Shockley, and H. J. Queisser. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics,1961,32 (3):510-519.
    [3]Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, and M. Tanaka. Twenty-two percent efficiency HIT solar cell. Solar Energy Materials and Solar Cells,2009,93 (6):670-673.
    [4]W. Neu, A. Kress, W. Jooss, P. Fath, and E. Bucher. Low-cost multicrystalline back-contact silicon solar cells with screen printed metallization. Solar Energy Materials and Solar Cells, 2002,74 (1):139-146.
    [5]Y. Tang, C. Zhou, and W. Wang. Influence of Intrinsic Lifetime on Silicon Solar Cell Efficiencies. Proceedings of ISES World Congress 2007 (Vol I-Vol V):Springer; 2009. p. 1180-1184.
    [6]J. R. Davis, Jr., A. Rohatgi, R. H. Hopkins, P. D. Blais, P. Rai-Choudhury, J. R. McCormick, and H. C. Mollenkopf. Impurities in silicon solar cells. Electron Devices, IEEE Transactions on,1980,27 (4):677-687.
    [7]B. Bathey, and M. Cretella. Solar-grade silicon. Journal of Materials Science,1982,17 (11): 3077-3096.
    [8]A. Tavendale, and S. Pearton. Deep level, quenched-in defects in silicon doped with gold, silver, iron, copper or nickel. Journal of Physics C:Solid State Physics,1983,16 (9):1665.
    [9]D. Macdonald, and A. Cuevas. Metallic impurities in multicrystalline silicon. ISES 2001 Solar World Congress2001.
    [10]A. A. Istratov, T. Buonassisi, R. J. McDonald, A. R. Smith, R. Schindler, J. A. Rand, J. P. Kalejs, and E. R. Weber. Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length. Journal of Applied Physics,2003,94 (10):6552-6559.
    [11]D. Macdonald, A. Cuevas, A. Kinomura, Y. Nakano, and L. J. Geerligs. Transition-metal profiles in a multicrystalline silicon ingot. Journal of Applied Physics,2005,97 (3): 033523-033527.
    [12]K. Matthei, P. Raghavan, S. Tong, and J. Talbott. Directional Solidification System (Dss) for Production of Multicrystalline Silicon Ingots for Solar Cells. Proceedings of the 15th International Photovoltaic Science & Engineering Conference (PVSEC-15)2005.
    [13]H. J. Moller, C. Funke, M. Rinio, and S. Scholz. Multicrystalline silicon for solar cells. Thin Solid Films,2005,487 (1):179-187.
    [14]H. Zhang, L. Zheng, X. Ma, B. Zhao, C. Wang, and F. Xu. Nucleation and bulk growth control for high efficiency silicon ingot casting. Journal of Crystal Growth,2011,318 (1): 283-287.
    [15]K. Shirasawa. Mass production technology for multicrystalline Si solar cells. Progress in Photovoltaics:Research and Applications,2002,10 (2):107-118.
    [16]F. Huang, R. Chen, J. Guo, H. Ding, Y. Su, J. Yang, and H. Fu. Experimental study on surface quality of silicon ingots prepared by electromagnetic continuous casting. Materials Science in Semiconductor Processing,2012,15 (4):340-346.
    [17]J. I. Hanoka. An overview of silicon ribbon growth technology. Solar Energy Materials and Solar Cells,2001,65 (1):231-237.
    [18]R. Seidensticker. Dendritic web silicon for solar cell application. Journal of Crystal Growth, 1977,39(1):17-22.
    [19]R. Seidensticker, and R. Hopkins. Silicon ribbon growth by the dendritic web process. Journal of Crystal Growth,1980,50 (1):221-235.
    [20]R. Wallace, J. Hanoka, A. Rohatgi, and G. Crotty. Thin silicon string ribbon. Solar Energy Materials and Solar Cells,1997,48 (1):179-186.
    [21]T. Surek, B. Chalmers, and A. Mlavsky. The edge-defined film-fed growth of controlled shape crystals. Journal of Crystal Growth,1977,42:453-465.
    [22]T. Ciszek. Edge-defined, film-fed growth (EFG) of silicon ribbons. Materials Research Bulletin,1972,7 (8):731-737.
    [23]H. M. Ettouney, R. A. Brown, and J. P. Kalejs. Analysis of operating limits in edge-defined film-fed crystal growth. Journal of Crystal Growth,1983,62 (2):230-246.
    [24]J. Kalejs, A. Menna, R. Stormont, and J. Hutchinson. Stress in thin hollow silicon cylinders grown by the edge-defined film-fed growth technique. Journal of Crystal Growth,1990,104 (1):14-19.
    [25]B. Cunningham, H. Strunk, and D. Ast. First and second order twin boundaries in edge defined film growth silicon ribbon. Applied Physics Letters,1982,40 (3):237-239.
    [26]N. Stoddard, B. Wu, I. Witting, M. C. Wagener, Y. Park, G. A. Rozgonyi, and R. Clark. Casting single crystal silicon:novel defect profiles from BP Solar's mono2 TM wafers. Solid State Phenomena,2008,131:1-8.
    [27]X. Gu, X. Yu, K. Guo, L. Chen, D. Wang, and D. Yang. Seed-assisted cast quasi-single crystalline silicon for photovoltaic application:Towards high efficiency and low cost silicon solar cells. Solar Energy Materials and Solar Cells,2012,101:95-101.
    [28]S. Dubois, O. Palais, M. Pasquinelli, S. Martinuzzi, C. Jaussaud, and N. Rondel. Influence of iron contamination on the performances of single-crystalline silicon solar cells:Computed and experimental results. Journal of Applied Physics,2006,100 (2):024510-024510-024517.
    [29]M. Beaudhuin, K. Zaidat, T. Duffar, and M. Lemiti. Impurities influence on multicrystalline photovoltaic Silicon. Transactions of the Indian Institute of Metals,2009,62 (4):505-509.
    [30]H. Indusekhar, and V. Kumar. Electrical properties of nickel-related deep levels in silicon. Journal of Applied Physics,1987,61 (4):1449-1455.
    [31]S. Joonwichien, S. Matsushima, and N. Usami. Effects of crystal defects and their interactions with impurities on electrical properties of multicrystalline Si. Journal of Applied Physics,2013,113 (13):133503.
    [32]T. Buonassisi, A. A. Istratov, M. Pickett, J.-P. Rakotoniaina, O. Breitenstein, M. A. Marcus, S. M. Heald, and E. R. Weber. Transition metals in photovoltaic-grade ingot-cast multicrystalline silicon:Assessing the role of impurities in silicon nitride crucible lining material. Journal of crystal growth,2006,287 (2):402-407.
    [33]杨树人.半导体材料:科学出版社;2004.
    [34]S. A. McHugo, A. C. Thompson, I. Perichaud, and S. Martinuzzi. Direct correlation of transition metal impurities and minority carrier recombination in multicrystalline silicon. Applied Physics Letters,1998,72 (26):3482-3484.
    [35]E. R. Weber. Transition metals in silicon. Applied Physics A:Materials Science& Processing, 1983,30 (1):1-22.
    [36]T. Buonassisi, A. A. Istratov, M. Heuer, M. A. Marcus, R. Jonczyk, J. Isenberg, B. Lai, Z. Cai, S. Heald, W. Warta, R. Schindler, G. Willeke, and E. R. Weber. Synchrotron-based investigations of the nature and impact of iron contamination in multicrystalline silicon solar cells. Journal of Applied Physics,2005,97 (7):074901-074911.
    [37]T. Buonassisi, A. A. Istratov, M. D. Pickett, M. Heuer, J. P. Kalejs, G. Hahn, M. A. Marcus, B. Lai, Z. Cai, S. M. Heald, T. F. Ciszek, R. F. Clark, D. W. Cunningham, A. M. Gabor, R. Jonczyk, S. Narayanan, E. Sauar, and E. R. Weber. Chemical natures and distributions of metal impurities in multicrystalline silicon materials. Progress in Photovoltaics:Research and Applications,2006,14 (6):513-531.
    [38]D. Macdonald, and L. Geerligs. Recombination activity of interstitial iron and other transition metal point defects in p-and n-type crystalline silicon. Applied Physics Letters,2004,85 (18): 4061-4063.
    [39]T. Buonassisi, A. A. Istratov, M. Heuer, M. A. Marcus, R. Jonczyk, J. Isenberg, B. Lai, Z. Cai, S. Heald, and W. Warta. Synchrotron-based investigations of the nature and impact of iron contamination in multicrystalline silicon solar cells. Journal of Applied Physics,2005,97 (7): 074901.
    [40]S. Dubois, O. Palais, M. Pasquinelli, S. Martinuzzi, C. Jaussaud, and N. Rondel. Influence of iron contamination on the performances of single-crystalline silicon solar cells:Computed and experimental results. Journal of Applied Physics,2006,100 (2):024510.
    [41]S. Dubois, O. Palais, P. Ribeyron, N. Enjalbert, M. Pasquinelli, and S. Martinuzzi. Effect of intentional bulk contamination with iron on multicrystalline silicon solar cell properties. Journal of Applied Physics,2007,102 (8):083525.
    [42]G. Coletti, R. Kvande, V. Mihailetchi, L. Geerligs, L. Arnberg, and E.(?)vrelid. Effect of iron in silicon feedstock on p-and n-type multicrystalline silicon solar cells. Journal of Applied Physics,2008,104 (10):104913.
    [43]K. Graff, and H. Pieper. The properties of iron in silicon. Journal of the Electrochemical Society,1981,128 (3):669-674.
    [44]A. Istratov, H. Hieslmair, and E. Weber. Iron and its complexes in silicon. Applied Physics A, 1999,69 (1):13-44.
    [45]A. Istratov, H. Hieslmair, and E. Weber. Iron contamination in silicon technology. Applied Physics A:Materials Science & Processing,2000,70 (5):489-534.
    [46]D. Macdonald, A. Cuevas, and J. Wong-Leung. Capture cross sections of the acceptor level of iron-boron pairs in p-type silicon by injection-level dependent lifetime measurements. Journal of Applied Physics,2001,89 (12):7932-7939.
    [47]D. A. Ramappa, and W. B. Henley. Stability of Iron-Silicide Precipitates in Silicon. Journal of the Electrochemical Society,1997,144 (12):4353-4356.
    [48]W. B. Henley, and D. A. Ramappa. Iron precipitation in float zone grown silicon. Journal of Applied Physics,1997,82 (2):589-594.
    [49]A. Istratov, W. Huber, and E. Weber. Experimental evidence for the presence of segregation and relaxation gettering of iron in polycrystalline silicon layers on silicon. Applied Physics Letters,2004,85 (19):4472-4474.
    [50]A. Haarahiltunen, M. Yli-Koski, and H. Savin. Effect of thermal history on iron precipitation in crystalline silicon. Energy Procedia,2011,8:355-359.
    [51]R. Krain, S. Herlufsen, and J. Schmidt. Low-temperature gettering of iron in mono and multicrystalline silicon.24th European Photovoltaic Solar Energy Conference,. Hamburg, Germany.
    [52]Y. Zeng, D. Yang, Z. Xi, W. Wang, and D. Que. Iron precipitation in as-received Czochralski silicon during low temperature annealing. Materials Science in Semiconductor Processing, 2009,12(4):185-188.
    [53]A. A. Istratov, and E. R. Weber. Electrical properties and recombination activity of copper, nickel and cobalt in silicon. Applied Physics a-Materials Science & Processing,1998,66 (2): 123-136.
    [54]A. A. Istratov, and E. R. Weber. Physics of copper in silicon. Journal of The Electrochemical Society,2002,149 (1):G21-G30.
    [55]S. J. Pearton, and A. J. Tavendale. The electrical properties of deep copper-and nickel-related centers in silicon. Journal of Applied Physics,1983,54 (3):1375-1379.
    [56]M. Seibt, and K. Graff. Characterization of haze-forming precipitates in silicon. Journal of Applied Physics,1988,63 (9):4444-4450.
    [57]G. Das. Precipitation of copper in silicon. Journal of applied physics,2003,44 (10): 4459-4467.
    [58]B. Shen, T. Sekiguchi, R. Zhang, Y. Shi, H. Shi, K. Yang, Y. Zheng, and K. Sumino. Precipitation of Cu and Fe in dislocated floating-zone-grown silicon. Japanese journal of applied physics,1996,35 (part 1):3301-3305.
    [59]M. O. Aboelfotoh, and B. G. Svensson. Copper passivation of boron in silicon and boron reactivation kinetics. Physical Review B,1991,44 (23):12742-12747.
    [60]A. Broniatowski, and C. Haut. The electronic properties of copper-decorated twinned boundaries in silicon. Philosophical Magazine Letters,1990,62 (6):407-415.
    [61]R. Rizk, X. Portier, G. Allais, and G. Nouet. Electrical and structural studies of copper and nickel precipitates in a sigma=25 silicon bicrystal. Journal of Applied Physics,1994,76 (2): 952-958.
    [62]M. Seibt, and K. Graff. Characterization of haze-forming precipitates in silicon. Journal of applied physics,1988,63 (9):4444-4450.
    [63]A. Belayachi, T. Heiser, J. Schunck, and A. Kempf. Influence of light on interstitial copper in p-type silicon. Applied Physics A,2005,80 (2):201-204.
    [64]H. Savin, M. Yli-Koski, and A. Haarahiltunen. Role of copper in light induced minority-carrier lifetime degradation of silicon. Applied Physics Letters,2009,95 (15): 152111.
    [65]H. Vainola, E. Saarnilehto, M. Yli-Koski, A. Haarahiltunen, J. Sinkkonen, G. Berenyi, and T. Pavelka. Quantitative copper measurement in oxidized p-type silicon wafers using microwave photoconductivity decay. Applied Physics Letters,2005,87 (3):032109-032109-032103.
    [66]W. B. Henley, D. A. Ramappa, and L. Jastrezbski. Detection of copper contamination in silicon by surface photovoltage diffusion length measurements. Applied Physics Letters,1999, 74 (2):278-280.
    [67]D. A. Ramappa. Surface photovoltage analysis of phase transformation of copper in p-type silicon. Applied Physics Letters,2000,76 (25):3756-3758.
    [68]M. Seibt, and W. Schroter. Precipitation behavior of nickel in silicon. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties,1989,59 (2): 337-352.
    [69]W. Schroter, V. Kveder, M. Seibt, H. Ewe, H. Hedemann, F. Riedel, and A. Sattler. Atomic structure and electronic states of nickel and copper silicides in silicon. Materials Science and Engineering B-Solid State Materials for Advanced Technology,2000,72 (2-3):80-86.
    [70]F. Riedel, and W. Schroter. Electrical and structural properties of nanoscale NiSi2 precipitates in silicon. Physical Review B,2000,62 (11):7150-7156.
    [71]M. Kittler, J. Larz, W. Seifert, M. Seibt, and W. Schroter. Recombination properties of structurally well defined NiSi2 precipitates in silicon. Applied Physics Letters,1991,58 (9): 911-913.
    [72]M. Heuer, T. Buonassisi, A. Istratov, M. Pickett, M. Marcus, A. Minor, and E. Weber. Transition metal interaction and Ni-Fe-Cu-Si phases in silicon. Journal of applied physics, 2007,101 (12):123510.
    [73]C. Rudolf, P. Saring, L. Stolze, and M. Seibt. Co-precipitation of copper and nickel in crystalline silicon. Materials Science and Engineering:B,2009,159:365-368.
    [74]P. Saring, C. Rudolf, L. Stolze, and M. Seibt. Light-beam-induced current measurements on copper-nickel co-contaminated Cz-silicon bicrystals. Materials Science and Engineering:B, 2009,159:216-218.
    [75]M. Seibt, R. Khalil, V. Kveder, and W. Schroter. Electronic states at dislocations and metal silicide precipitates in crystalline silicon and their role in solar cell materials. Applied Physics A,2009,96 (1):235-253.
    [76]G. Coletti, P. C. P. Bronsveld, G. Hahn, W. Warta, D. Macdonald, B. Ceccaroli, K. Wambach, N. Le Quang, and J. M. Fernandez. Impact of metal contamination in silicon solar cells. Advanced Functional Materials,2011,21 (5):879-890.
    [77]M. Seibt, A. Sattler, C. Rudolf, O. Voβ, V. Kveder, and W. Schroter. Gettering in silicon photovoltaics:current state and future perspectives. physica status solidi (a),2006,203 (4): 696-713.
    [78]杨德仁.太阳电池材料:化学工业出版社;2006.
    [79]M. Seibt, D. Abdelbarey, V. Kveder, C. Rudolf, P. Saring, L. Stolze, and O. Voβ. Interaction of metal impurities with extended defects in crystalline silicon and its implications for gettering techniques used in photovoltaics. Materials Science and Engineering:B,2009, 159-160:264-268.
    [80]J. S. Kang, and D. K. Schroder. Gettering in silicon. Journal of Applied Physics,1989,65 (8): 2974-2985.
    [81]V. Vahanissi, M. Yli-Koski, A. Haarahiltunen, H. Talvitie, Y. Bao, and H. Savin. Significant minority carrier lifetime improvement in red edge zone in n-type multicrystalline silicon. Solar energy materials and solar cells,2013,114 (0):54-58.
    [82]G. Stokkan, S. Riepe, O. Lohne, and W. Warta. Spatially resolved modeling of the combined effect of dislocations and grain boundaries on minority carrier lifetime in multicrystalline silicon. Journal of Applied Physics,2007,101 (5):053515.
    [83]杜丕一,潘颐.材料科学基础.北京:中国建材工业出版社;2002.
    [84]V. Monier, L. Capello, O. Kononchuk, and B. Pichaud. Light scattering from dislocations in silicon. Journal of Applied Physics,2010,108 (9):093525.
    [85]H. El Ghitani, and S. Martinuzzi. Influence of dislocations on electrical properties of large grained polycrystalline silicon cells. I. Model. Journal of Applied Physics,1989,66 (4): 1717-1722.
    [86]H. El Ghitani, and S. Martinuzzi. Influence of dislocations on electrical properties of large grained polycrystalline silicon cells. II. Experimental results. Journal of Applied Physics,1989, 66 (4):1723-1726.
    [87]V. Kveder, M. Kittler, Schr, ouml, and W. ter. Recombination activity of contaminated dislocations in silicon:A model describing electron-beam-induced current contrast behavior. Physical Review B,2001,63 (11):115208.
    [88]A. Castaldini, D. Cavalcoli, A. Cavallini, and S. Pizzini. Experimental evidence of dislocation related shallow states in p-type Si. Physical review letters,2005,95 (7):076401.
    [89]P. Omling, E. Weber, L. Montelius, H. Alexander, and J. Michel. Electrical properties of dislocations and point defects in plastically deformed silicon. Physical Review B,1985,32 (10):6571.
    [90]R. Sauer, J. Weber, J. Stolz, E. Weber, K.-H. Kusters, and H. Alexander. Dislocation-related photoluminescence in silicon. Applied Physics A,1985,36 (1):1-13.
    [91]M. Seibt, V. Kveder, W. Schroter, and O. Voβ. Structural and electrical properties of metal impurities at dislocations in silicon. physica status solidi (a),2005,202 (5):911-920.
    [92]J. Lu, X. Yu, Y. Park, and G. Rozgonyi. Investigation of iron impurity gettering at dislocations in a SiGe/Si heterostructure. Journal of Applied Physics,2009,105 (7):073712.
    [93]C. H. Seager. Grain-boundaries in polycrystalline silicon. Annual Review of Materials Science,1985,15:271-302.
    [94]J. Krinke, M. Albrecht, W. Dorsch, A. Voigt, H. P. Strunk, B. Steiner, and G. Wagner. Grain boundaries in silicon:microstructure and minority carrier recombination. Photovoltaic Specialists Conference,1996, Conference Record of the Twenty Fifth IEEE1996. p.473-476.
    [95]T. Daud, K. M. Koliwad, and F. G. Allen. Effect of grain boundaries in silicon on minority-carrier diffusion length and solar-cell efficiency. Applied Physics Letters,1978,33 (12):1009-1011.
    [96]B. S. Cunningham, H P Ast, D G. The electrical activity at twin boundaries in silicon Grain Boundaries in Semiconductors,1982, Nov.1981:51-56.
    [97]J. Chen, T. Sekiguchi, D. Yang, F. Yin, K. Kido, and S. Tsurekawa. Electron-beam-induced current study of grain boundaries in multicrystalline silicon. Journal of Applied Physics,2004, 96 (10):5490-5495.
    [98]J. Chen, T. Sekiguchi, R. Xie, P. Ahmet, T. Chikyo, D. Yang, S. Ito, and F. Yin. Electron-beam-induced current study of small-angle grain boundaries in multicrystalline silicon. Scripta Materialia,2005,52 (12):1211-1215.
    [99]J. Chen, T. Sekiguchi, and D. Yang. Electron-beam-induced current study of grain boundaries in multicrystalline Si. physica status solidi (c),2007,4 (8):2908-2917.
    [100]J. Chen, D. Yang, Z. Xi, and T. Sekiguchi. Electron-beam-induced current study of hydrogen passivation on grain boundaries in multicrystalline silicon:Influence of GB character and impurity contamination. Physica B:Condensed Matter,2005,364 (1-4):162-169.
    [101]M. Bertoni, S. Hudelson, B. Newman, D. Fenning, H. Dekkers, E. Comagliotti, A. Zuschlag, G. Micard, G. Hahn, and G. Coletti. Influence of defect type on hydrogen passivation efficacy in multicrystalline silicon solar cells. Progress in Photovoltaics:Research and Applications, 2010.
    [102]X. Li, D. Yang, X. Yu, and D. Que. Copper Precipitates in Multicrystalline Silicon for Solar Cells. ECS Transactions,2010,27 (1):1135-1140.
    [103]K. Arafune, E. Ohishi, H. Sai, Y. Terada, Y. Ohshita, and M. Yamaguchi. Study on iron distribution and electrical activities at grain boundaries in polycrystalline silicon substrate for solar cells. Japanese journal of applied physics,2006,45 (8R):6153.
    [104]T. Buonassisi, A. A. Istratov, M. D. Pickett, M. A. Marcus, T. F. Ciszek, and E. R. Weber. Metal precipitation at grain boundaries in silicon:Dependence on grain boundary character and dislocation decoration. Applied Physics Letters,2006,89 (4):042102-042103.
    [105]W. Seifert, and et al. Influence of dislocation density on recombination at grain boundaries in multicrystalline silicon. Semiconductor Science and Technology,1993,8 (9):1687.
    [106]G. Pike, and C. Seager. The dc voltage dependence of semiconductor grain-boundary resistance. Journal of Applied Physics,1979,50 (5):3414-3422.
    [107]S. Bengtsson, G. I. Andersson, M. O. Andersson, and O. Engstrom. The bonded unipolar silicon-silicon junction. Journal of Applied Physics,1992,72 (1):124-140.
    [108]J. Lu, and G. Rozgonyi. Capacitance transient study of the influence of iron contamination on the electrical characteristics of silicon grain boundaries. Applied Physics Letters,2008,92: 082110.
    [109]X. Yu, J. Lu, and G. Rozgonyi. Capacitance transient and current-/capacitance-voltage study of direct silicon bonded (110)/(100) interface. Applied Physics Letters,2008,92 (26): 262102-262103.
    [110]M. Wolf. Historical development of solar cells. Power Sources Symposium,25 th, Atlantic City, N J1972. p.120-124.
    [111]S. Kolodinski, J. H. Werner, T. Wittchen, and H. J. Queisser. Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells. Applied physics letters,1993, 63 (17):2405-2407.
    [112]J. Nijs, J. Szlufcik, J. Poortmans, S. Sivoththaman, and R. Mertens. Advanced cost-effective crystalline silicon solar cell technologies. Solar Energy Materials and Solar Cells,2001,65 (1): 249-259.
    [113]T. Trupke, M. Green, and P. Wurfel. Improving solar cell efficiencies by down-conversion of high-energy photons. Journal of Applied Physics,2002,92 (3):1668-1674.
    [114]J. H. Werner, S. Kolodinski, and H. J. Queisser. Novel optimization principles and efficiency limits for semiconductor solar cells. Physical Review Letters,1994,72 (24):3851-3854.
    [115]A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T. L. James, and M. Woodhouse. A wafer-based monocrystalline silicon photovoltaics road map:Utilizing known technology improvement opportunities for further reductions in manufacturing costs. Solar Energy Materials and Solar Cells,2013,114:110-135.
    [116]X. Yu, P. Wang, X. Li, and D. Yang. Thin Czochralski silicon solar cells based on diamond wire sawing technology. Solar Energy Materials and Solar Cells,2012,98:337-342.
    [117]C. B. M. Rinio, T. Buonassisi, D. Borchert. Defects in the deteriorated border layer of block-cast multicrystalline silicon ingots. the 19th European Photovoltaic Solar Energy Conference. Paris2004. p.1-4.
    [118]T. U. Naerland, L. Arnberg, and A. Holt. Origin of the low carrier lifetime edge zone in multicrystalline PV silicon. Progress in Photovoltaics:Research and Applications,2009,17 (5) 289-296.
    [119]M. Rossberg, M. Naumann, K. Irmscher, U. Juda, A. Ludge, M. Ghosh, and A. Muller. Investigation of defects in the edge region of multicrystalline solar silicon ingots. Solid State Phenomena,2005,108-109:531-536.
    [120]F. Foumel, H. Moriceau, B. Aspar, K. Rousseau, J. Eymery, J. L. Rouviere, and N. Magnea. Accurate control of the misorientation angles in direct wafer bonding. Applied Physics Letters, 2002,80 (5):793-795.
    [121]D. K. Schroder. Semiconductor Material and Device Characterization 2nd Ed. New York: Wiley & Sons; 1998.
    [122]O. Palais, S. Martinuzzi, and J. J. Simon. Minority carrier lifetime and metallic-impurity mapping in silicon wafers. Materials Science in Semiconductor Processing,2001,4 (1-3): 27-29.
    [123]G. Zoth, and W. Bergholz. A fast, preparation-free method to detect iron in silicon. Journal of Applied Physics,1990,67 (11):6764-6771.
    [124]J. Schmidt, and A. G. Aberle. Accurate method for the determination of bulk minority-carrier lifetimes of mono-and multicrystalline silicon wafers. Journal of Applied Physics,1997,81 (9):6186-6199.
    [125]D. P. Fenning, J. Hofstetter, M. I. Bertoni, S. Hudelson, M. Rinio, J. F. Lelievre. B. Lai, C. del Canizo, and T. Buonassisi. Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling. Applied Physics Letters,2011,98 (16): 162103-162103.
    [126]M. Ghosh, D. Yang, A. Lawerenz, S. Riedel, and H. Moller. Investigation of minority carrier lifetime degradation in multicrystalline silicon ingots.14th Euro Photovol-taic Solar Energy Conference. Barcelonal997. p.724-727.
    [127]J. Haunschild, M. Glatthaar, W. Kwapil, and S. Rein. Comparing luminescence imaging with illuminated lock-in thermography and carrier density imaging for inline inspection of silicon solar cells. Hamburg, September,2009,2009.
    [128]J. Bauer, J. M. Wagner, A. Lotnyk, H. Blumtritt, B. Lim, J. Schmidt, and O. Breitenstein. Hot spots in multicrystalline silicon solar cells:avalanche breakdown due to etch pits, physica status solidi (RRL)-Rapid Research Letters,2009,3 (2-3):40-42.
    [129]J. Hofstetter, J.-F. Lelievre, C. del Canizo, and A. Luque. Improvement of multi-crystalline silicon wafer quality during solar cell fabrication process. Proceedings of the 2009 Spanish Conference on Electron Devices. Santiago de Compostela, Spain.:IEEE; 2009. p.372-375.
    [130]T. Fuyuki, H. Kondo, T. Yamazaki, Y. Takahashi, and Y. Uraoka. Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence. Applied Physics Letters,2005,86 (26):262108-262108-262103.
    [131]C. Hu, and C. Drowley. Determination of diffusion length and surface recombination velocity by light excitation. Solid-State Electronics,1978,21 (7):965-968.
    [132]O. Palais, E. Yakimov, and S. Martinuzzi. Minority carrier lifetime scan maps applied to iron concentration mapping in silicon wafers. Materials Science and Engineering:B,2002,91: 216-219,
    [133]D. Yang, L. Li, X. Ma, R. Fan. D. Que, and H. Moeller. Oxygen-related centers in multicrystalline silicon. Solar energy materials and solar cells,2000,62 (1):37-42.
    [134]O. Breitenstein, J. Bauer, T. Trupke, and R. A. Bardos. On the detection of shunts in silicon solar cells by photo-and electroluminescence imaging. Progress in Photovoltaics:Research and Applications,2008,16 (4):325-330.
    [135]L. Liu, S. Nakano, and K. Kakimoto. Dynamic simulation of temperature and iron distributions in a casting process for crystalline silicon solar cells with a global model. Journal of crystal growth,2006,292 (2):515-518.
    [136]J. W. Shur, B. K. Kang, S. J. Moon, W. W. So, and D. H. Yoon. Growth of multi-crystalline silicon ingot by improved directional solidification process based on numerical simulation. Solar energy materials and solar cells,2011,95 (12):3159-3164.
    [137]X. Yu, X. Gu, S. Yuan, K. Guo, and D. Yang. Two-peak characteristic distribution of iron impurities at the bottom of cast quasi-single-crystalline silicon ingot. Scripta Materialia,2013, 68 (8):655-657.
    [138]顾鑫.低成本高效晶体硅材料及太阳电池研究:浙江大学;2013.
    [139]X. Li, X. Yu, D. Lei, D. Yang, and G. Rozgonyi. Effect of iron contamination on grain boundary states at a direct silicon bonded (110)/(100) interface. physica status solidi (RRL)-Rapid Research Letters,2010:350-351.
    [140]M. Rinio, A. Yodyunyong, S. Keipert-Colberg, Y. P. B. Mouafi, D. Borchert, and A. Montesdeoca-Santana. Improvement of multicrystalline silicon solar cells by a low temperature anneal after emitter diffusion. Progress in Photovoltaics:Research and Applications,2011,19 (2):165-169.
    [141]N. Matsuki, R. Ishihara, A. Baiano, and K. Beenakker. Investigation of local electrical properties of coincidence-site-lattice boundaries in location-controlled silicon islands using scanning capacitance microscopy. Applied Physics Letters,2008,93 (6):062102-062103.
    [142]S. M. Sze, and K. K. Ng. Physics of semiconductor devices third ed. New Jersey:John Wiley and Sons; 2007.
    [143]A. Broniatowski, and J. C. Bourgoin. Transient-capacitance measurement of the grain boundary levels in semiconductors. Physical Review Letters,1982,48 (6):424-427.
    [144]T. Buonassisi, A. A. Istratov, M. D. Pickett, M. A. Marcus, T. F. Ciszek, and E. R. Weber. Metal precipitation at grain boundaries in silicon:Dependence on grain boundary character and dislocation decoration. Applied Physics Letters,2006,89 (4):042102.
    [145]M. Seibt, D. Abdelbarey, V. Kveder, C. Rudolf, P. Saring, L. Stolze, and O. VoB. Interaction of metal impurities with extended defects in crystalline silicon and its implications for gettering techniques used in photovoltaics. Materials Science and Engineering:B,2009,159: 264-268.
    [146]B. Chen, J. Chen, T. Sekiguchi, M. Saito, and K. Kimoto. Structural characterization and iron detection at Σ3 grain boundaries in multicrystalline silicon. Journal of Applied Physics, 2009,105 (11):113502-113505.
    [147]X. Q. Li, X. G. Yu, L. H. Song, D. R. Yang, and G. Rozgonyi. Effect of nickel contamination on grain boundary states at a direct silicon bonded (110)/(100) interface. Scripta Materialia, 2010,63(11):1100-1103.
    [148]X. Yu, J. Lu, K. Youssef, and G. Rozgonyi. Proximity gettering of Cu at a (110)/(001) grain boundary interface formed by direct silicon bonding. Applied Physics Letters,2009,94 (22): 221909-221903.
    [149]X. Yu, X. Li, D. Lei, D. Yang, and G. Rozgonyi. Hydrogen passivation of Fe-related deep energy levels at a direct silicon-bonded (110)/(100) grain boundary. Scripta Materialia,2011, 64 (7):653-656.
    [150]N. H. Nickel, W. B. Jackson, and J. Walker. Hydrogen migration in polycrystalline silicon. Physical Review B,1996,53 (12):7750.
    [151]N. H. Nickel, N. M. Johnson, and W. B. Jackson. Hydrogen passivation of grain boundary defects in polycrystalline silicon thin films. Applied Physics Letters,1993,62 (25): 3285-3287.
    [152]C. H. Seager. The determination of grain-boundary recombination rates by scanned spot excitation methods. Journal of Applied Physics,1982,53 (8):5968-5971.
    [153]D. R. Hamann. New silicide interface model from structural energy calculations. Physical Review Letters,1988,60 (4):313-316.
    [154]S. Diez, S. Rein, T. Roth, and S. W. Glunz. Cobalt related defect levels in silicon analyzed by temperature-and injection-dependent lifetime spectroscopy. Journal of Applied Physics, 2007,101 (3):
    [155]M. Hystad, C. Modanese, M. Di Sabatino, and L. Arnberg. Distribution and impact of chromium in compensated solar grade silicon. Solar Energy Materials and Solar Cells,2012, 103 (0):140-146.
    [156]S. M. Myers, G. A. Petersen, and C. H. Seager. Binding of cobalt and iron to cavities in silicon. Journal of Applied Physics,1996,80 (7):3717-3726.
    [157]T. Roth, P. Rosenits, S. Diez, S. W. Glunz, D. Macdonald, S. Beljakowa, and G. Pensl. Electronic properties and dopant pairing behavior of manganese in boron-doped silicon. Journal of Applied Physics,2007,102 (10):-
    [158]J. Utzig. Properties of cobalt in FZ and CZ silicon studied by Mossbauer spectroscopy. Journal of Applied Physics,1988,64 (7):3629-3633.
    [159]M. C. Wagener, R. H. Zhang, G. A. Rozgonyi, M. Seacrist, and M. Ries. Current transport characteristics across shallow hybrid-orientation silicon bonded interfaces. Applied Physics Letters,2007,90 (11):112101.
    [160]G. Pike. Semiconductor grain-boundary admittance:theory. Physical Review B,1984,30 (2):795.
    [161]M. D. Stiles, and D. R. Hamann. THEORY OF BALLISTIC ELECTRON-EMISSION SPECTROSCOPY OF NISI2-SI(111) INTERFACES. Materials Science and Engineering B-Solid State Materials for Advanced Technology,1992,14 (3):291-296.
    [162]B. Ryningen, G. Stokkan, M. Kivambe, T. Ervik, and O. Lohne. Growth of dislocation clusters during directional solidification of multicrystalline silicon ingots. Acta Materialia, 2011,59 (20):7703-7710.
    [163]K. Kutsukake, N. Usami, Y. Ohno, Y. Tokumoto, and I. Yonenaga. Control of grain boundary propagation in mono-like Si:Utilization of functional grain boundaries. Applied Physics Express,2013,6 (2):025505.
    [164]B. Moralejo, A. Tejero, V. Hortelano, O. Martinez, J. Jimenez, and V. Parra. Electrical and optical characterization of extended defects in silicon mono-cast material. physica status solidi (c),2012,9 (10-11):2158-2163.
    [165]S. Zhou, C. Zhou, W. Wang, Y. Tang, J. Chen, B. Yan, and Y. Zhao. Effect of Subgrains on the Performance of Mono-Like Crystalline Silicon Solar Cells. International Journal of Photoenergy,2013,2013.
    [166]T. Ervik, G. Stokkan, T. Buonassisi,(?). Mj(?)s, and O. Lohne. Dislocation formation in seeds for quasi-monocrystalline silicon for solar cells. Acta Materialia,2014,67:199-206.
    [167]K. Fujiwara, Y. Obinata, T. Ujihara, N. Usami, G. Sazaki, and K. Nakajima. Grain growth behaviors of polycrystalline silicon during melt growth processes. Journal of Crystal Growth, 2004,266 (4):441-448.
    [168]K. Yeh, C. Hseih, W. Hsu, and C. Lan. High-quality multi-crystalline silicon growth for solar cells by grain-controlled directional solidification. Progress in Photovoltaics:Research and Applications,2010,18 (4):265-271.
    [169]T. Li, K. Yeh, W. Hsu, and C. Lan. High-quality multi-crystalline silicon (mc-Si) grown by directional solidification using notched crucibles. Journal of Crystal Growth,2011,318 (1): 219-223.
    [170]Y. Yang, A. Yu, B. Hsu, W. Hsu, A. Yang, and C. Lan. Development of high-performance multicrystalline silicon for photovoltaic industry. Progress in Photovoltaics:Research and Applications,2013.
    [171]A. Istratov, H. Hieslmair, and E. Weber. Iron and its complexes in silicon. Applied Physics A: Materials Science & Processing,1999,69 (1):13-44.
    [172]A. A. Istratov, and E. R. Weber. Electrical properties and recombination activity of copper, nickel and cobalt in silicon. Applied Physics A:Materials Science & Processing,1998,66 (2): 123-136.
    [173]G. Bemski. Recombination properties of gold in silicon. Physical Review,1958,111 (6): 1515.
    [174]W. Bullis. Properties of gold in silicon. Solid-State Electronics,1966,9 (2):143-168.
    [175]S. Dubois, O. Palais, M. Pasquinelli, S. Martinuzzi, and C. Jaussaud. Influence of substitutional metallic impurities on the performances of p-type crystalline silicon solar cells: The case of gold. Journal of Applied Physics,2006,100 (12):123502-123508.
    [176]W. M. Bullis, and F. Strieter. Electrical Properties of n-Type Silicon Doped with Gold. Journal of Applied Physics,1968,39 (1):314-318.
    [177]B. Pichaud, G. Mariani-Regula, and E. Yakimov. Interaction of gold with dislocations in silicon. Materials Science and Engineering B,2000,71 (1-3):272-275.
    [178]S. Myers, M. Seibt, and W. Schroter. Mechanisms of transition-metal gettering in silicon. Journal of Applied Physics,2000,88:3795.
    [179]R. Hoelzl, K. J. Range, and L. Fabry. Modeling of Cu gettering in p-and n-type silicon and in poly-silicon. Applied Physics A:Materials Science & Processing,2002,75 (4):525-534.
    [180]A. Istratov, C. Flink, H. Hieslmair, S. McHugo, and E. Weber. Diffusion, solubility and gettering of copper in silicon. Materials Science and Engineering B,2000,72 (2-3):99-104.
    [181]J. Lu, X. Yu, Y. Park, and G. Rozgonyi. Investigation of iron impurity gettering at dislocations in a SiGe/Si heterostructure. Journal of Applied Physics,2009,105 (7): 073712-073712-073716.
    [182]P. Negrini, D. Nobili, and S. Solmi. Kinetics of phosphorus predeposition in silicon using POCL3. Journal of The Electrochemical Society,1975,122 (9):1254-1260.
    [183]D. Redfield. Heavy-doping effects in silicon:the role of Auger processes. Solar cells,1981, 3 (4):313-326.
    [184]M. A. Green. Solar cells:operating principles, technology, and system applications. Englewood Cliffs, NJ, Prentice-Hall, Inc,1982 288 p,1982,1.
    [185]B. Bazer-Bachi, E. Fourmond, P. Papet, L. Bounaas, O. Nichiporuk, N. Le Quang, and M. Lemiti. Higher emitter quality by reducing inactive phosphorus. Solar Energy Materials and Solar Cells,2012,105:137-141.
    [186]T. Clarysse, D. Vanhaeren, I. Hoflijk, and W. Vandervorst. Characterization of electrically active dopant profiles with the spreading resistance probe. Materials Science and Engineering: R:Reports,2004,47 (5):123-206.
    [187]H. Weman, A. Henry, T. Begum, B. Monemar, O. Awadelkarim, and J. Lindstrom. Electrical and optical properties of gold-doped n-type silicon. Journal of Applied Physics,1989,65 (1):137-145.
    [188]E. Yakimov, G. Mariani, and B. Pichaud. Temperature dependence of dislocation efficiency as sinks for self-interstitials in silicon as measured by gold diffusion. Journal of Applied Physics,1995,78 (3):1495-1499.
    [189]U. Gosele, W. Frank, and A. Seeger. Mechanism and kinetics of the diffusion of gold in silicon. Applied Physics A:Materials Science & Processing,1980,23 (4):361-368.
    [190]L. Baldi, G. Cerofolini, G. Ferla, and G. Frigerio. Gold solubility in silicon and gettering by phosphorus. physica status solidi (a),1978,48 (2):523-532.
    [191]A. Armigliato, D. Nobili, M. Servidori, and S. Solmi. SiP precipitation within the doped silicon lattice, concomitant with phosphorus predeposition. Journal of Applied Physics,1976, 47 (12):5489-5491.
    [192]E. Fogarassy, R. Stuck, J. Muller, A. Grob, J. Grob, and P. Siffert. Effects of laser irradiation on phosphorus diffused layers in silicon. Journal of Electronic Materials,1980,9(1):197-209.
    [193]O. Velichko, V. Dobrushkin, and L. Pakula. A model of clustering of phosphorus atoms in silicon. Materials Science and Engineering:B,2005,123 (2):176-180.
    [194]S. Solmi, A. Parisini, R. Angelucci, A. Armigliato, D. Nobili, and L. Moro. Dopant and carrier concentration in Si in equilibrium with monoclinic SiP precipitates. Physical Review B, 1996,53 (12):7836.
    [195]R. Olesinski, N. Kanani, and G. Abbaschian. The P-Si (Phosphorus-Silicon) system. Journal of Phase Equilibria,1985,6 (2):130-133.
    [196]A. Willoughby. Interactions between sequential dopant diffusions in silicon-a review. Journal of Physics D:Applied Physics,1977,10 (4):455.
    [197]M. Finetti, P. Negrini, S. Solmi, and D. Nobili. Electrical Properties and Stability of Supersaturated Phosphorus-Doped Silicon Layers. Journal of The Electrochemical Society, 1981,128(6):1313-1317.
    [198]D. Nobili, A. Armigliato, M. Finnetti, and S. Solmi. Precipitation as the phenomenon responsible for the electrically inactive phosphorus in silicon. Journal of Applied Physics, 1982,53(3):1484-1491.
    [199]J. Dziewior, and W. Schmid. Auger coefficients for highly doped and highly excited silicon. Applied Physics Letters,2008,31 (5):346-348.
    [200]J. G. Fossum, F. A. Lindholm, and M. A. Shibib. The importance of surface recombination and energy-bandgap arrowing in pn-junction silicon solar cells. Electron Devices, IEEE Transactions on,1979,26 (9):1294-1298.
    [201]P. Ostoja, S. Guerri, P. Negrini, and S. Solmi. The effects of phosphorus precipitation on the open-circuit voltage in N< sup>+/P silicon solar cells. Solar cells,1984,11 (1):1-12.
    [202]A. Cuevas. The effect of emitter recombination on the effective lifetime of silicon wafers. Solar Energy Materials and Solar Cells,1999,57 (3):277-290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700