利用超短激光脉冲实现对双原子分子的量子控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文发展了超短激光脉冲控制双原子分子的理论模型,主要在量子态的相干控制和控制分子的定向两个方面进行了深入的研究。论文的理论方法是基于精确求解包含了振转自由度的薛定谔方程的含时量子波包方法。在量子态的调控方面,本论文提出了一个包含了Stark效应和邻近电子态影响的布居转移模型。利用Stark能级移动调节跃迁频率并选择合适的激光脉冲参数,初始电子态布居可以被绝热地转移到目标电子态。通过完整的含时量子波包计算结合三能级近似的定性分析,本论文也研究了采用受激拉曼绝热通道(STIRAP)方法实现对分子振转量子态的控制。研究发现利用超短皮秒激光脉冲可以刘分子体系实现振转量子态的绝热控制,初始转动温度对受激拉曼绝热通道过程有一定的影响。
     在控制分子的定向研究中,提出了两种实现场后分子定向的理论控制方案。首先以LiH分子为例研究了利用一束红外激光脉冲和一束时间延迟的太赫兹半周期脉冲实现场后分子定向的方案。在这个方案中,一束首先打开的红外激光脉冲被用来选择控制分子到一个高的振转态,紧随其后的太赫兹半周期脉冲通过非共振转动激发生分子定向。数值计算表明,这个方法即使在室温下也可以获得比较好的场后分子定向。另一个方案是利用载波包络相位稳定的太赫兹周期量级激光脉冲实现载波包络相位敏感的场后分子定向。数值计算表明,在当前分子束技术允许的条件下,这个方法可以实现有效的场后分子定向。产生的场后分子定向对周期量级脉冲的载波包络相位非常敏感,这可能为研究载波包络相位控制分子定向提供一个新的思路。值得一提的是,在这个方案中扮演重要角色的周期量级激光脉冲在目前实验上已经可以实现。本文以LiH和LiCl分子为例,利用精确求解含时薛定谔方程、刚体近似模型和冲量近似模型详细地研究了太赫兹周期量级激光脉冲产生场后分子定向的动力学机理。一个瞬间的“踢”模型可以用来很好地理解太赫兹周期量级激光脉冲产生场后分子定向的动力学。
     在场后分子定向的应用方面,本论文提出了一种利用场后分子定向探测太赫兹周期量级激光脉冲载波包络相位的方法。利用场后分子定向可以恢复的特性,因场后分子定向退相引起的载波包络相位漂移的影响可以很自然地被消除。
This thesis develops theoretical model for quantum control of diatomic molecules with ultrashort laser pulses, which mainly involves the coherent control of quantum state and spatial degrees of freedom. The theoretical method is based on the nu-merical solution of the time-dependent Schrodinger equation including the vibrational and rotational degrees of freedom. The effect of rotational temperature on the quan-tum control is considered by statistically averaging over the solutions of Schrodinger equation for all possible initially rovibrational states weighed by a Boltzmann factor. For the quantum state manipulation, a model for controlling the population trans-fer between the electronic states is discussed, and the effects of the Stark shift and neighboring electronic states on the population transfer are considered. By utilizing the Stark shift to modulate the transition frequency and choosing the suitable laser frequency, the population can be adiabatically transferred from the initial electronic state to the target electronic state. By combining exactly wave packet calculations and the qualitative analysis of simple three-level approximation the coherent population transfer between molecular rovibrational states by a stimulated Raman adiabatic pas-sage (STIRAP) mechanism is also investigated to control the rovibrational quantum state in the molecular electronic states. The calculated results have shown that the population can be adiabatically transferred from one rovibrational state to another rovibrational state, and the initial rotational temperatures have evident influence on transfer process.
     For the control of spatial degrees of freedom, two strategies for generating an efficient field-free molecular orientation are proposed. Firstly, with LiH molecules as an example, a scenario used for controlling molecular orientation was suggested with an infrared laser pulse and a delayed half-cycle pulse. The infrared laser pulse ex-cites the molecules in a thermally initial state to a specific rovibrational state, and then the half-cycle pulse orients the molecules by rotational excitation. Numerical calculation shows that an efficient field-free time-dependent orientation can be real-ized even at room temperature. Secondly, a strategy for generating carrier-envelope phase-dependent field-free molecular orientation was proposed with the use of carrier- envelope phase (CEP) stabilization and asymmetric terahertz (THz) few-cycle laser pulses. An efficient field-free molecular orientation can be obtained even at higher temperatures. Moreover, a simple dependence of the field-free orientation on the CEP was demonstrated, which implies that the CEP becomes an important parameter for control of molecular orientation. More importantly, the realization of this scenario is appealing based on the fact that the intense few-cycle THz pulse with duration as short as a few optical cycles is available as a measrue tool. This thesis also investigates in detail the dynamics of field-free orientation driven by THz few-cycle pulses. Exact results by numerically solving the time-dependent Schrodinger equation including the vibrational and rotational degrees of freedom are compared to the rigid-rotor approx-imation as well as to the impulsive approximation. Two different molecules, LiH and LiCl, are considered. A delta-kicked rotor model is well demonstrated for understand-ing the dynamics of field-free molecular orientation with THz few-cycle pulses.
     For application of the field-free molecular orientation, an experimentally feasible approach was proposed to determine the CEP of a few-cycle pulse by observing the field-free molecular orientation. The degree of orientation sensitively depends on the CEP, providing a new route for measurement of the CEP without phase ambiguity. By taking advantage of revivals of the field-free molecular orientation, an important effect of the CEP drift caused by the dephasing of the generating medium on the accurate measurement of the CEP value is naturally eliminated.
引文
[1]Shapiro M and Brumer P. Principles of the Quantum Control of Molecular Processes. Wiley, Hoboken,2003.
    [2]Kuhn O and Woste L. Analysis and Control of Ultrafast Photoinduced Reactions. Springer, Berlin,2007.
    [3]Dantus M and Lozovoy V V. Experimental coherent laser control of physicochemical pro-cesses. Chem. Rev,104(4):1813-1860,2004.
    [4]Lozovoy V V and Dantus M. Systematic control of nonlinear optical processes using opti-mally shaped femtosecond pulses. Chem. Phys. Chem.,6(1-12):1970-2000,2005.
    [5]Paulus G G, Grasbon F, Walther H, Villoresi P, Nisoli M, Stagira S, Priori E, and Silvestri S. Absolute-phase phenomena in photoionization with few-cycle laser pulses. Nature, 414:182-184,2001.
    [6]de Bohan A, Antoine P, Milosevic D B, and Piraux B. Phase-dependent harmonic emission with ultrashort laser pulses. Phys. Rev. Lett.,81(9):1837-1840,1998.
    [7]Barth I, L. Serrano-Andres, and T. Seideman. Nonadiabatic orientation, toroidal current, and induced magnetic field in beo molecules. J. Chem. Phys.,129(16):164303-1-12,2008.
    [8]Tannor D J and Rice S A. Control of selectivity of chemical reaction via control of wave packet evolution. J. Chem. Phys.,83(10):5013-5018,1985.
    [9]Brumer P and Shapiro M. Control of unimolecular reactions using coherent light. Chem. Phys. Lett.,126(6):541-546,1986.
    [10]Sh S, Wood A, and Rabitz H. Optimal control of selective vibrational excitation in harmonic chain molecules. J. Chem. Phys.,88(11):6870-6883,1988.
    [11]Judson R S and Rabitz H. Teaching lasers to control molecules. Phys. Rev. Lett., 68(10):1500-1503,1992.
    [12]Ren Q, Balint-Kurti G G, Manby F R, Artamonov M, Ho T S, and Rabitz H. Quan-tum control of molecular vibrational and rotational excitation in a homonuclear diatomic molecule:a full three-dimensional treatment with polarization forces. J. Chem. Phys., 124(1):014111-1-8,2006.
    [13]Bandrauk A D, Sedik E W, and Matta C F. Effect of absolute laser phase on reaction paths in laser-induced chemical reactions. J. Chem. Phys.,121(16):7764-7775,2004.
    [14]Koch C P, Palao J P, Kosloff R, and Masnou-Seeuws. Stabilization of ultracold molecules using optimal control theory. Phys. Rev. A,70(1):013402-1-14,2004.
    [15]Ohmori K. Wave-packet and coherent control dynamics. Annu. Rev. Phys. Chem.,60:487-511,2009.
    [16]Shore B W Vitanov N V, Halfmann T and Bergmann K. Laser induced population transfer by adiabatic passage techniques. Annu. Rev. Phys. Chem.,52:763-809,2001.
    [17]Stapelfeldt H and Seideman T. Colloquium:Aligning molecules with strong laser pulses. Rev. Mod. Phys.,75(2):543-557,2003.
    [18]Machholm M and Henriksen N E. Field-free orientation of molecules. Phys. Rev. Lett., 87(19):193001-1-4,2001.
    [19]Sell A, Leitenstorfer A, and Huber R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 mv/cm. Opt. Lett., 33(23):2767-2769,2008.
    [20]Shu C C, Yu J, Yuan K J, Hu W H, Yang J, and Cong S L. Stimulated raman adiabatic passage in molecular electronic states. Phys. Rev. A,78(2):023418-1-10,2009.
    [21]Garraway B M and Suominen K A. Wave-packet dynamics:new physics and chemistry in femto-time. Rep. Phys. Prog.,58:365-419,1995.
    [22]Han Y C, Yuan K J, Hu W H, Yan T M, and Cong S L. Steering dissociation of Br2 molecules with two femtosecond pulses via wave packet interference. J. Chem. Phys., 128(13):134303-1-9,2008.
    [23]Marston C C and Balint-Kurti C C. The Fourier grid Hamiltonian method for bound state eigenvalues and eigenfunctions. J. Chem. Phys.,91(6):3571-3576,1989.
    [24]Feit M D, Fleck J A, and Steiger A. Solution of the Schrodinger equation by a spectral method. J. Comput. Phys.,47(3):412-433,1982.
    [25]Feit M D and Fleck J A. Solution of the Schrodinger equation by a spectral method II: Vibrational energy levels of triatomic molecules. J. Chem. Phys.,78(1):301-308,1982.
    [26]Feit M D and Fleck J A. Wave packet dynamics and chaos in the Henon-Heiles system. J. Chem. Phys.,80(6):2578-2584,1984.
    [27]Kosloff R. Time-dependent quantum-mechanical methods for molecular dynamics. J. Phys. Chem.,92(8):2087-2100,1988.
    [28]Light J C, Hamilton I P, and Lill J V. Generalized discrete variable approximation in quantum mechanics. J. Chem. Phys.,82(3):1400-1409,1985.
    [29]McCullough, Jr E A, and Wyatt E T. Quantum dynamics of the collinear (H, H2) reaction. J. Chem. Phys.,51(2):1253-1254,1969.
    [30]Heller E J. Time-dependent approach to semiclassical dynamics. J. Chem. Phys., 62(4):1544-1555,1975.
    [31]Heller E J. The semiclassical way to molecular spectroscopy. Acc. Chem. Res.,14(12):368-375,1981.
    [32]Henriksen N E and Engel V. Femtosecond pump-probe spectroscopy:A theoretical analysis of transient signals and their relation to nuclear wave-packet motion. Int. Rev. Phys. Chem., 20(2):93-126,2001.
    [33]Zhang D H and Zhang J Z H. Full-dimensional time-dependent treatment for diatom-diatom reactions:The H2+OH reaction. J. Chem. Phys.,101(2):1146-1156, 1994.
    [34]Bergmann K, Theuer H, and Shore B W. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys.,70(3):1003-1025,1998. and references therein.
    [35]Nisoli M, Sansone G, Stagira S, De Silvestri S, Vozzi C, Pascolini M, Poletto L, Villoresi P, and Tondello G. Effects of carrier-envelope phase differences of few-optical cycle light pulses in single-shot high-order-harmonic spectra. Phys. Rev. Lett.,91(21):213905-1-4, 2003.
    [36]Jones D J, Diddams S A, Ranka J K, Stenz A, Hall J L Windeler R S, and Cundiff S T. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science,288(5466):635-639,2000.
    [37]You D, Jones R R, Bucksbaum P H, and Dykaar D R. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses. Opt. Lett.,18(4):290-292,1993.
    [38]Lin S H, Nomura Y, and Fujimura Y. Theory of multiphoton processes by the Fourier-expansion density matrix method. J. Chem. Phys.,92(5):2910-2916,1990.
    [39]Neuhauser R and Neusser H J. Alignment of gas phase molecules by dynamic Stark effect with coherent narrow-band ultraviolet laser pulses. J. Chem. Phys., 103(13):5362-5365, 1995.
    [40]Ghosh B, Majumdar A S, and Nayak N. Control of atomic entanglement by the dynamic Stark effect.J. Phys. B:At. Mol. Opt. Phys.,41(6):065503-1-7,2008.
    [41]Stalnaker J E, Budker D, Freedman S J, Guzman J S, Rochester S M, and Yashchuk V V. Dynamic Stark effect and forbidden-transition spectral line shapes. Phys. Rev. A, 73(4):043416-1-13,2006.
    [42]Gonzalez-Vazquez J, Sola I R, and Santamaria J. Optical control of the singlet-triplet transition in Rb2. J. Chem. Phys.,125(12):124315-1-9,2006.
    [43]Choi H, Son W J, Shin S, Chang B Y, and Sola I R. Selective photodissociation in diatomic molecules by dynamical Stark-shift control. J. Chem. Phys.,128(10):104315-1-8,2008.
    [44]Stapelfeldt H, Constant E, and Corkum P B. Wave packet structure and dynamics mea-sured by Coulomb explosion. Phys. Rev. Lett.,74(19):3780-3783,1995.
    [45]Brixner T, Damrauer N H, Niklaus P, and Gerber G. Photoselective adaptive femtosecond quantum control in the liquid phase. Nature,414(1):57-60,2001.
    [46]Pearson B J, White J L, Weinacht T C, and Bucksbaum P H. Coherent control using adaptive learning algorithms. Phys. Rev. A,63(6):063412-1-12,2001.
    [47]Meshulach D and Silberberg Y. Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses. Phys. Rev. A,60(2):1287-1292,1999.
    [48]Lozovoy V V, Pastirk I, Walowicz K A, and Dantus M. Multiphoton intrapulse interference. II. control of two-and three-photon laser induced fluorescence with shaped pulses. J. Chem. Phys.,118(7):3187-3196,2003.
    [49]Sussman B J, Underwood J G, Lausten R, Ivanov M Y, and Stolow A. Quantum control via the dynamic stark effect:Application to switched rotational wave packets and molecular axis alignment. Phys. Rev. A,73(5):053403-1-14,2006.
    [50]Bergmann K, Theuer H, and Shore B W. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys.,70(3):1003-1025,1998.
    [51]Garraway B M and Suominen K A. Adiabatic passage by light-induced potentials in molecules. Phys. Rev. Lett.,80(5):932-935,1998.
    [52]Chang B Y, Sola I R, Malinovsky V S, and Santamaria J. Selective excitation of diatomic molecules by chirped laser pulses. J. Chem. Phys.,113(12):4901-4911,2000.
    [53]Chang B Y, Kim B, and Sola I R. Electronic and vibrational population transfer in di-atomic molecules as a function of chirp for different pulse bandwidths. J. Chem. Phys., 118(14):6270-6279,2003.
    [54]Yatsenko L P, Shore B W, Halfmann T, and Bergmann K. Source of metastable h(2s) atoms using the stark chirped rapid-adiabatic-passage technique. Phys. Rev. A,60(60):R4237-R4240,1999.
    [55]Yatsenko L P, Vitanov N V, Shore B W, Rickes T, and Bergmann K. Creation of coherent superpositions using stark chirped rapid adiabatic passage. Opt. Commun.,204(1-6):413-423,2002.
    [56]Rickes T, Yatsenko L P, Steuerwald S, Halfmann T, Shore B W, Vitanov N V, and Bergmann K. Efficient adiabatic population transfer by two-photon excitation assisted by a laser-induced stark shift. J. Chem. Phys.,113(2):534-546,2000.
    [57]Rangelov A A, Vitanov N V, Yatsenko L P, Shore B W, Halfmann T, and Bergmann K. Stark-shift-chirped rapid-adiabatic-passage technique among three states. Phys. Rev. A, 72(5):053403-1-12,2005.
    [58]Shu C C, Yuan K J, Han Y C, Hu W H, and Cong S L. Steering population transfer of a five-level polar nak molecule. Chem. Phys.,344(1-2):121-127,2008.
    [59]Magnier S, Aubert-Frecon M, and Millie P. Potential energies, permanent and transition dipole moments for numerous electronic excited states of nak. J. Mol. Spectrosc.,200:96-103,1999.
    [60]Yuan K J, Sun Z, Cong S L, Wang S M, Yu J, and Lou N. Steering wave packet dynamics and population transfer between electronic states of the Na2 molecule by femtosecond laser pulses. Chem. Phys.,316(1-3):245-250,2005.
    [61]Yuan K J, Wang S M, Sun Z, Cong S L, and Lou N. Selective vibrational popualtion transfer between electronic states of the Na2 molecule wity ultrashort laser pulses. Chem. Phys.,326(2-3):605-610,2006.
    [62]Rubahn H G and K Bergmann K. The effect of laser-induced vibrational bond stretching in atom-nolecule collisions. Annu. Rev. Phys. Chem.,41:735-773,1990.
    [63]Ekert A and Jozsa R. Quantum computation and shor's factoring algorithm. Rev. Mod. Phys.,68(3):733-753,1996.
    [64]Weitz M, Young B C, and Chu S. Atomic interferometer based on adiabatic population transfer. Phys. Rev. Lett.,73(19):2563-2566,1994.
    [65]Malinovsky V S and Sola I R. Quantum phase control of entanglement. Phys. Rev. Lett., 93(19):190502-1-4,2004.
    [66]Cubel T, Teo B K, S Malinovsky V, Guest J R, Reinhard A, Knuffman B, Berman P R, and Raithel G. Coherent population transfer of ground-state atoms into rydberg states. Phys. Rev. A,72(2):023405-1-4,2005.
    [67]Clow S D, Trallero-Herrero C, Bergeman T, and Weinacht T. Strong field multiphoton inversion of a three-level system using shaped ultrafast laser pulses. Phys. Rev. Lett., 100(23):233603-1-4,2008.
    [68]Shapiro E A, Peer A, Ye J, and Shapiro M. Piecewise adiabatic population transfer in a molecule via a wave packet. Phys. Rev. Lett.,101(2):233603-1-4,2008.
    [69]Gaubatz U, Rudecki P, Schiemann S, and Bergmann K. Population transfer between molecular vibrational levels by stimulated raman scattering with partially overlapping laser fields. a new concept and experimental results. J. Chem. Phys.,92(2):5363-1-4,1990.
    [70]Goto H and Ichimura K. Stimulated raman adiabatic passage with small two-photon detunings and its geometrical description. Phys. Lett. A,372(9):1535-1540,2008.
    [71]Vitanov N V and Shore B W. Stimulated raman adiabatic passage in a two-state system. Phys. Rev. A,73(5):0534025-1-4,2006.
    [72]Drummond P D, K V Kheruntsyan, Heinzen D J, and Wynar R H. Stimulated raman adiabatic passage from an atomic to a molecular bose-einstein condensate. Phys. Rev. A, 65(5):063619-1-4,2002.
    [73]Grafe S, Kiefer W, and Engel V. On the limitations of adiabatic population transfer between molecular electronic states induced by intense femtosecond laser pulses. J. Chem. Phys.,127(13):134306-1-6,2007.
    [74]Chang B Y and Sola I R. Raman excitation of rovibrational coherent and incoherent states via adiabatic passage assisted by dynamic stark effect. Chem. Phys.,338(2-5):228-236, 2007.
    [75]Marquetand P and Engel V. Local control theory applied to molecular photoassociation. J. Chem. Phys.,127(8):084115-1-6,2007.
    [76]H. Partridge and S. R. Langhoff. Theoretical treatment of the X1σ+, A1σ+ and B1π of LiH. J. Chem. Phys.,74(4):2361-2371,1981.
    [77]Shu C C, Yuan K J, Hu W H, and Cong S L. Resonance-enhanced above-threshold ionization of polar molecules induced by ultrashort laser pulses. J. Phys. B:At. Mol. Opt. Phys., 41(6):065602-1-7,2008.
    [78]Yang W F, Gong S Q, Li R X, and Xu Z Z. Coherent population accumulations of multi-photon transitions induced by an ultrashort pulse train in polar molecules. Phys. Rev. A, 74(1):013407-1-7,2006.
    [79]Salomon J, Dion C M, and Turinici G. Optimal molecular alignment and orientation through rotational ladder climbing. J. Chem. Phys.,123(4):144310-1-7,2005.
    [80]Cong S L, Han K L, and Lou N Q. Theory for determining alignment parameters of symmetric top molecule using (n+1) lif. J. Chem. Phys.,113(21):9429-9442,2000.
    [81]Machholm M and Henriksen N E. Two-pulse laser control for selective photofragment orientation. J. Chem. Phys., 111(7):3051-3057,1999.
    [82]Ohmura H and Nakanaga T. Two-pulse laser control for selective photofragment orienta-tion. J. Chem. Phys.,120(11):5176-5180,1999.
    [83]Zhdanov D V and Zadkov V N. Laser-assisted control of molecular orientation at high temperatures. Phys. Rev. A,77(1):011401(R)-1-4,2008.
    [84]Guerin S, Yatsenko L P, Jauslin H R, Faucher O, and Lavorel B. Orientation of polar molecules by laser induced adiabatic passage. Phys. Rev. A,88(23):233601-1-4,2002.
    [85]Friedrich B and Herschbach D. Enhanced orientation of polar molecules by combined electrostatic and nonresonant induced dipole forces. J. Chem. Phys.,111(14):6157-6160, 1999.
    [86]Cai L, Marango J, and Friedrich B. Time-dependent alignment and orientation of molecules in combined electrostatic and pulsed nonresonant laser fields. Phys. Rev. Lett.,86(5):775-778,2001.
    [87]Sakai H, Minemoto S. Nanjo H, Tanji H, and T Suzuki. Controlling the orientation of polar molecules with combined electrostatic and pulsed, nonresonant laser fields. Phys. Rev. Lett.,90(8):083001-1-4,2003.
    [88]Tanji H, Minemoto S, and Sakai H. Three-dimensional molecular orientation with combined electrostatic and elliptically polarized laser fields. Phys. Rev. A,72(6):063401-1-4,2005.
    [89]Dion C M, Keller A, and O Atabek. Orienting molecules using half-cycle pulses. Eur. phys. J. D,14(2):249-255,2001.
    [90]Shu C C, Yuan K J, Hu W H, Yang J, and Cong S L. Controlling the orientation of polar molecules in a rovibrationally selective manner with an infrared laser pulse and a delayed half-cycle pulse. Phys. Rev. A,78(5):055401-1-4,2008.
    [91]Goban A, Minemoto S, and Sakai H. Laser-field-free molecular orientation. Phys. Rev. Lett.,101(1):013001-1-4,2008.
    [92]Ghafur O, Rouzee A, Gijsbertsen A, Siu W K, Stolte S, and Vrakking M J J. Impulsive orientation and alignment of quantum-state-selected NO molecules. Nat. Phys.,5:289-293, 2009.
    [93]De S. Znakovskaya I, Ray D, Anis F, Johnson N G, Bocharova I A, Magrakvelidze M, Esry B D, Cocke C L, Litvinyuk I V, and Kling M F. Field-free orientation of CO molecules by femtosecond two-color laser fields. Phys. Rev. Lett.,103(15):153002-1-4,2009.
    [94]Shu C C, Yuan K J, Hu W H, and Cong S L. Carrier-envelope phase-dependent field-free molecular orientation. Phys. Rev. A,80(1):011401(R)-1-4,2009.
    [95]Merawa M, Begue D, and Dargelos A. Ab initio calculation of the polarizability for the ground state X1σ+ and the first low-lying excited states a3σ+ and a1σ+ of LiH and NaH. J. Phys. Chem. A,107(45):9628-9633,2003.
    [96]Averbukh I S and Arvieu R. Angular focusing, squeezing, and rainbow formation in a strongly driven quantum rotor. Phys. Rev. Lett,87(16):163601-1-4,2001.
    [97]Henriksen N E. Molecular alignment and orientation in short pulse laser fields. Chem. Phys. Lett.,312(2-4):196-202,1999.
    [98]Daems D, Guerin S, Sugny D, and Jauslin H R. Efficient and long-lived field-free orientation of molecules by a single hybrid short pulse. Phys. Rev. Lett.,94(15):153003-1-4,2005.
    [99]Sugny D, Keller A, and D Daems Atabek 0, Dion C M, Guerin S, and Jauslin H R. Reaching optimally oriented molecular states by laser kicks. Phys. Rev. A,69(3):033402-1-4,2004.
    [100]Hu W H, Shu C C, Han Y C, Yuan K J, and Cong S L. Enhancement of molecular field-free orientation by utilizing rovibrational excitation. Chem. Phys. Lett.,474(1-3):222-226, 2009.
    [101]Leibscher M, Averbukh I S, and Rabitz H. Molecular alignment by trains of short laser pulses. Phys. Rev. Lett.,90(21):213001-1-4,2003.
    [102]Paulus G G, Lindner F, Walther H, Baltuska A, Goulielmakis E, Lezius M, and Krausz F. Measurement of the phase of few-cycle laser pulses. Phys. Rev. Lett.,91(25):253004-1-4, 2003.
    [103]Cheung F. Molecular physics:A few kicks in the right direction. Nature China, doi:10.1038/nchina.2009.159:www.nature.com/nchina/2009/090805/full/nchina.2009.159.html, 2009.
    [104]Weck P F, Kirby K, and Stancil P C. Ab initio configuration interaction study of the low-lying 1σ electronic states of LiCl. J. Chem. Phys.,120(9):4216-4222,2004.
    [105]Yang W, Song X, Gong S, Cheng Y, and Xu Z. Carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium. Phys. Rev. Lett., 99(13):133602-1-4,2007.
    [106]Yang W, Song X, Zhang C, and Xu Z. Carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium. J. Phys. B:At. Mol. Opt. Phys.,42(17):175601-1-5,2007.
    [107]Wu C Y, Zeng G P, Gao Y N, Xu N, Peng L Y, Jiang H B, and Gong Q H. Controlling molec-ular rotational population by wave-packet interference. J. Chem. Phys.,130(23):231102-1-4,2009.
    [108]Hasegawa H and Ohshima Y. Quantum state reconstruction of a rotational wave packet created by a nonresonant intense femtosecond laser field. Phys. Rev. Lett.,101(5):053002-1-4,2008.
    [109]Meijer A S, Zhang Y, Parker D H, van der Zande W J, Gijsbertsen A, and Vrakking M J J. Controlling rotational state distributions using two-pulse stimulated raman excitation. Phys. Rev. A,76(2):023411-1-9,2007.
    [110]Ferguson B and Zhang X C. Materials for terahertz science and technology. Nat. Mater., 1:26-33,2002.
    [111]Sell A, Scheu, Leitenstorfer A, and Huber R. Field-resolved detection of phase-locked infrared transients from a compact Er:fiber system tunable between 55 and 107 THz. Appl. Phys. Lett.,93(25):251107-1-3,2008.
    [112]Leinβ S, Kampfrath T, Volkmann K V, Wolf M, Steiner J T, Kira M, Koch S W, Leit-enstorfer A, and Huber R. Terahertz coherent control of optically dark paraexcitons in Cu2O. Phys. Rev. Lett.,101(24):246401-1-4,2008.
    [113]Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, and Cundiff S T. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science,288:635-639,2000.
    [114]Kreβ M, Lofler T, Thomson M D, Doner R, Gimpel H, Zrost K, Ergler T, Moshammer R, Morgner U, Ullrich J, and Roskos H G. Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy.2:327-331,2006.
    [115]Chelkowski S, Bandrauk A D, and Apolonski A. Measurement of the carrier-envelope phase of few-cycle laser pulses by use of asymmetric photoionization. Opt. Lett.,29(13):1557-1559,2004.
    [116]Haworth C A, Chipperfield L E, Robinson J S, Knight P L, Marangos J P, and Tish J W G. Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval.3:52-57, 2007.
    [117]Wittmann T, Horvath B, Helml W, Schazel M G, Gu X, Cavalieri A L, Paulus G G, and Kienberger R. Single-shot carrier-envelope phase measurement of few-cycle laser pulses. 5:357-362,2009.
    [118]Shu C C, Yuan K J, Hu W H, and Cong S L. Determination of the phase of terahertz few-cycle laser pulses. Opt. Lett.,34(20):3190-3192,2009.
    [119]Nevo I Holmegaard L, NielsenJ H and Stapelfeldt H. Laser-induced alignment and ori-entation of quantum-state-selected large molecules. Phys. Rev. Lett.,102(2):023001-1-4, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700