寒冷地区住宅建筑物综合热惰性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界环境和能源问题的日益严重,节约能源保护环境已经成为各国政府的重要工作之一。在所有能源消耗中,建筑能耗已经占到世界总能耗的1/5。在中国,建筑用能已经达到全国能源消费总量的1/4。而采用集中供热的北方城镇,其采暖能耗占城镇建筑能耗的40%左右,为建筑能源消耗的最大组成部分。对于目前现有的许多集中供热系统都没有采用先进的调节手段,只能依据室外气温的变化依靠经验来进行调节,所以普遍存在能源浪费的问题。在供热调节过程中,除了要考虑室外气温,还应结合供热管网的热惰性和建筑物的综合热惰性进行综合考虑。
     本文主要针对寒冷地区住宅建筑物的综合热惰性进行研究。通过对实际住宅建筑室内环境温度和围护结构的温度进行测量,研究了不同朝向房间内壁温度及室内温度在采暖期和非采暖期内的变化规律。通过建造住宅建筑的缩比模型进行实验,研究了不同窗墙比、围护结构保温、室内人员活动以及室内家具对建筑物综合热惰性的影响。并利用eQUEST软件以实测建筑为研究对象建立模型,分别就采暖期内无任何采暖设备、散热器采暖情况下的室内温度进行模拟并进行了比较分析,阐述各因素对建筑物综合热惰性的影响。以延迟时间和衰减倍数两个热惰性参数的变化为依据分析总结了寒冷地区住宅建筑综合热惰性的特点。
     研究结果表明,建筑物的综合热惰性受到建筑物的围护结构材料、朝向、外窗墙比等各种因素的影响。其中,寒冷地区住宅建筑房间的内壁温度波动相对于室外温度延迟时间普遍在2小时左右,衰减系数在0.2左右。实验研究结果表明,在不考虑太阳辐射的影响时,房间内是否有家具对室内温度变化的影响较大,其次是人员设备散热,再次是窗墙比的大小。
Energy saving and environment protection become one of the most important tasks for the governments around the world, as the problem of energy and environment become more and more serious. Building energy consumption accounts for 1/5 of the total energy consumption of the world, and which is the 1/4 of the country’s total energy in China. The centralized space heating energy consumption of Northern China occupies a proportion of about 40% of urban building energy consumption, which is a large part of building energy consumption. There is the problem of energy waste of centralized heating, since there are no advanced controlling methods for many centralized heating systems, the adjustments are made manually and entirely depend on experience according to weather condition without considering the effect of other factors. Not only outdoor weather temperature but also the thermal inertia of pipe network and the integrated thermal inertia of buildings should be taken into account during the adjusting process.
     This dissertation mainly research on the integrated thermal inertia of residential buildings in Cold Region of China. Through indoor temperature and envelope surface temperature measurement, the performance characteristics of different orientation during heating period and without heating period were analyzed. The influence to integrated thermal inertia was researched with different area ratio of window to wall, envelope insulation, occupancy activity and furniture in the small scale building model experiment. Indoor temperature of residential building model was simulated and compared in eQUEST software corresponding to occasion without any heating equipments, occasion with water heaters. All influence factors on integrated thermal inertia of buildings were analyzed and generalized. The characteristics of integrated thermal inertia of the residential buildings were summarized in terms of time lag and decrement factor by the general comparison and analysis of the simulation and experiment results.
     The research results indicate that the integrated thermal inertia of residential buildings is related to the envelope materials of buildings, orientation, area ratio of window to wall and other factors. The time lag between the indoor temperatures and the outdoor air temperatures is about 2 hours, and the decrement factor is about 0.2 of residential building in Cold Region. The experiment results show that without considering the influence of solar radiation, the furniture in the room play the most important role to the indoor temperature of the residential building; the second factor is the heat emission of human activities and devices in the rooms; and then it is the area ratio of window to wall of building.
引文
[1] British Petroleum (BP). BP Statistical Review of World Energy 2010 [EB/OL]. http://www.bp.com/statisticalreview, 2010-07-08.
    [2] U.S. Energy Information Administration. International Energy Outlook 2010 [EB/OL]. http://www.eia.gov/oiaf/ieo/index.html, 2010-07-08.
    [3]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2009[M].北京:中国建筑工业出版社,2009
    [4]中华人民共和国国家统计局.中国统计年鉴2009[M].北京:中国统计出版社,2010.
    [5]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2010[M].北京:中国建筑工业出版社,2010.
    [6]中华人民共和国住房和城乡建设部. JGJ26-2010,严寒和寒冷地区居住建筑节能设计标准[S].北京:中国建筑工业出版社,2010.
    [7] Yinping Zhang, Kunping Lin, Qunli Zhang, et al. Ideal Thermophysical Properties for Free-cooling (or heating) Buildings with Constant Thermal Physical Property Material [J]. Energy and Buildings, 2006, 38(10):1164-1170.
    [8] Yasuhiro Hamada, Makoto Nakamura, Kiyoshi Ochifuji, et al. Development of a Database of Low Energy Homes around the World and Analyses of Their Trends [J]. Renewable Energy, 2003, 28(2):321-328.
    [9]彭梦月,潘支明,徐永模等.欧洲可持续发展建筑的实践和启示[J].建设科技,2010,(9):68-71.
    [10]陈友明,王盛卫.建筑围护结构非稳定传热分析新方法[M].北京:科学出版社,2004:6-10.
    [11]樊洪明,曾建龙,简毅文等.围护结构三维导热数值仿真研究[J].建筑技术,2002,33(10):736-738.
    [12]郁文红.建筑节能的理论分析与应用研究[D].天津:天津大学,2004.
    [13]杨艳超,苏亚欣.复合墙体传热温度分布的数值模拟[J].能源与环境,2005,(4):21-24.
    [14]唐鸣放.围护结构传热系数动态分析[J].暖通空调,2005,35(7):1-3.
    [15]王海燕.复合墙体热工特性与能耗分析[D].黑龙江:哈尔滨工业大学,2007.
    [16]龚明启,冀兆良,白贵平.广州市自然通风类建筑围护结构内表面温度的计算与分析[J].暖通空调,2005,35(12):20-23.
    [17]许景峰.间歇采暖条件下建筑围护结构热工性能评价研究[D].重庆:重庆大学,2005.
    [18]王焱.围护结构与建筑热稳定性[J].工业建筑,2003,33(1):51-53.
    [19]杨艺,邓启红,时冰冰.建筑墙体的延时与削弱作用[J].建筑热能通风空调,2005,24(4):66-70.
    [20]孔凡红,郑茂余.新建建筑围护结构的热质耦合传递对建筑负荷的影响Ⅰ:冬季热负荷[J].热科学与技术,2009,8(2):146-150.
    [21]张竹慧.建筑透明围护结构的热工特性研究与能耗分析[D].西安:西安建筑科技大学,2010.
    [22]朱丽,熊伟丞等.热质墙体在我国的热适应性研究[J].建筑科学,2010,26(2):88-93.
    [23]王厚华,庄燕燕,吴伟伟等.几种复合墙体构造的热工性能数值分析[J].重庆大学学报,33(5):126-132.
    [24] Niccolo` Aste, Adriana Angelotti, Michela Buzzetti. The Influence of the External Walls Thermal Inertia on the Energy Performance of Well Insulated Buildings [J]. Energy and Buildings, 2009, 41(11): 1181-1187.
    [25] Koray Ulgen. Experimental and Theoretical Investigation of Effects of Wall’s Thermophysical on Time Lag and Decrement Factor [J]. Energy and Buildings, 2002, 34(3): 273-278.
    [26] H Asan. Numerical Computation of Time Lags and Decrement Factors for Different Building Materials [J]. Building and Environment, 2006, 41(5):615-620.
    [27] M Ozel, K Pihtili. Optimum Location and Distribution of Insulation Layers on Building Walls with Various Orientations [J]. Building and Environment, 2007, 42(8):3051-3059.
    [28] Matthew R Hall. Assessing the Environmental Performance of Stabilised Rammed Earth Walls Using a Climatic Simulation Chamber[J]. Building and Environment, 2007, 42(1): 139-145.
    [29]冉茂宇.封闭空间蓄热体对室内空气温湿度调节性能[J].华侨大学学报(自然科学版),2004,25(4):396-400.
    [30]王蕾.不同围护结构蓄热性能对空调启停时间的影响[D].太原:太原理工大学,2003.
    [31]陈滨,孙媛媛,刘静君等.蓄热对地板供暖住宅实际供热量的影响研究[J].暖通空调,2008,38(3):102-106.
    [32] Junli Zhou, Guoqiang Zhang, Yaolin Lin, et al. A New Virtual Sphere Method for Estimating the Role of Thermal Mass in Natural Ventilated Buildings [J] Energy and Buildings, 2011, 43(1):75-81.
    [33] Jose′L Ferna′ndez, Miguel A Porta-Ga′ndara, Norberto Chargoy. Rapid on-site Evaluation of Thermal Comfort through Heat Capacity in Buildings [J]. Energy and Buildings, 2005, 37(12):1205–1211.
    [34] Jimmy Yam, Yuguo Li, Zuohuan Zheng. Nonlinear Coupling between Thermal Mass and Natural Ventilation in Buildings [J]. International Journal of Heat and Mass Transfer, 2003, 46(7):1251-1264.
    [35] Baruch Givoni. Comfort, Climate Analysis and Building Design Guidelines [J]. Energy and Buildings, 1992, 18(1):11-23.
    [36] David Mwale Ogoli. Predicting Indoor Temperatures in Closed Buildings with High Thermal Mass [J]. Energy and buildings, 2003, 35(9):851-862.
    [37] V Cheng, E Ng, B. Givoni. Effect of Envelope Color and Thermal Mass on Indoor Temperatures in Hot Humid Climate [J]. Solar Energy, 2005, 78(6):528-534.
    [38] Yuguo Li, Pengcheng Xu. Thermal mass design in buildings-heavy or light [J]. International Journal of Ventilation, 2006, (5):143-149.
    [39] Katherine Gregory, Behdad Moghtaderi, Heber Sugo, et al. Effect of Thermal Mass on the Thermal Performance of Various Australian Residential Constructions Systems [J]. Energy and Buildings, 2008, 40(4): 459-465.
    [40] Atch Sreshthaputra. Building Design and Operation for Improving Thermal Comfort in Naturally Ventilated Buildings in a Hot-humid Climate [D]. Texas: Texas A&M University, 2003.
    [41] K A Antonopoulos, E. P. Koronaki. Effect of Indoor Mass on the Time Constant and Thermal Delay of Buildings [J]. International Journal of Energy Research, 2000, 24(5):391-402.
    [42] R J Duffin. A Passive Wall Design to Minimize Building Temperature Swings [J]. Solar Energy, 1984, 33(3/4):337-342.
    [43] C A Balaras. The Role of Thermal Mass on the Cooling Load of Buildings. an Overview of Computational Methods [J]. Energy and Buildings, 1996, 24:1-10.
    [44]同济大学《土木建筑工程辞典》编写组.名词解释[J].建筑技术,1981,(10):62-63.
    [45]中华人民共和国建设部. GB50176-93民用建筑热工设计规范[S].北京:中国计划出版社,1999.
    [46] B H巴格斯罗夫斯基.建筑热物理学[M].北京:中国建筑工业出版社,1988.
    [47] B Givoni. Man, Climate and Architecture [M]. London: Applied Science Publishers, 1976.
    [48] DBJT03-22-2005. 05系列建筑标准设计图集[S].北京:中国建筑工业出版社,2005.
    [49]张洪济.热传导[M].北京:高等教育出版社,1992.
    [50] Davis M G. Current Methods to Handle Wall Conduction and Room Internal Heat Transfer [J]. ASHARE Transactions, 1999, 105(2): 142-150.
    [51]彦启森,赵庆珠.建筑热过程[M].北京:中国建筑工业出版社,1986.
    [52]朱颖心.建筑环境学(第二版)[M].北京:中国建筑工业出版社,2005.
    [53] Jeffrey D Spitler, Daniel E Fisher. Development of Periodic Response Factors for Use with the Radiant Time Series Method [J]. ASHRAE Transactions, 1999, 105(2):491-502.
    [54] D G Stephenson, G P Mitlas. Calculation of Heat Conduction Transfer Function for Multilayer Slabs [J]. ASHARE Transactions, 1971, 77:117-126.
    [55] K A Antonopoulos, E P Koronaki. On the Dynamic Thermal Behaviour of Indoor Spaces [J]. Applied Thermal Engineering, 2001, 21(9): 929-940.
    [56] Victor Paschkis, H D Baker. A Method for Determining Unsteady-state Heat Transfer by Means of an Electrical Analogy [J]. Transactions of the American Society of Mechanical Engineers, 1942, 64(4):105-112.
    [57]陈启高.建筑热物理基础[M].西安:西安交通大学出版社,1991.
    [58] T A马克斯,E N莫里斯.建筑物·气候·能量[M].北京:中国建筑工业出版社,1990.
    [59]中国气象局气象信息中心气象资料室,清华大学建筑技术科学系.中国建筑热环境分析专用气象数据集[M].北京:中国建筑工业出版社,2005.
    [60] ASHRAE. ASHRAE Handbook Fundamentals [M]. Atlanta: America Society of Heating, Refrigerating and Air-conditioning Engineers Inc, 1993.
    [61]简毅文,江亿.住宅室内发热状况调查[J].太阳能学报,2006,27 (2):159-163.
    [62]中华人民共和国住房和城乡建设部. JGJ/T l51-2008建筑门窗玻璃幕墙热工计算规程[S].北京:中国建筑工业出版社,2009.
    [63]佘启元.个体防护装备技术与检测方法[M].广州:华南理工大学出版社,2006.
    [64]龙恩深.建筑能耗基因理论研究[D].重庆:重庆大学,2005.
    [65]赵荣义,范存养,薛殿华等.空气调节[M].北京:中国建筑工业出版社,1994.
    [66] J Van Der Maas, E Maldonado. A New Thermal Inertia Model Based on Effusivity [J]. International Journal of Solar Energy, 1997, 19:131-160.
    [67] Milo E Hoffman, Moshe Feldman. Calculation of Thermal Response of Buildings by the Total Thermal Time Constant Method [J]. Building and Environment, 1981, 16(2):71-85.
    [68] J Campbell. Calculation of Heat Requirements with Intermittent Heating [J]. ASHRAE Transactions, 1990, 96(1):120-123.
    [69] M G Davies. The Thermal Response of an Enclosure to Periodic Excitation: The CIBSE Approach [J]. Building and Environment, 1994, 29(2):217-235.
    [70] Peter Burberry. Mitchell's Practical Thermal Design in Buildings [M]. London: Batsford Academic and Educational Ltd., 1983.
    [71] The chartered institution of building services engineers. CIBSE Guide Vol.A [M]. London: Staples Printers St Albans, Ltd., 1988.
    [72]许艳,周军莉,张国强等.蓄热——一种低能耗技术的研究发展[J].建筑热能通风空调,2007,26(1):29-34.
    [73] Afif Hasan. Optimizing Insulation Thickness for Buildings Using Life Cycle Cost [J]. Applied Energy, 1999, 63(2):115-124.
    [74] M S Mohsen, B.A. Akash. Some Prospect of Energy Savings in Buildings [J]. Energy Conversion and Management, 2001, 42(11):1307-1315.
    [75] Kathleen Nelson. Formaldehyde Link to Cancer [J].The Lancet Oncology, 2003, 4(12): 714.
    [76] Xi Zhuge, Dai Shugui, Sun Yongmei. Studies on the DNA Strand Breakage As Biomarker of Exposure to Aldehyde Pollutants [J]. China Environmental Science, 2000, 20:441-444.
    [77] J Cyrys, J Heinrich, K Richter, et al. Sources and Concentrations of Indoor Nitrogen Dioxide in Hamburg (west Germany) and Erfurt (east Germany) [J]. The Science of the Total Environment, 2000, 250:51-62.
    [78] Meyer Kattan, Peter J Gergen, Peyton Eggleston, et al. Health Effects of Indoor Nitrogen Dioxide and Passive Smoking on Urban Asthmatic Children[J]. Journal of Allergy and Clinical Immunology, 2007, 120(3):618-624.
    [79] Shun Cheng Lee, Wai-Ming Li, Chio-Hang Ao. Investigation of Indoor Air Quality at Residential Homes in Hong Kong-case Study [J]. Atmospheric Environment, 2002, 36:225-237.
    [80] Corsi, R L, Chiang, C Y. The Effect of Vacuuming on Indoor Air Particulate matter[C]// Proceeding of A&WMA’s 93rd Annual Conference and Exhibition on Indoor Air Quality Issues in Educational/Public/Federal Facilitie. Salt Lake City, UT, USA, 2000.
    [81] Sakai K, Norback D, Mi Y,et al. A Comparison of Indoor Air Pollutants in Japan and Sweden Formaldehyde, Nitrogen Dioxide,and Chlorinated Volatile Organic Compounds[J]. Environmental Research, 2004, 94:75-85.
    [82]刘鑫.城市居民家具消费心理研究[D].南京:南京林业大学,2009.
    [83]吴智慧.室内与家具设计:家具设计[M].北京:中国林业出版社,2005.
    [84]国家质量技术监督局. GB/T18107-2000,红木[S].北京:中国建材工业出版社,2000.
    [85]徐伟.现代沙发结构与工艺研究[D].南京:南京林业大学,2006.
    [86]简毅文,江亿.北京住宅房间内热源逐时发热状况的调查分析[J].暖通空调2006, 36(2):33-37.
    [87]王丰.相似理论及其在传热学中的应用[M].北京:高等教育出版社,1990.
    [88]左东启.相似理论20世纪的演进和21世纪的展望[J].水利水电科技进展,1997,17(2):10-15.
    [89]阳琴.西龙池水电站地下主厂房通风模型试验与数值模拟研究[D].重庆:重庆大学,2006.
    [90]陈群,任建勋,陈泽敬等.室内空气流动过程的模型实验研究[J].清华大学学报(自然科学版),2006,46(11):1933-1936.
    [91]吴志勇.住宅通风效果评价方法[D].西安:西安建筑科技大学,2009.
    [92]张腾飞,张剑,王树刚. VRF空调室外机换热相似模型的研究[J].暖通空调,2010, 40(3):117-120.
    [93] H Xue, S K Chou, X Q Zhong. Thermal Environment in a Confined Space of High-rise Building with Split Air Conditioning System [J]. Building and Environment, 2004, 39(7):817-823.
    [94] Stephen R Livermore, Andrew W Woods. Natural Ventilation of a Building with Heating at Multiple Levels [J]. Building and Environment, 2007, 42(3):1417-1430.
    [95]张靖周.高等传热学[M].北京:科学出版社,2009.
    [96]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998.
    [97]田胜元,萧日嵘.实验设计与数据处理[M].北京:中国建筑工业出版社,1988.
    [98]燕达,谢晓娜,宋芳婷等.建筑环境设计模拟分析软件DesT第1讲建筑模拟技术与DesT发展简介[J].暖通空调,2004,34(7):48-56.
    [99]李骥,邹瑜,魏峥等.建筑能耗模拟软件的特点及应用中存在的问题[J].建筑科学,2010,26(2):25-28.
    [100]吕政.建筑围护能耗的计算机仿真设计介绍[J].制冷空调与电力机械,2006,27(6):30-34.
    [101] Crawley D B, Lawrie L K, W inkeimann F C, et al. EnergyPlus: Creating a New-generation Building Energy Simulation Program [J]. Energy and Buildings, 2001, 33(4):319-331.
    [102]龙恩深,马校飞,范亚明等. DOE-2在住宅建筑能耗分析中存在的问题探讨[J].暖通空调,2005,35(5):40-42.
    [103]吴伯谦,王彬,袁旭东.模拟仿真软件在HVAC领域中的应用[J].制冷与空调,2006,6(4):5-9.
    [104]中国建筑科学研究院. JGJ26-86民用建筑节能设计标准(采暖居住建筑部分)[S].北京:中国建筑工业出版社,1986.
    [105]中国建筑科学研究院. JGJ26-95民用建筑节能设计标准(采暖居住建筑部分)[S].北京:中国建筑工业出版社,1996.
    [106]张神树,高辉.德国低\零能耗建筑实例解析[M].北京:中国建筑工业出版社,2007.
    [107]赵沛楠.来自德国的“被动房”[J].中国投资,2009,(6):82-84.
    [108]张晴原,Joe Huang.中国建筑用标准气象数据库[M].北京:机械工业出版社,2004.
    [109] Jing Zhao, Neng Zhu, and Yong Wu. Technology Line and Case Analysis of Heat Metering and Energy Efficiency Retrofit of Existing Residential Buildings in Northern Heating Areas of China [J]. Energy Policy, 2009, 37(6):2106-2112.
    [110]张峰,郑庆红.窗墙面积比对建筑能耗的影响[J].广西节能,2007,(1):24-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700