地下水源热泵影响下的沈阳城区地下水系统数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源问题日益突出,新型能源技术受到普遍关注,特别是地下水源热泵技术作为地热资源可持续利用的新方法,在全国各城市都竞相开发,但是由于地下水源热泵技术属于新兴技术,并且涉及到能源、水文地质、水资源、数学等多领域,致使地下水源热泵技术在应用中只根据实践经验判断热贯通等问题,相关理论指导研究进展较慢。本文针对此问题,结合沈阳市地下水源热泵实际应用情况,通过对沈阳城区地下水系统实际监测和数值模拟分析,初步进行了沈阳城区水文地质、地下水动力场、地下水温度场的模拟分析,并且探讨了地下水源热泵对水质的影响,为相关研究提供理论依据和实践参考。本文的研究结果如下:
     (1)沈阳城区水文地质模型
     本文通过GMS软件,对大量地质数据进行分析,构建了沈阳城区地质三维可视化模型。根据沈阳实际情况、研究需要和相关资料分析,将地下水含水层Q。和Q。概化为一个含水层,通过软件模拟分析确定了沈阳城区绝大部分地区地下水埋深均在10m以上、浑河以北大部分区域上更新统底板以上含水层厚度在20-40m之间。计算了研究区域各个分区的地下水渗透系数等相关因素,分析计算了研究区的地下水补给水源。
     (2)地下水流动力场模型
     通过对研究区内水文地质模型的分析,依据地下水水流特征,结合研究区的水文地质条件,建立沈阳中心地区地下水流数学模型。运用Aqua3D软件进一步建立模拟模型,并对该模型进行识别和验证,分析了研究区地下水汇源项的组成。结果表明,浑河占沈阳地下水补给量的55.29%,是沈阳地下水补给的重要来源;整个市区内地下水位变化幅度在26-49m之间,地下水水位具有东高西低的特征。另外本文还探讨了枯水期与丰水期的地下水水位差异及其原因,并对2015年研究区的地下水位等作出科学分析和预测。
     (3)地下水温度场模型
     在区域地质模型分析和地下水流动力场模型分析的基础上,并运用Aqua3D软件建立了沈阳中心城区地下水温度场模拟模型,对该模型进行识别和验证,并对沈阳未来2015年的地下水水温进行科学分析预测。最后,本文对不同回灌井方式的地下水源热泵系统的热突破时间、热突破距离和用水量的关系应用数学统计软件做了初步探索分析,得出不同回灌方式下地下水源热泵的热贯通量性分析结果。
     (4)地下水源热泵影响下的水质分析
     7个不同监测点的水质状况统计分析结果表明,地下水源热泵的多年运行并没有对地下水水质产生不良影响。
New energy technologies have gained widespread attention and concern as energy issues become increasingly serious. Groundwater heat pump technology is a technology approach of sustainable use of low-temperature geothermal resources. At present, many cities are striving to develop new energies and new technologies. Several improvements and successes have been achieved in the application of groundwater heat pump. However, as a newly emerging technology and due to researches related to energy, hydrogeology, water resources, and mathematics, etc, problem like the heat through of water source heat pump can only be judged by practical experience in the application of groundwater heat pump technology. It also leads to the slow development of the study of relevant theoretical guidance and the lack of theoretical guidance for groundwater heat pump technology. Thus, this thesis carries out a preliminary study on this problem by selecting Shenyang city zone as the scope of the study. It hopes to offer a few commonplace remarks by way of introduction so that others may come up with valuable opinions and make contributions as well as provide references to researches in groundwater hydrodynamic, temperature, and thermal break in the future. The main contents are as follows.
     1. Geological model of Shenyang city
     Through large amounts of analyses of geological data by GMS software, this thesis establishes the 3-dimensional geological visualization model of Shenyang city and it summarizes groundwater aquifers Q3 and Q4 as one aquifer according to the actual conditions of Shenyang city and the study characteristics of this thesis. By analyzing related data, it finally figures out the underground water depth is 10meters of Shenyang city. UpperPleistoceneseries floor above isoline of aquifer thickness between 20 to 40 meters in north of River Hun of Shenyang city. The thesis also computes relevant factors like water permeability coefficient in each study area and the water supply of groundwater in study areas.
     2. Model of groundwater flow field
     By studying the results analysis of the hydrogeological model of the area, this thesis establishes the mathematical model. And establisheof the groundwater flow of centre district of Shenyang by using Aqua3D software. Then the model was identificated and verificated. Analysis of the research area of groundwater composed. As a result that River Hun is the major groundwater supply of Shenyang district, with a proportion of 55.29% in the total water supply. The groundwater level of the whole Shenyang city ranges from 26 to 49 meters and it shows a characteristic of higher in the east and lower in the west. The thesis analyzes the differences of groundwater levels and the reasons of wet periods and dry periods. It also makes a scientific analysis and prediction of the groundwater level of the study area in 2015.
     3. Groundwater temperature model
     On the basis of regional geological model analysis and groundwater flow field model analysis, the groundwater temperature mathematical model of Shenyang centre city district is established and a numerical simulation model is also established by using of Aqua3D software. The identification and verification to the model is then conducted along with the scientific prediction of the groundwater temperature of Shenyang district in the 2015. On the basis of that, it analyzes the relationship of thermal breakthrough time, distance and water consumption of groundwater source heat pump system under different recharge well methods by mathematics and statistics software and it finds the analysis outcome of heat transfixion quantity performance under different recharge well methods.
     4. Water quality analysis under the influences of groundwater source heat pump
     This thesis analyzes the conditions of 7 monitoring points show that, no harmful effects to the quality of groundwater happen during years'operation of groundwater source heat pumps.
引文
1.白利平,王金生.2004.GMS在临汾盆地地下水数值模拟中的应用.山西建筑,30(16):78-79.
    2.包晗.2007.地下水源热泵系统经济性分析与工程应用研究,大连理工大学.
    3.曹剑峰,等.2006.专门水文地质学.北京:地质出版社.
    4.陈东,谢继红.2006,热泵技术及其应用.北京:化学工业出版社,
    5.陈良海,吕吉华,吴邦信,冯春,章圣样,李树霞.2006.水源热泵技术在贵阳地区的应用及发展前景.贵州工业大学学报,6(35)32-35.
    6.陈雨孙.1986.地下水运动与资源评价.北京:中国建筑工业出版社.
    7.陈峰云,夏志华.2003.中国能源可持续利用的战略选择.国土与自然资源研究,(02):1-5.
    8.陈矣人,周春风,叶瑞芳.2002.关于地源水环热泵空调系统的设计的讨论.建筑热能通风空调,(3):10-12.
    9.陈兴华,刘光远.2001.节水节能的地热水供热新技术.建筑热能通风空调,(1):32-35.
    10.程向东,张昌,李明.2007.建筑中水源热泵设计应用问题,技术交流,(2):60-63.
    11.戴晓丽.2005.地源热泵空调系统的特性研究.湖南大学.
    12.狄育慧,焦育刚,张钊.2006.水源热泵在户式中央空调中的应用分析.制冷与空调,6(1):83-85.
    13.刁乃认,方肇洪.2004.地源热泵-建筑技能新技术.建筑热能通风空调,23(3):18-23.
    14.丁卫东,袁普滨.2002.水源热泵技术在供热空调工程中的应用.节能,(5):25-27.
    15.丁继红,周德亮,马生忠.2002.国外地下水模拟软件的发展现状与趋势.勘查科学技术,(1)37-42.
    16.冯晓腊,熊文林,胡涛等.2005.三维水士耦合模型在深基坑降水计算中的应用.岩石力学与工程学报,24(7):1196-1201.
    17.方勇.2007.水源热泵空调技术在西部独立小区应用研究.长安大学.
    18.傅允准,曹国海,李林,林豹,兰信颖,王丹.2004.冷冻水温度变化对空调供冷的影响分析及对策.沈阳建筑工程学院学报(自然科学版),(1):53-56.
    19.付峥嵘.2002.利用地下水的住宅中央空调系统的研究.湖南大学.
    20.龚宇烈,赵军,李新国,等.2001.地源热泵在美国工程应用及其发展.全国热泵和空调技术交流会议论文集,北京:中国建筑工业出版社:249-251.
    21.郭小波.2004.地下含水层储能和地下水源热泵系统中地下水回路与回灌技术现状.建筑热能通风空调,34(1):19-22.
    22.韩程辉,刘文生.2005.地下水模拟系统(GMS)与矿井防治水.矿业安全与环保,32(1):25-28.
    23.韩厚德,卢士勋:地下冷源在制冷空调工程中的应用研究,制冷学报,1997,02
    24.韩传梅,陈喜,武永霞.2007.深基坑降水工程试验及降水方案设计.地下水,29(6):40-46.
    25.郝治福,康绍忠.2006.地下水系统数值模拟的研究现状和发展趋势.水利水电科技进展,26(1):77-81.
    26.贺国平,张彤,赵月芬,等.2007,GMS数值建模方法研究综述.地下水,29(3):32-38.
    27.何晶,2004.地下水源热泵系统性能的实验研究,西安建筑科技大学.
    28.何远嘉,2011.北京地源热泵产业调查-热泵产业区域对话(四).供热制冷,(1).
    29.何满潮,乾增珍等.2005.深部地层储能技术与水源热泵联合应用工程实例.太阳能学报,1(26):23-27.
    30.何满潮,刘斌,姚磊华,et al.2002.地下热水回灌过程中渗透系数研究.吉林大学学报(地球科学版),32(4):374-377.
    31.虎维岳,李竞生.2003.地下水系统随机模拟与管理.北京:地质出版社.
    32.黄代英.2005.水源热泵空调系统应用分析及对地下水的影响.企业技术开发,4(24):15-17.
    33.蒋爽,李震,端木琳.2008.大连星海湾海水源热泵空调系统热扩散数值模拟研究.太阳能学报,29(07):832-836.
    34.金菊良,朱春龙,杨晓华.1998.水文地质模型参数估计的一种数值方法.长春科技大学学报,28(2):176-179.
    35.李洪斌,彭建国,陈晓,李珍贵,张国强.2006.水-水源热泵系统优化控制模型的建立与分析.建筑热能通风空调,3(25):3-7.
    36.李先瑞等.2000.水源热泵与未利用能.北京节能,(4):7-16.
    37.李树明.2006.住宅水源热泵规划设计.给排水设备,6:33-35.
    38.李颖.1998.水资源系统中地下水系统数学模型研究.世界地质,17(2):41-46.
    39.李苏浅,徐莉,朱海峰.2005.水冷式冷水机组冷凝温度控制法研究.制冷学报,26(4):59-62.
    40.李国敏,陈崇希.1996.地下水溶质运移三位有限元模拟软件的设计与应用.中国地质大学学报,(21):103-106.
    41.梁煦枫,王哲,曾永刚.2006.基于GMS的水文地质结构可视化研究-以天山北麓为例.地下水,(8):79-82.
    42.廖荣,丁跃元,刘立才,等.2010.水源热泵系统应用对地下水环境的影响.水资源保护,26(2)92-96.
    43.刘德或.2003.水源热泵系统的综合研究与工程应用,北方工业大学硕士论文.
    44.刘德或,高建岭,王晓纯.2003,水源热泵节能原理与系统设计,北方工业大学学报,1(15):59-63.
    45.刘雪玲,朱家玲,刘立伟.2009.含水储能地下温度场模拟.天津大学学报,42(10):929-933.
    46.刘正峰.2005.水文地质手册.北京:银声音像出版社.
    47.辽宁省水利厅.2006.辽宁省水资源.沈阳:辽宁科学技术出版社.
    48.柳庆武,吴冲龙,李绍虎.2003.基于钻孔资料的三维数字地层格架自动生成技术研究.石油实验地质,25(5):501-504.
    49.林学钰,廖资生,赵勇胜,等.2005.现代水文地质学[M].北京:地质出版社.
    50.林学钰,廖资生.2002.地下水资源的基本属性和我国水文地质科学的发展.地学前缘,9(3):94-96.
    51.林学钰,廖资生等.1995.地下水管理.北京:地质出版社.
    52.马捷,赵新颖,王锦程.2004.地下含水层储能的发展及意义,油田节能.3(15):20-26.
    53.马最良,等.1996.闭式环路水源热泵空调系统及其评价.通风除尘,(1):6-11.
    54.马荣生,孙志高.2003.地热资源及其在热泵供热中的应用.节能与环保,(7):25-27.
    55.马驰.2002.SIP和PCG2两种迭代法在地下水数值计算中的应用对比.西安科技学院学报,(22):59-62.
    56.张海涛,许光泉,李佩全,黄向菁,刘泽,胡友彪.2010.基于GMS的隔水层水文地质结构可视化分析.人民黄河.32(09):42-43.
    57.梅一,吴吉春.2008. FEMWATER模块下三维有限元网格的构建.工程勘察,(9):28-35.
    58.倪龙.2004.同井回灌地下水源热泵地下水运移数值模拟.哈尔滨工业大学博士论文.
    59.倪龙.封家平,马最良.2004.地下水源热泵的研究现状与进展.建筑热能通风空调,2(23):26-31.
    60.倪龙,马最良.2006.含水层参数对同井回灌地下水源热泵的影响.天津大学学报,39(2):229-234.
    61.倪龙,马最良.2006.同井回灌地下水源热泵地下水渗流理论研究.太阳能学报,27(12):1219-1224.
    62.倪龙,余延顺,姜益强,等.2010.李炳熙循环单井地下水多流态流动特性.南京理工大学学报,34(3):367-371.
    63.倪真,贾学斌.2005.水源热泵深井水循环系统的分析与研究.安装,(5):16-18.
    64.齐贺年.2008.水环热泵空调系统的应用研究,能源与环境.(1):42-44.
    65.孙纳正.1981.地下水流的数学模型和数值方法.北京:地质出版社.
    66.谭显辉,丁力行.2003.地下水源热泵中的地下水分析.制冷与空调,(4)11-14.
    67.覃荣高,高建国,臧小豹,高星刚,孙凤娟.2009.基于GMS基岩矿区地下水三维实体模型的构建.地下水,31(141):15-17.
    68.施雅风,曲耀光.1992.乌鲁木齐河流域水资源承载力及其合理利用.北京:科学出版社.
    69.万利华.2004.井回灌式水源热泵及其控制系统研究,华中科技大学硕士论文.
    70.王二英,刘伟.2006.水源热泵建设项目水资源论证中有关问题的探讨.南水北调与水利科技,5(4):56-58.
    71.王锦程,万曼影,马捷.2003.地下含水层储能技术的应用条件及其关键科学问题.能源研究与信息,4(19):229-235.
    72.王明育,马捷,郝振良.2005,地下含水层热储井位置选择和布置.成都工大学学报,32(1):12-16.
    73.王馨,赵新华,王瑞.2007.水源热泵和对井回灌技术用于地热水供暖工程.中国给水排水,10(23):59-61.
    74.王森,陈晨,张丽玲.2007,基于钻孔数据和GMS的地层三维建模与可视化的研究.工程建设与设计,32(1):11-15.
    75.王伟.2005.双级耦合热泵供暖系统在寒冷地区应用特性研究.哈尔滨工业大学.
    76.王宇航,陈友明,吴佳鸿,等.2004.地源热泵的研究与应用.建筑热能通风空调,23(4);30-35.
    77.王志毅.2006.水源热泵空调系统设计研究.浙江大学.
    78.王明育,马捷,郝振良.2005.地下含水层热储井位置选择和布置.成都理工大学学报(自然科学版),32(1):12-15.
    79.王锦程,万曼影,马捷.2003.地下含水层储能技术的应用条件及其关键科学问题.能源研究与信息,19(4):229-234.
    80.王刚.2004.瑞典区域供冷技术对中国的启示.建筑热能通风空调,23(3):24-29.
    81.魏文清,马长明,魏文炳.2006.地下水数值模拟的建模方法及应用.东北水利水电,(3):25-28.
    82.翁文斌,王忠静,赵建世.2004.现代水资源规划——理论、方法和技术.北京:清华大学出版社.
    83.谢汝铺.1999.我国水源热泵机组应用的现状与发展现代空调(第二辑).
    84.邬小波.2004.地下含水层储能和地下水源热泵系统中地下水回路与回灌技术现状.暖通空调,1(34):19-22.
    85.吴宜珍.2006.水源热泵在集中供应热水系统中的应用.中国给水排水,24(22):67-70.
    86.吴丽娟,朱能.2006.深浅井蓄热型水源热泵系统性能分析.技术交流,4(27):64-77.
    87.谢轶,苏小四,高淑琴.2006.基于GMS支持下的大庆地下水库区水文地质结构可视化模型.吉林大学学报:地球科学版,(增刊):51-54.
    88.徐乐昌.2002.地下水模拟常用软件介绍.铀矿冶,21(1):33-38.
    89.薛玉伟,李新国,赵军,朱强,黄金秋.2003.地下水水源热泵的水源问题研究.研究与探讨,(2):10-13.
    90.薛禹群,谢春红.2007.地下水数值模拟.北京:科学出版社,145-148.
    91.薛禹群,谢春红,李勤奋.1989.含水层储热能研究—上海储能试验数值模拟.地质学报,83(1):73-75.
    92.薛禹群,谢春红,张志辉,et al.1994三维非稳定流含水层储能的数值模拟研究.地质评论,40(1):74-81.
    93.薛禹群,谢春红.1999.面临21世纪的中国地下水模拟问题.水文地质工程地质,26(5):1-3.
    94.吴剑锋,朱学愚.2000.由MODFLOW浅谈地下水流数值模拟软件的发展趋势.工程勘察,(2):13-15.
    95.曲云霞,张林华,方肇洪,et al.2002.地下水源热泵及其设计方法.可再生能源,106(6):11-14.
    96.刁乃人,方兆洪,过增元.2002.地源热泵空调系统的研究开发与利用.节能与环保,(1): 23-26.
    97.夏民,王明育,万曼影,et al.2005.储能地下含水层两阶段流动换热模型分析.水动力学研究与进展A辑,20(3):363-367.
    98.雅贝尔.1985.地下水动力学.许涓铭等译.北京:地质出版社.
    99.杨琳.2004,审视地下水资源.瞭望新闻周刊,(5):17-18.
    100.杨结胤.2004.水源热泵与节能.上海节能,(5)23-25.
    101.杨绍利.2005.水源热泵空调系统的特点和应用.上海节能,(4)18-23.
    102.杨旭,黄家柱.2003.组件式GIS在地下水资源管理系统开发中的应用.水文,1(23):11-14.
    103.杨旭,杨树才,黄家柱.2004.基于组件式GIS的地下水动态管理系统设计与开发.地理与地理信息科学,1(20):47-51.
    104.于军,王晓梅,吴加和,等.2006.利用三维地震勘探资料在GMS平台下实现地层实体建模的方法研究.水文地质工程地质,(1):8-10.
    105.袁伟峰,赵军,朱强,马一太.2000.季节性含水层蓄能系统研究与发展的综述.制冷学报,(4):1-6.
    106.易新,陈建萍,刘宪英,王文,张素云.2002.地源水-水热泵冬夏冷暖联供实验研究.重庆建筑大学学报,(24):39-44.
    107.赵德君.2005.江汉平原地下水系统三维数值模拟.中国地质大学.
    108.赵峰.2005.地下水源热泵的水源水问题研究及能耗模拟.武汉科技大学.
    109.赵峰,邵林广,文远高.2005.水源热泵空调系统的水质处理技术.工业安全与环保,12(31):14-19.
    110.赵新颖,万曼影,马捷.2004.地下含水层储能及其对环境影响的评估.能源研究与利用,(1):51-54.
    111.郑萍,康侍民.2006.关于水源热泵技术的应用探讨.制冷与空调,(3):90-92.
    112.张平,李日运.1999.降水入渗补给地下水的影响因素.辽宁大学学报,(2)25-30.
    113.张群力,王晋.2003.地源热泵和地下水源热泵的研发现状及应用过程中的问题分析.流体机械,(5):50-55.
    114.张蔚榛.1983.地下水非稳定流计算及地下水资源评价.北京:科学出版社.
    115.张宏仁等编译.1975.地下水非稳定流理论的发展和应用.北京:地质出版社.
    116.张学真,2005.地下水人工补给研究现状与前瞻.地下水,1(27):34-48.
    117.张远东.2004.单(多)井抽灌对浅部地温场的影响研究.中国科学院地质与地球物理研究所.
    118.张元禧,施鑫源合编.1998.地下水水文学.北京:中国水利水电出版社.
    119.张志辉,吴吉春,薛禹群,等.1997.含水层热量输运中自然热对流和水一岩热交换作用的研究.工程地质学报,5(3):269-275.
    120.张敏.2008.基于GMS的地下水开采优化方案研究.南京师范大学硕士论文.
    121.周春风,刘建华,叶瑞芳.2004.集中地下水源热泵系统的水路连接方式.建筑热能通风空调,349):62-64.
    122.周新.2003.中国的能源消费和改善大气环境质量的战略分析.环境保护,(07):23-27.
    123.周念清,朱蓉,朱学愚.2000. MODFLOW在宿迁市地下水资源评价中的应用.水文地质工程地质,27(6):9-13.
    124.中国科学院可持续发展战略研究组.2007.2007中国可持续发展战略报告—水:治理与创新[M].北京:科学出版社.
    125.祝晓彬.2003.地下水模拟系统GMS软件.水文地质工程地质,(5):53-55.
    126. C. B.Andrew.1978. The Impact of the Use of Heat Pumps on Ground-Water Temperatures. Ground Water.,16 (6):437-440.
    127. Chen. C. S. and R eddell, D. L.1983. Temperature distribution around well during thermal in jection and agraphical techniquefor evaluating aquifer thermal properties. Water Resources R esearch, (2):351-363.
    128. C. Clauser.1997. Geothermal Energy Use in Germany-Status and Potential. Geothermics,26 (2): 203-220.
    129. Dwyer, T. E. and Eckstein. Y.1987. Finite-elements imulation of low-temperature heat pump coupled aquifer thermal energy storage. Journalof Hydrology, (95):19-38.
    130. Deng shiming.2000. A dynamic mathematical model of a direct expansion water-cooled air-conditioning plant. Building and Environment,35(7):603-613.
    131. E. C. Knipe, K. D. Raffery.1985. Corrosion in Low Temperature Geothermal Application. ASHRAE Transactions, (91):81-92.
    132. F. Kabus, P. Seibt.2000. Aquifer Thermal Energy Storage for the Berlin Reichstag Building New Seat of the German Parliament. Proceedings World Geothermal Congress,3611-3615.
    133. Guven. O, Melville. J, Gand Molz.1983. An analysis of the efect of surface heat exchange on thethermal behavior of an idealized aquifer thermal energy storage system. Water Resources R esearch,19(3):860-864.
    134. Gabrielsson. E.1988. Seasonal storage of thermal energy-Swedish experience. Journal of Solar Energy Engineering. Transactionsof th eA SME, (10):202-207.
    135. Gorelick S M.1983. A review of distributed groundwater management modeling methods. Water Resources Research,19(2):305-319.
    136. J. B. Singh, G. Foster, A. W. Hunt.2000. Representative Operating Problems of Commercial Ground-Source and Groundwater-Source Heat Pumps. ASHRAE Transactions,106 (2):561-568.
    137. J. W. Lund.1997. Direct Heat Utilization of Geothermal Resources. Renewable Energy,10 (3): 403-407.
    138. J. W. Lund.2003. Direct-Use of Geothermal Energy in the USA. Applied Energy,74 (1-2):33-40.
    139. H. O. Paksoy, O. Andersson, S. Abaci, et. al.2000. Heating and Cooling of a Hospital Using Solar Energy Coupled with Seasonal Thermal Energy Storage in an Aquifer. Renewable Energy,9 (1-2): 122-127.
    140. K. D. Rafferty.1998. Well-Pumping in Commercial Groundwater Heat Pump Systems. ASHRAE Transaction,104(1):927-931.
    141. K. D. Rafferty.2000. Design Issues in the Commercial Application of GSHP Systems in the U. S. GHC Bulletin,33(3):6-10.
    142. K. D. Rafferty.2000. Scalingin Geothmeral Heat Pump Systems. GHC Bulletin,33(3):11-16.
    143. L. Rybach, B. Sanner.2000. Ground-Source Heat Pump Systems the European Experience. Geo-Heat Center Quaryterly Bulletin,13 (3):16-20.
    144. L. Rybach, T.. Kohl.2003. The Geothermal Heat Pump Boom in Switzerland and Its Background. International Geothermal Conference,3(108):47-54.
    145. Laura K Lautz, Donald I Siegel.2006. Modeling surface and ground water mixing in the hyporheic zone using MODFLOW andMT3D. Advances in Water Resources,29 (11):1618-1633.
    146. Lindner W, Linder K, Karadi G.1988. Optimal groundwater management in two-aquifer systems. Water Resources Bulletin,24(1):27-33.
    147. Melville, J. G, Molz, F. J and Guven, O.1985. Field experiments in aquifer thermal energy storage Journal of Solar Energy Engineering. Transactionsof the ASME,1(107):322-325.
    148. Molz, F. J., Parr, A. D. and Andersen, P. F.1981. Thermal energy storage in a confined aquifer: second cycle.. Water Resources Research,17(.3),641-645.
    149. Mathey, B. D 1977. Evelopment and resorption of athermal disturban ceinaphreatic aquifer w ith natural convection. Journal of Hydrology, (34):315-333.
    150. Molz, F. J. Parr, A.. D, Andersen, P. F. and Lucido. V. D.1979. Thermal energy storage in a confined aquifer: experiment results. Water Resources Research, (6):1509-1514.
    151. Morshed J and Kaluarachichi J J.1998. Parameter estimation using artificial neural net work and genetic algorithm for free-product migration and recovery. Water Recourse Reseach,34(5): 1101-1113.
    152. O'Neill ZD, Spitler J D, Rees S J.2006. Performance analysis of standing column well ground heat exchanger systems. ASHRAE Transactions,112 (2):633-643.
    153. P. J. Hughes.1990. Survey of Water-Source Heat Pump System Configurations in Current Practice. ASHRAE Transactions,96 (1):1021-102.
    154. Palmer, C. D, Blowes, D. W, Frind, E. O. and Molson,1992. Thermal energy storage in anunc on fined aquiferl. field injection experiment. Water Resources Research,28(10):2845-2856.
    155. Shiqin Wang, Jingli Shao, Xianfang Song.2008. Application of MODFLOW and geographic information system to ground water flow simulation in North China Plain. China. Environmental Geology,55(7):1449-1462.
    156. T sang, C. F, Buscheck and Doughty. C.1981. Aquiferth ermalen ergys torage:anumeri calsi mulation of Auburn University field experiments. Water Resources Research,17(3):647-658.
    157. T. L. C, Tade. M. O, M. Kraetzl.2000. Robust nonlinear control of industrial evaporation systems. World scientific publishing, (10):35-38.
    158. W.. J. Schaetzle, C. E. Brett, D. M. Grubbs.1980. Heat Pump Integrated Community Energy System Using Annual Aquifer Energy Storage. ASHRAE Transactions,86(1):955-961.
    159. Y. Hamada, K. Marutani, M. Nakamura, et al.2002. Study on Underground Thermal Characteristics by Using Digital National Land Information and Its Application for Energy Utilization. Applied Energy,72(34):659-673.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700