住宅建筑保障室内(热)环境质量的低能耗策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十年来我国社会经济水平飞速发展,城乡居民的消费结构从“衣、食”逐步向“住、行”方向升级,生活从生存型向舒适型转变,对建筑面积、建筑室内环境舒适度等居住条件的要求逐渐提高,导致建筑能耗和资源消耗持续上升。如何在满足室内热环境质量的前提下,充分利用自然资源,采用各种气候适应性的调控技术,提出住宅建筑的低能耗策略(包括设计策略和运行策略),是建筑节能急待解决的难点之一。科学地寻找改善室内热环境的途径与方法,研究建筑气候适应性设计策略及调控技术,从而改善人民居住质量,降低建筑能耗以及促进人居环境的可持续发展,具有十分重要而深远的意义。
     对于建筑设计,能源消耗和室内环境热舒适性是两个相互冲突的基本因素,要想在维持室内热环境的同时减少建筑能耗就得对这些因素进行综合优化,而且是一个多目标优化问题。因此,论文首先确定了住宅全年建筑能耗和室内适应性舒适状况为性能评价目标,以人工神经网络建立的预测模型为适应度函数,在遗传算法NAGAⅡ的基础上建立了建筑设计方案的多目标优化模型。
     由于遗传算法在多目标优化过程中,针对每种设计方案都需要对住宅建筑全年能耗和室内舒适状况进行评价,若采用传统的动态模拟计算,在成千上万的迭代计算中,耗时将不可估量。因此,论文以神经网络方法构建的住宅建筑全年能耗和室内舒适状况的多目标快速预测模型为适应度评价函数。针对人工神经网络自身容易陷入局部最优解等问题进行了探讨,采用遗传算法对BP神经网络的连接权进行了优化,得到了更加准确实用的GA-BP神经网络用于住宅建筑全年能耗和室内舒适状况的预测;确定了GA-BP模型的输入神经元包括建筑平面布局、建筑方位、建筑体型系数等14个变量,模型的输出神经元参数为建筑单位面积的全年能耗和室内舒适状况2个。
     其次,论文依据大量的调研数据,基于自动控制“黑箱理论”提出的aPMV热舒适调节模型理论,确定了重庆地区住宅建筑可接受的舒适区域,解决了本文设计与调控策略研究的一个基础性问题,即在满足何种舒适情况下研究建筑低能耗策略,确定了室内适应性热舒适的限定范围。
     接着,以重庆市的典型建筑为例,论文以住宅建筑可接受舒适区域为限定条件,通过大量的模拟计算分析建筑在自然状态下各设计因素对室内适应性舒适状况的影响;同时分析了各设计因素对建筑全年能耗的影响,分别针对各单一的设计要素提出了节能设计建议。在此基础上,提供了144组模拟数据用于GA-BP多目标快速预测模型的训练与测试,训练与测试数据表明该模型能够较好的预测住宅建筑的能耗和室内舒适状况,有一定的应用价值。
     将训练好的GA-BP多目标快速预测模型作为建筑设计方案的多目标优化模型的适应度评价函数,对基准建筑方案进行了多目标优化设计实例分析,提出了在维持室内热舒适状况下的节约建筑能耗的设计方案;通过对多目标优化模型的结果与能耗模拟软件的模拟结果比较分析可知本文所建立的多目标优化设计模型具有较高的准确性,可用于指导建筑师的方案设计。
     最后,在节能优化设计方案的基础上,以可接受舒适区为约束条件,通过状态空间法计算分析得出了重庆地区住宅建筑通风技术、遮阳技术的分月调控方法;并通过对重庆市江某建筑室内热湿环境的实测,验证了通风调控、遮阳调控方法在实际住宅建筑中改善室内热环境的有效性,从测试结果表明,文中所提出的典型被动调控方法有一定的科学性和实用性。
     论文的研究为建筑设计提供了以保证热舒适和低能耗要求为目的的具体分析方法和实用工具,并在此节能优化设计方法基础上,提出适用于特定气候与人体舒适性的建筑运行调控方法,实现被动和主动技术结合的方法,找到一条适合重庆地区住宅的低能耗调控策略,为此地区建筑节能技术体系的建立提供技术支撑。
With the rapid development of national residential construction, remarkable improvement of social economy and the increasing need of residents to get healthy and comfortable indoor environment in recent decades, energy efficiency now is especially urgent. How to make full use of natural resources and all kinds of climate adaptability control strategies on the premise of the acceptable thermal comfort of occupants and eventually coming up with low energy consumption control strategies for residential building has become one of the difficulties for energy efficiency. It has very important and profound significance to improve residents’living quality, reduce energy consumption and promote sustainable development for habitat environment by finding out ways and methods to improve indoor thermal environment, studying climate adaptability control techniques and design strategies and making prior use of natural resources.
     Energy consumption and indoor thermal comfort are the two basic conflicting factors for building design. In order to keep indoor thermal comfort and reduce energy consumption at the same time, all these factors have to be made an overall and multiple targets optimizing. Therefore this paper has firstly made annual residential building energy consumption and indoor adaptability comfort as the goal of evaluated performance. And the paper chooses prediction model founded by artificial neural network as the fitness function and establishes multiple targets optimizing model of building design program on the foundation of genetic algorithm NAGAⅡ.
     Every design scheme needs assessment function to evaluate residential building energy consumption and indoor comfort when using genetic algorithm on the process of multiple targets optimizing. And the time consumed in thousands of iterative computations is incalculable when using the conventional dynamic simulation method. Thus, this paper has taken the artificial neural network model of annual energy consumption and indoor comfort as the adaptability assessment function, discussed the issue that BP artificial neural network is easy to get into the problem of partial optimum solution, optimized the connection right of BP artificial neural network based on genetic algorithm and got the more accurate and practical GA-BP neural network used for prediction of annual residential building energy consumption and indoor comfort, determined the input neural parameters of GA-BP model including building floor plan, location, shape coefficient and other 11 variables and the output neural parameters are annual energy consumption per unit area and indoor comfort conditions.
     Secondly, based on the aPMV thermal comfort control model proposed by automation control black box theory and numerous researched data, the paper defines the comfort zone of residential building in Chongqing, which solves a fundamental problem in the study of design and strategy control and gives a limitation to indoor adaptability thermal comfort. The fundamental problem is what kind of thermal comfort should be fulfilled when studying the low energy consumption strategy.
     Then this research chose a typical building in Chongqing making the acceptable comfort zone of residential building as the limited condition and analyzed the influence of different kinds of design parameters on indoor comfort in natural environment with numerous simulations. At the same time, it also analyzed the influences of all kinds of design factors on annual energy consumption and proposed design suggestions of energy efficiency for every single design parameters. On this basis, 144 groups of simulation data are provided for trainings of GA-BP multiple targets prediction model.
     The prediction model of residential building energy consumption and indoor comfort was trained and tested with the numerical simulation data of Energy Plus. And the tested data showed that this model which had certain application value could well predict the energy consumption and indoor comfort of residential buildings.
     After making GA-BP neural network model of residential building energy consumption and indoor comfort as the adaptable assessment function, the paper made a case study of multiple targets optimization design towards basic building scheme, and then came up with an energy-saving design scheme which could keep the indoor environment thermal comfort. The multiple targets optimization design model has a relatively accuracy by comparing and analyzing its results and the results of the simulation software for energy consumption, which shows that the multiple targets optimization design model can guide architectures to make scheme design.
     Finally, on the basis of energy efficiency optimization design program and with the limitation of acceptable comfort zone, this paper gets the monthly control methods of ventilation and shading technology in residential buildings in Chongqing by using state space method. After getting the typical passive control methods, the author measured the thermal environment in a building of Baisha Town, Jiangjin District in Chongqing and finally verified its effectiveness in real residential buildings. The results of measurement show that the typical passive control methods raised in this paper have certain scientific value and practicality.
     The purpose of the thesis is to provide specific analytical method and practical tool for the requirement of thermal comfort for building design. And on the base of energy consumption optimization, this thesis has raised control methods for building management used for specific climate and human comfort which achieved the combination of passive and active technology, found out a low energy consumption control strategy fit for residential buildings in Chongqing, and provided technical support for the establishment of building energy-saving technology system in Chongqing.
引文
[1]仇保兴.进一步加快绿色建筑发展步伐——我国绿色建筑行动纲要(草案)[R].第七届国际绿色建筑与建筑节能大会主题报告,2011,3.
    [2]中国国家统计局.中国统计年鉴[M].北京:中国统计出版社,1994-2010.
    [3]中国科学院可持续发展战略研究组.2011中国可持续发展战略研究报告[R].北京:科学出版社,2011.
    [4]中国社会科学院.2011年中国城市竞争力蓝皮书:中国城市竞争力报告[R].北京:科学出版社, 2011.
    [5]世界能源情报署.国际能源展望[R]. 2010.
    [6]仇保兴.发展节能与绿色建筑刻不容缓[J].中国经济周刊,2005,(9):11.
    [7]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2010[R].北京:中国建筑工业出版社,2010,5.
    [8]牛建宏.中国建筑节能20年:为什么雷声大雨点小[J].中国经济周刊, 2007(41):31-35.
    [9]中国科学院可持续发展战略研究组, 2011中国可持续发展战略研究报告[R].北京:科学出版社,2011.
    [10] J.F.Nicol,M.A.Humphreys.Adaptive thermal comfort and sustainable thermal standard for buildings[J]. Energy and Buildings,2002,34:563-572.
    [11] Baizhan Li.Sustainable Response to the Urbanisation in China[J]. Journal of Central South University of Technology, 2007, 14(s3): 1-7.
    [12] Yao R., Steemers K. and B. Li. Introduction to Sustainable Urban and Architectural Design, Publisher: China Construction Publisher[R]. ISBN 7-112-08099-1, 279 pages, in English and Chinese, 2006.
    [13]中国工程院咨询项目,清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2008[R].北京:中国建筑工业出版社, 2008,3: p45.
    [14] The Canadian Commission on Building and Fire Codes (CCBFC). 2010 National Building Code of Canada(NBC)[R]. National Model Construction Code Documents 2010.
    [15] Abdeen Mustafa Omer. Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews[R].Volume 12, Issue 9, 2008,12:2265-2300.
    [16] U.S. Department of Energy. Buildings Energy Data Book 2010[DB/OL]. http://buildingsdatabook.eren.doe.gov/.
    [17] Joe Huang. Status of Energy Efficient Building Codes in Asia[R]. the Asia Business Council, Hong Kong SAR,2007, 3.
    [18] Ake Iverfeldt. Creating impact through energy policies for energy efficient buildings (Overview of European policies and best case examples)[R]. IVL Swedish Environmental Research Institute,2011.02.
    [19] Alexander Krüger. EU and German Requirements on Energy Efficiency of Residential Buildings[C]. Miami Conference 2009.
    [20]中国城市科学研究会.绿色建筑2009[R].北京:中国建筑工业出版社, 2009,3.
    [21] Victor Olgyay.Deisgn With a Bioclimatic Approach to Architectural Regionalism[M]. New York: Van Nostrand Reinhold,1992.
    [22] Givoni, B. Man.Climate and Architecture, Second Edition[M]. London: Applied Science Publishers.
    [23] Szokolay, S.V. (1984): Thermal Comfort and Passive Design. Advances in Solar Energy[M]. The ASES annual publication, 1985, Vol.2.
    [24] John Martin Evans . Evaluating comfort with varying temperatures: a graphic design tool[J].Energy and Buildings, 2002,1463:l-7.
    [25] Albatici, R, Passerini, F. Bioclimatic design of buildings considering heating requirements in Italian climatic conditions. A simplified approach[J]. BUILDING AND ENVIRONMENT, 2011,8:1624-1631.
    [26] O.Rakoto-Joseph, F. Garde, M. David, L. Adelard and Z.A. Randriamananatany, Development of climatic zones and passive solar design in Madagascar[J]. Energy Conversion and Management, 2009,50: 1004–1010.
    [27] C.C.S. Lau, J.C. Lam and L. Yang, Climate classification and passive solar design implications in China[J]. Energy Conversion and Management, 2007,42:2006–2015.
    [28] N. Gaitani, G. Mihalakakou and M. Santamouris, On the use of bioclimatic architecture principles in order to improve thermal comfort conditions in outdoor spaces[J]. Building and Environment, 2007,42:317–324.
    [29] M. Zengin, I. Kopar and F. Karahan, Determination of bioclimatic comfort in Erzurum-Rize expressway corridor using GIS. Building and Environment, 2010,45:158–164.
    [30] Nick Baker ,Koen Steemers.LT 2.1 in Energy and Environment in Architecture[M].London: Taylor Francis Group, E&FN Spon,1999.
    [31] Nick Baker,Runming Yao.LT-Europe an Integrated Energy Design Tool for Building[R]., France, Toulouse: PLEA 2002:119-124.
    [32] Runming Yao,Nick Baker,Mike McEvoy. A Simplified Thermal Resistance Network Model for Building Thermal Simulation[R].Canada, Montreal, Sim2002, Proceedings of eSim: 135-140.
    [33] Runming Yao, Baizhan Li, Koen Steemers, Alan Short.Assessing the natural ventilation cooling potential of office buildings in different climate zones in China[J]. Renewable Energy, 2009,34:2697-2705.
    [34]清华大学.中国可持续发展住宅设计研讨会文集[C].清华大学,2001.
    [35]杨柳.建筑气候分析与设计策略研究[D].西安:西安建筑科技大学,2003.
    [36]孙喆.夏热冬冷地区多层住宅被动式太阳能设计策略研究[D].武汉:华中科技大学, 2005.
    [37]龙淳,冉茂宇.生物气候图与气候适应性设计方法[J].工程建设与设计, 2006, 10.
    [38]付祥钊.夏热冬冷地区建筑节能技术[M].北京:中国建筑工业出版社, 2002.
    [39] P. Hoes, J.L.M. Hensen, M.G.L.C. Loomans, B. de Vries, D. Bourgeois.User behavior in whole building simulation[J].Energy and Buildings, 2009,41:295–302.
    [40] Th. Frank. Climate change impacts on building heating and cooling energy demand in Switzerland[J]. Energy and Buildings, 2005 ,37: 1175-1185.
    [41] Joe O’Doherty, Sean Lyons, Richard S.J. Tol. Energy-using appliances and energy‐saving features: Determinants of ownership in Ireland[J]. Applied Energy, 2008,85:650–662.
    [42] Jinlong Ouyang, kazunori Hokao.Energy‐ saving potential by improving occupants’behavior in urban residential sector in Hangzhou City, China[J]. Energy and Buildings, 2009,41: 711–720.
    [43]万旭东,谢静超,赵耀华,李炎锋,姜中天,吉野博.北京市夏季住宅用能节能潜力调查及分析[J].建筑科学, 2008,24(6): 19‐ 24.
    [44]彭琛,燕达,周欣.建筑模拟中使用者的行为定义方法[C].2009年全国暖通空调专业委员会空调模拟分析学组学术交流会,清华大学建筑技术科学系.
    [45]李百战,刘晶,姚润明.重庆地区冬季教室热环境分析[J].暖通空调, 2007, (5).
    [46]夏春海,朱颖心.面向建筑方案的节能设计研究—设计流程和工具[J].建筑科学,2009,(6).
    [47] H.B. Rijal, P. Tuohy, M.A. Humphreys, J.F. Nicol, A. Samuel and J. Clarke, Using results from field surveys to predict the effect of open windows on thermal comfort and energy use in buildings[J]. Energy and Buildings, 2007,397: 823–836.
    [48] Auliciems A. Towards a psychophysiological model of thermal perception[J]. International Journal of Biometeorology, 1981,25:109–122.
    [49] CIBSE and A. Guide, Environmental Design, (seventh ed.), Chartered Institution of Building Services Engineers. London:2006.
    [50] Yao R. Study on indoor climate simulation and thermal comfort[D].Chongqing: Jianzhu University,: 1997 [in Chinese].
    [51] Runming Yao, Baizhan Li, Jing Liu. A theoretical adaptive model of thermal comfort– Adaptive Predicted Mean Vote(aPMV)[J]. Building and Environment, 2009,44: 2089–2096.
    [52]蒋宗礼.人工神经网络导论[M].高等教育出版社,2001.
    [53] R.T. Marler and J.S. Arora. Survey of multi-objective optimization methods for engineering[J]. Struct Multidisc Optim,2004,26: 369–395.
    [54] Laurent Magnier, Fariborz Haghighat.Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm,and Artkficial Neural Network.[J].Building and Environment,2010,45:739-746.
    [55] SONG dexuan.Building Energy Efficiency Design and Technology[M].Tianjin:Tong Ji University ,2003,7:20-21 (In Chinese).
    [56] TU fengxiang, WANG qingyi.The Energy Saving on Architecture is Necessarily Choice in China(I)[M].Energy Conservation and Environment Protection,2004 ,8(In Chinese).
    [57] J.席勒.建筑与职业制度[R].北京宪章分题报告, 1999.
    [58] Crawley D B, Lawrie L K, Winkelmann F C,et al. Energyplus:creating a new-generation building energy simulation program[J]. Energy and Buildings, 2001,33(4):319-331.
    [59] EnergyPlus Manual Documents[M]. University of Illinois, University of California, Ernest Orlando Lawrence Berkeley National Laboratory, 2007.
    [60] Curtiss P S.Energy management in central HVAC plants using neural networks[J]. ASHARE Trains,1994,100(1):476-493.
    [61]石磊,赵蕾,王军等.应用人工神经网络预测建筑物空调负荷[J].暖通空调, 2003, 33(1): 102-113.
    [62]何磊.基于BP神经网络的建筑能耗预测[J].浙江建筑, 2008, 25(12): 102-113.
    [63] Yang J,Rivard H,Zmeureanu R. Building energy prediction with adaptive Artificial Neural Networks[C]. Montreal,Quebec, Canada: Proceedings of the 9th international IBPSA conference, 2005.
    [64] Ayata T, Arcaklloglu E, Yildlz O. Application of ANN to explore the potential use of natural ventilation in buildings in Turkey[J]. Applied Thermal Engineering 2007,27(1):12-20.
    [65] Yang Li-ya,Shao Chun-fu. Integrated forecasting model for real estate price along urban rail transit based on BP neural network and Markov chain[J]. Journal of Jilin University (Engineering and Technology Edition),2008.03.
    [66]赵振勇.基于遗传BP神经网络的股市预测[D].贵州大学硕士论文,2007,05.
    [67] Hsu K, Cupta H V. Artificial neural network molding of the rainfall runoff process[J]. Water Resources Research, 1995, 31(10): 2517-2530.
    [68]雷英杰,张善文,李续武,周创明.遗传算法工具箱及应用[M].西安电子科技大学出版社,2005,3.
    [69] SONG dexuan. Building Energy Efficiency Design and Technology[M].Shanghai:Tong Ji University Press,2003,7:20-21 (In Chinese).
    [70] TU fengxiang, WANG qingyi; The Energy Saving on Architecture is Necessarily Choice in China(I)[M].Energy Conservation and Environment Protection, 2004,8 (In Chinese).
    [71] D.A. Coley, S. Schukat. Low energy design: combining computer-based optimization and human judgement[J].Building and Environment, 2002,37(12):1241–1247.
    [72] Essia Znouda, Nadia Ghrab-Morcos, Atidel Hadj-Alouane. Optimization of Mediterranean building design using genetic algorithms[J]. Energy and Buildings,2007,39: 148–153.
    [73]夏春海,朱颖心,林波荣.方案设计阶段建筑性能模拟方法综述[J].暖通空调, 2007,12.
    [74] Luisa Caldas. Generation of energy-efficient architecture solutions applying GENE_ARCH: An evolution-based generative design system[J]. Advanced Engineering Informatics,2008,22: 59–70.
    [75] LG. Caldas. An evolution-based generative design system: using adaptation to shape architectural form[D]. Ph.D. Dissertation inArchitecture: Building Technology, MIT, 2001.
    [76] Coello Coello C.A,Van Veldhuizen D.A,Lamont G.B. Evolutionary Algorithms for Solving Multi Objective ProblemsfMl. New York,Kluwer,2002:209-267.
    [77] Srinivas N,Deb K. Multi-objective optimization using non-dominated sorting in genetic algorithms[R]. Department of Mechanical Engineering,Indian Institute of Technology, Kanput, India, 1993.
    [78] Kalyanmoy Deb, Samir Agrawal,Amrit Pratap and T Meyarivan. "A Fast Elitist Non- Dominat-ed Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II"[C]. Proceedings of the Parallel Problem Solving from Nature VI Conference, 2000.
    [79] Wei Yu, Yong Ding, Yan Sheng. Analysis on application of natural ventilation of residential buildings in hot-humid regions[J]. JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2009,16(1):68-74.
    [80] SOPA VISITSAK.An Evaluation of the Bioclimatic Chart for Choosing Design Strategies for a Thermostatically-controlled Residence in Selected Climates[D].Texas:Texas A&M University, 2007.
    [81] Laurent Magnier, Fariborz Haghighat. Multiobjective optimization of building design using TRNSYS simulations ,genetic algorithm,and Artkficial Neural Network.[J].Building and Environment,2010,(45):739-746.
    [82] SONG dexuan. Building Energy Efficiency Design and Technology[M].Tong Ji University Press,2003,7:20-21 (In Chinese).
    [83] TU fengxiang, WANG qingyi.The Energy Saving on Architecture is Necessarily Choice in China(I)[M].Energy Conservation and Environment Protection, 2004,8 (In Chinese).
    [84] Dawkins R. The Ancestor’s Tale: A Pilgrimage to the Dawn of Life[M]. Weidenfeld and Nicholson, 2004.
    [85] Frazer J, et al. Generative and evolutionary techniques for building envelope design[C]. Milan: Proc. of the 5th Int’l Conf, 2002.
    [86] Gero JS, Kazakov V. An exploration-based evolutionary model of a generative design process[J]. Microcomputers in Civil Engineering, 1996,11:209?216.
    [87] Gero JS, Maher ML.Computational and cognitive models of creative design VI[J]. Key Centre of Design Computing and Cognition, University of Sydney, 2005.
    [88]柴春雷,黄琦,董占勋,孙守迁.面向家电产品的人机工程分析与评价系统[J].计算机辅助设计与图形学学报,2006,18(4):580?584.
    [89] Liu H, Tang MX. Evolutionary design in a multi-Agent design environment[J]. Applied Soft Computing Journal, 2006,6(2):207?220.
    [90] Al-Homoud MS. Optimum thermal design of office buildings[J].International Journal of Energy Research 1997,21(10):941–57.
    [91] Coley DA, Schukat S. Low-energy design: combining computerbased optimization and human judgement[J]. Building and Environment 2002,37(12):1241–1247.
    [92] Wetter M. GenOpt.A genericoptimization program[C]. Proceedings of the Seventh International IBPSA Conference,2001,8:601.
    [93] Nielsen TR. Optimization of buildings with respect to energy and indoor environment[D]. Ph.D. Thesis, Department of Civil Engineering, Technical University of Denmark, Lgngby, Denmark,2002.
    [94] Hauglustaine JM, Azar S. Interactive tool aiding to optimise the building envelope during the sketch design[C]. Proceedings of the Seventh International IBPSA Conference,2001: 387–394.
    [95] Wright JA, Loosemore HA, Farmani R. Optimization of building thermal design and control by multi-criterion genetic algorithm[J].Energy and Buildings,2002,34(9):59–72.
    [96] Zhou L, Haghighat F. Optimization of ventilation system design and operation in office environment, part I: methodology[J]. Building and Environment, 2009,44(4):651–6.
    [97] Huh J-H, Brandemuehl MJ. Optimization of air-conditioning system operating strategies for hot and humid climates[J]. Energyand Buildings, 2008,40(7):1202–13.
    [98]夏博,宋德萱,史洁.生态建筑中的信息控制[J].工业建筑, 2006,(S1).
    [99] Keles_og?lu O, F?rat A. Determination of loss of heat in brick wall and installation with artificial neural network[J]. Sci Eng J F?rat Univ,2006,18(1):133–41.
    [100] Yang J, Rivard H, Zmeureanu R. On-line building energy prediction using adaptive artificial neural networks[J]. Energy Build,2005,37:1250–9.
    [101] Kalogirou SA, Bojic M. Artificial Neural networks for the prediction of the energy consumption of a passive solar building[J]. Energy,2000,25:479–91.
    [102] Gonzalez PA, Zamarreno JM. Prediction of hourly energy consumption in buildings based on a feedback artificial neural network[J]. Energy Build,2005,37:595–601.
    [103] Olofson T, Andersson S. Long-term energy demand predictions based on short-term measured data[J]. Energy Build, 2001,33:85–91.
    [104] S.Karatasou, M. Santamouris, V.Geros. Modeling and predicting building’s energy use with artificial neural networks: Methods and results[J]. Energy and Buildings ,2006,38:949–958.
    [105] A.Azadeh, S.F.Ghaderi, S.Tarverdian, M.Saberi. Integration of artificial neural networks nd genetic algorithm to predict electrical energy consumption[J]. Applied Mathematics and Computation, 2007,186: 1731–1741.
    [106] Wei Yu, Baizhan Li, Runming Yao. Applying multi-objective genetic algorithms in residential building optimization design[J]. Renewable Energy(已收录).
    [107]姚健,闫成文,叶晶晶,周燕.基于神经网络的建筑能耗预测[J].门窗, 2007,(10).
    [108]鄢涛,卜增文,刘俊跃.基于人工神经网络的建筑能耗预测[C].建筑节能-智能与绿色建筑文集, 2005: 394-400.
    [109]张甫仁.基于气象热舒适度的建筑能耗灰色神经网络预测[J].建筑科学,2007,23(10).
    [110] Lin, S.H. Goodman, E. D. and Paunch, W F Investigating Parallel Genetic Algorithms on Job Shop Scheduling Problem [C]. In the Sixth International Conference on Evolutionary Programming, Angeline, P. Reynolds, R. J. M. and Eberhart,R.(ed.), Berlin: Springer- Verlag, 1997,4: 383-393.
    [111] Deb K. Multi-objective optimization using evolutionary algorithms[M]. New York: John Wiley&Sons,2001.
    [112] ASHRAE 55-1992.Thermal Environmental Conditions for Human Occupancy[S]. Atlanta: American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc.1992.
    [113] ISO 7730. Moderate Thermal Environment-Determination of the PMV and PPD Indices and Specification of the Conditions for Thermal Comfort[S]. Geneva: International Standard Organization.1984.
    [114] Bai Zhan Li, Wei Yu, Meng Liu, Nan Li. Climatic strategies of Indoor Thermal Environment for Residential Buildings in Yangtze River Region, China[J]. Indoor and Built Environment, 2011,(1):101-111.
    [115] Baizhan Li.Sustainable Urbanisation: Energy and Environment in Chongqing[J]. Journal of Chongqing University (English Edition), 2005.
    [116]金招芬、朱颖心主编.建筑环境学[M].中国建筑工业出版社, 2002.
    [117]王小兵、黄晨等.某生态建筑PMV现场测定分析及测定方法探讨[J].建筑热能通风空调,2007,2(26):83-87.
    [118] ANSI/ASHRAE Standard55-2004. Thermal Environmental Conditions for Human Occupancy [S]. ASHRAE, Atlanta . ISSN 1041-2336.
    [119] de Dear R J, Brager G S. Developing an adaptive model of thermal comfort and preference [J]. ASHRAE Transactions, 1998,104(1a): 145-167.
    [120]罗明智,李百战,郑洁.人体热适应性与热舒适[J].制冷与空调,2005,1(12):75-78.
    [121] Wei Yu, Xiuyuan Du, Baizhan Li. Adaptive thermal comfort investigation of college dormitories[J]. Electric Technology and Civil Engineering , 2011, (4):3842– 3845.
    [122]刘红.重庆地区建筑室内动态环境热舒适研究[D].重庆:重庆大学,2009.
    [123]夏一哉,牛建磊,赵荣义.空气流动对热舒适影响的实验研究:总结与分析[J].暖通空调, 2000.30(3): 41-45.
    [124]杨薇,张国强.湖南某大学校园建筑环境热舒适调查研究[J].暖通空调, 2006,36(9): 95- 101 .
    [125] de Dear R J,Brager G S.Thermal comfort in naturally ventilated buildings:revisions to ASHRAE Standard 55[J]. Energy and Buildings, 2002, 34(2):549-561.
    [126] Ye X J,Zhou Z P, Lian Z W, et al.Field study of a thermal environment and adaptive model in Shanghai[J]. Indoor Air, 2006,16(1):320-326.
    [127] Hwang R L, Lin T P, Kuo N J. Field experiments on the thermal comfort in campus classrooms in Taiwan[J]. Energy and Buildings,2006,38(1):53-62.
    [128] Nicol JF, Raja IA, Alauddin A, Jamy NG. Climatic variations on comfortable temperature: the Pakistan projects[J]. Energy and Buildings 1999;30:261–79.
    [129] Bouden C, Ghrab N. Thermal comfort in Tunisia context: a field study results[J].Energy and Buildings 2005;37(9):952–63.
    [130] Fanger PO, Toftum J. Extension of the PMV model to non-air-conditionedbuildings I n warm climates[J].Energy and Buildings, 2002,34:533–6.
    [131] Zhu Y, Yang J, Zhao X. An introduction to probability and statistical method[M]. Northwest Politecnical University Press,1986 [in Chinese].
    [132]苗平.湿空气对人体舒适性的影响[J].洁净与空调技术,2003,(4).
    [133] Marc E. Fountain. Air Movement and Thermal Comfort[J]. ASHRAE Journal, 1993,(8).
    [134] Jorn Toftum, Anette S Jorgensen. P.O. Fanger. Upper limits of air humidity for preventing warm respiratory discomfort[J]. Energy and Buildings, 2008,28: p15-23.
    [135]董胜璋,牛冠明,杨正焱.相对湿度对空调环境至适温度影响到研究[J].环境与健康杂志.
    [136] Green, G.H. Positive and negative afects of building humidification[M]. ASHMRAE Transaction,1982,88(1):1049—1061.
    [137] Larry G. Comfort and humidity[J]. ASHRAE Joumal,1998,40(8): 35-40.
    [138]国家质量监督检验检疫总局. GBT.18883—2002年.室内空气质量标准[S].北京:中国环境科学出版社, 2003.
    [139]重庆大学,中国建筑科学研究院主编.民用建筑室内热湿环境评价标准(征求意见稿) [S]. 2011.
    [140] ASHRAE/IES Standard 90.1-1989. User's Manual. American Society of Heating[S]. Refrigerating and Air Conditioning Engineers.
    [141] Baruch Givoni. Climate consideration in building and urban design[J].VAN NOSTRAND REINHOLD, 1998.
    [142]刘加平.建筑物理[M].北京:中国建筑工业出版社, 2000.
    [143] Watson, D. and Lab, K.. Climatic Design: Energy-efficient Building Principle and Practices[M]. New York: McGraw-Hill,1983.
    [144]喻伟,李百战,李楠等.重庆地区住宅建筑室内热环境的节能调控策略分析[J].暖通空调, 2009, 39(11): 7-11.
    [145] Pieter de Wilde, Godfried Augenbroe.Design analysis integration: supporting the selection of energy saving building components[J] Building and Environment ,2002,37: 807-816.
    [146]中国建筑科学研究院,重庆大学主编. JGJ 134—2001.夏热冬冷地区居住建筑节能设计标准[S].
    [147]重庆市建设技术发展中心主编. DBJ 50-071—2007.重庆地区《居住建筑节能65%设计标准》[S].
    [148]付祥钊主编.夏热冬冷地区建筑节能技术[M].北京:中国建筑工业出版社, 2002.
    [149]詹林.论夏热冬冷地区住宅建筑设计节能体现[J].四川建筑科学研究, 2010,( 4) .
    [150]重庆市建筑技术发展中心.长江流域建筑节能技术[M].重庆市建筑节能协会,2005,7: 9-104.
    [151]江亿等.住宅节能[M].北京:中国建筑工业出版社, 2006. 3.
    [152] Jose L. Miguel A. Norberto Chargoy. Rapid on-site evaluation of thermal comfort through heat capacity in buildings[J].Energy and Buildings,2005,37:1205-1211.
    [153]杨昭,郁文红,张甫仁.节能建筑复合墙体的非稳态热工性能[J].天津大学学报, 2004,37(11):975-979.
    [154]胡吉士,方子晋.建筑节能与设计方法[M].北京:中国计划出版社,2005.
    [155]董长虹.MATLAB神经网络与应用[M].北京:国防土业出版社, 2007:64-106.
    [156]清华大学建筑节能研究中心著.中国建筑节能年度发展研究报告2007[M].北京:中国建筑工业出版社, 2007.
    [157]宋芳婷,诸群飞,燕达,江亿.影响建筑热过程的各种外界因素的取值方法.建筑环境设计模拟分析软件DeST讲座5[R].
    [158]简毅文,江亿.住宅室温模拟和实测数据的一致性分析[J].住宅科技, 2002,(7).
    [159]喻伟,李百战,陈金华,赵温江.住宅建筑气候适应性通风调控方法[J].重庆大学学报(自然科学版),已录用.
    [160]李晓锋.朱颖心.示踪气体浓度衰减法在民用建筑自然通风研究中的应用[J].暖通空调, 1997, 27(4): p7-10.
    [161]周铁军等.重庆地区遮阳状况的研究[J].中国遮阳,2008,(3).
    [162]江亿,林波荣,曾剑龙等著.住宅节能[M].北京:中国建筑工业出版社,2006.
    [163] Wei Yu, Baizhan Li, Yong Ding. The Comparative Analysis on the external shading application effect of Residential Building[J]. E-Product E-Service and E-Entertainment (ICEEE), 2011,10:1-4.
    [164]朱颖心编.建筑环境学[M].北京:中国建筑工业出版社,2005,7.
    [165]中国气象局气象信息中心气象资料室,清华大学建筑技术研究中心.中国建筑热环境分析专用气象数据集[M].北京:中国建筑工业出版社, 2005.
    [166]中国建筑科学研究院.建筑采光设计标准(GB/T 50033-2001)[S].北京:中国建筑工业出版社, 2001年7月.
    [167]李楠,李百战,沈艳.住宅建筑自然通风对室内热环境的影响[J].重庆大学学报(自然科学版), 2009. (7).
    [168]李楠.夏热冬冷地区人员行为对住宅建筑能耗的影响研究[D].重庆:重庆大学, 2011. 6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700