深圳地区建筑外遮阳系数的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国夏热冬暖地区夏季漫长,外窗太阳辐射得热产生的空调能耗占建筑空调总能耗的30%~40%,建筑外遮阳是深圳地区一种有效的节能措施,但我国目前对遮阳的研究还处于初始阶段,尤其对近年出现的一些复杂的遮阳构件的节能效果缺乏深入的研究,对遮阳装置的实际效果缺乏深入的了解。对建筑遮阳的节能特性及评价标准进行研究,将为完善现有的节能设计标准和外遮阳性能检测评价提供有效参考,为建筑节能设计提供科学的方法和基础数据。
     遮阳系数是评价外遮阳效果的重要参数。本文从建筑节能的角度出发,以传热学理论为基础,采用遮阳系数作为主要评价指标,对建筑外窗遮阳的构造特点、节能效果计算及外遮阳评价方法进行研究,主要研究工作有:针对水平、垂直遮阳板及固定、活动百叶遮阳,提出了基于直射、散射辐射透光计算的辐射得热计算模型,分析了水平、垂直遮阳的全年节能特性,探讨了百叶遮阳的角度优化设置及角度调节策略;对遮阳百叶的效果进行实测,并与理论计算结果进行对比分析,主要研究结论如下:
     (1)推导出深圳地区水平、垂直遮阳板及固定、活动百叶外遮阳的遮阳系数计算公式;通过分析得出,遮阳系数的全年变化特性与直射辐射遮挡效果有较大的差异,遮阳系数更能反映遮阳构件的节能效果。
     (2)遮阳构件设计应在降低负荷与自然采光和降低眩光方面达到合理的平衡点,对于常用的宽度间距比接近1的固定百叶遮阳,水平式遮阳东、西、南、北各朝向的板片倾角宜设置为60°、60°、90°、120°;垂直式遮阳的各朝向的板片倾角宜设置为45°、135°、45°、90°。
     (3)针对深圳地区宽度间距比接近1的活动百叶遮阳,提出了冬、夏季的遮阳板片的角度调节方案,水平遮阳的东西向板片角度调节范围宜设置在45°~120°范围内,南向宜设置在60°~120°范围内,北向可不采用活动百叶遮阳。
     (4)现场测试表明,百叶遮阳可以降低外窗负荷40%~70%,模拟与实测辐射得热存在一定的相关性,模拟与实测的单日遮阳系数值存在一定偏差。其中,风机盘管的供冷量测量的误差最大。降低风机盘管的水流量并提高室内温度控制精度可以大大提高该装置的精度。
Hot summer and warm winter region in China has a long summer, the air-conditioning energy consumption because of the solar heat gain in summer accounts for 30% to 40% of the total air conditioning energy consumption. The building external sunshade is an efficiency measure for Shenzhen and the whole south of China. But our current shade research is still in the initial stages, particularly there is not in-depth study on the energy-saving effect of the complex shading component emerged in recent years, and there is not understanding for the real effect of shading devices. The research on building energy-saving feature of sunshade devices and evaluation criteria will supply effective reference for improving existing design standards and external shading performance testing evaluation, and provide scientific methods and basic dada for building energy efficiency design.
     Shading coefficient is an important parameter for shading performance evaluation. The research which is from the perspective of energy efficient, based on heat transfer theory, with shading coefficient as the main evaluation parameter, studies the structure characteristic of the building external shading facilities, energy saving effect calculation and the shading evaluation method. Main research work are: proposed the heat gain calculation model based on direct and diffused radiation transmittance calculation for horizontal, vertical visor and fixed, activities louver shading devices, analyzed the annual energy saving features of the horizontal and vertical shading visor, investigated the slat angle optimization setting and angle adjustment strategy; measured the louver shading energy saving performance and compared with theoretical calculated results. The main conclusions are as follows:
     (1) Deprives the shading coefficient calculation formulas for horizontal, vertical visor and fixed, activities louver shading in Shenzhen, Analyses indicates that the annual change properties of SC and the direct radiation shielding effect are quiet different, SC can better reflect the energy saving effect of shading structures.
     (2) Shading facilities should be designed to achieve a reasonable balance among reducing the load, natural light and reduce glare. For the louver shade whose slat width and spacing ratio is nearly equal to 1, the slat angle of the horizontal louver shade should set to 60°, 60°, 90°, 120°for east, west, south and north orientations; the slat angle of the vertical louver shade should set to 45°, 135°, 45°, 90°.
     (3) Proposes the slat angle adjustment strategy in Shenzhen in summer and winter for the louver shade whose width spacing ratio is nearly equal to 1, the slat angle adjustment range of the louver shade in east and west should set in the range of 45°and 120°, and should set in the range of 60°and 120°. In north orientation activities louver shade don’t need to be used.
     (4) Field tests shows that the external louver shade can reduce the solar heat gain of 40%~70%. The solar heat gain by simulation and testing is relevant, the single day shading coefficients by simulation and testing have some deviation. The error causes by the cooling fan coil unit is the maximum. Reducing the flow rate of fan coil cooling water and raising the indoor temperature control accuracy can great improving the accuracy of the device.
引文
[1]国务院新闻办公室.《中国的能源状况与政策》白皮书.2007.
    [2]田智华.建.筑遮.阳性能的试验检测技术研究[D].重庆:重庆大学,2005.
    [3]任俊,刘加平.建筑能耗计算中的外遮阳系数的研究[J].保温材料与建筑节能,2005(04):27-29.
    [4] ISO/FDIS 15099.Thermal Performance of Windows, Doors and Shading Devices - Detailed Calculations[S].
    [5] prEN 13363-2.Solar protection devices combined with glazing-Calculation of total solar energy transmittance and light transmittance-Part 2: Detailed calculation method[S].
    [6] Thomas Knauer,Tilmann Kuhn,Werner J.Platzer.Measurement of angle-dependent properties of different solar protection devices[J/OL].Proceedings EUROSUN2000,Copenhagen,(2000-05-15)[2008-09-15] http://www.ise.fraunhofer.de/veroeffentlichungen/nach-jahrgaengen/2004
    [7] Western Australia University,HLIOS,Help document.
    [8]冯林东.适宜夏热冬暖地区的建筑遮阳技术研究[D].西安:西安建筑科技大学,2008.
    [9] WIS,Window Information System[CP/OL],2004.http://windat.ucd.ie/wis/html/index.html.
    [10] WINDOW 6.2, Program Description, Windows and Daylighting Group, Lawrence Berkeley National Laboratory(LBNL), University of California, USA.
    [11] Tilmann E.Kuhn,Christopher Buhler et al.Evaluation of overheating protection with sun shading system.Solar Energy,2001,69(suppl)[J]:59-74.
    [12] A.H.Elmahdy.Heating Transmission and R-value of Fenestration Using IRC Hot Box: procedure and uncertainty analysis[J].ASHRAE Transaction 1992(1):838-845
    [13] Peter G. Loutzenhiser a,Heinrich Manz,Sven Moosberger,Gregory M. Maxwell.An empirical validation of window solar gain models and the associated interactions[J].International Journal of Thermal Sciences,2008,1(48):85-95.
    [14] H.Manza,P.Loutzenhiser,T. Franka et al,Series of experiments for empirical validation of solar gain modeling in building energy simulation codes—Experimental setup, test cell characterization, specifications and uncertainty analysis[J].Building and Environment,2006,41( 12):1784-1797.
    [15]马京涛,广州地区窗口外遮阳构造透光率分析[D].广州:华南理工大学,2004.
    [16]张磊.建筑外遮阳系数的确定方法[D].广州:华南理工大学.2004.
    [17]建设部标准定额研究所.夏热冬暖地区居住建筑节能设计标准实施指南[M].北京:中国计划出版社,2005:103-139.
    [18]任俊.居住建筑节能设计计算与评价方法研究[D].西安:西安建筑科技大学,2003.
    [19]唐鸣放,王丹妮.重庆地区窗户外遮阳能效分析[J].建筑科学,2007,23(6):60-63.
    [20]中华人民共和国标准GB50189-2005,公共建筑节能设计标准[S].北京:中国建筑工业出版社,2005.
    [21]中华人民共和国标准JGJ 75-2003,夏热冬暖地区居住建筑节能设计标准[S].北京:中国建筑工业出版社,2003.
    [22]众智软件帮助文件
    [23] DeST软件帮助文件
    [24]华南理工大学.Visual shade外遮阳系数计算程序说明[EB/OL]. [2009-8-10]http://www.topsunshade.com.cn/Articles/2007-8-27/3383.html.
    [25]杨斌.天津地区住宅建筑南向遮阳板构型设计及节能潜力分析[D].天津:天津大学,2003.
    [26]石丹.居住建筑窗户外遮阳优化设计研究[D].重庆:重庆大学,2008.
    [27]汤钧.中国农业银行数据处理中心设计[J].建筑学报,2009(06):66.
    [28]戈晓芳.广州建筑史上的绿色丰碑[EB/OL] (2005-04-08)[2008-10-10]http://www.hunterdouglas.cn/case/2005.html.
    [29]林培源.论建筑遮阳节能技术[J].建材与装饰,2008(3):202-203.
    [30]夏麟,李峥嵘.遮阳技术的应用与研究[J].上海节能,2005 (04):42-49.
    [31]朱颖心.建筑环境学[M].北京:中国建筑工业出版社,2005.
    [32]赵荣义等.空气调节[M].北京:中国建筑工业出版社,2005.
    [33]严启森,赵庆珠.建筑热过程[M].北京:中国建筑工业出版社,1986.6.
    [34] P.Pfrommer,K.JLomas,Chr.Kupke.Solar radiation transport through slat-type blind: a new model and its application for thermal simulation of buildings[J].Solar Energy,1996,57(2):77-91.
    [35]张磊,孟庆林,胡文斌.百叶外遮阳太阳散射辐射计算模型及程序实现[C].全国建筑节能技术与设计学术会议论文集,北京:中国建筑学会物理分会,2005.5.
    [36]张野,谢晓娜,罗涛等.建筑环境设计模拟分析软件DeST——建筑热过程中的太阳辐射相关模型[J].暖通空调,2004,34(10):55-113.
    [37]杨柳.建筑气候与设计策略研究[D].西安:西安建筑科技大学,2003.
    [38]周芳,胡明辅,周国平.铅垂面上太阳辐射计算方法探讨[J].建筑节能,2007,35(05).
    [39]初醒悟.立体角计算公式[C].走进CIE26th——中国照明学会2005学术年会论文集.上海:2005:392-939.
    [40]汤民.百叶外遮阳对建筑自然通风影响的研究[D].上海:同济大学,2007.
    [41] Chanvit Chantrasrisalai,Daniel E.Fisher.Comparative analysis of one-dimension slat-type blind model[C],SimBuild 2004,IBPSA-USA National Conference,Boulder CO,2004.
    [42]中华人民共和国标准JGJ/T 151-2008.建筑门窗玻璃幕墙热工计算规程[S],北京:中国建筑工业出版社,2008.
    [43] Lawrence Berkely National Laboratory , University of Illinois , Universitu of California.Energyplus2.0.0 Manua[CP/OL].California:LBNL in Berkeley,2007:166-194.http://www.energyplus.gov.
    [44] P.G.Loutzenhiser, H.Manz, P.A. Strachan, C. Felsmann, T.Frank, G.M. Maxwell, P.Oelhafen, An empirical validation of solar gain models found building energy simulation programs[J]. HVAC&R Research, 2006(12):1097-1116.
    [45] P.G.Loutzenhiser, Heinrich. Manz, Stephan Carl et al. Empirical validation of solar gain model for a glazing unit with exterior and interior blind assemblies[J]. Energy and Building, 2008(40):330-340.
    [46] Klems.J.H. Method of measuring nighttime U-values using the Mobile Window Thermal Test (MoWiTT) Facility[J]. ASHRAE Trans, 1992, 98(2):619-637.
    [47]解勇,窗太阳辐射得热系数检测装置[D].天津:天津大学,2006.
    [48]金星,李舒宏,张小松等.太阳辐射得热量测试台测量不确定度和误差分析[J].化工学报,2008,59(s2):154-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700