湖水源热泵系统性能研究及软件开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过能量守恒原理建立湖体热平衡数学模型,在深入分析湖水源系统工程特点的基础上建立开、闭式取水系统模型,热泵机组能耗运行动态模型,湖体承载能力模型以及与传统空调系统对比的节能率分析模型,采用软件编程方式模拟自然条件、负荷下水体温度变化及湖水源热泵系统全年动态能耗、能效的变化。
     首先,进行系统总体设计,包括系统结构、功能设计、开发方式、开发平台的选择;其次对湖水源热泵系统中各子系统(机组、水泵)进行专业功能设计;最后分析验证湖体热承载能力,综合评价热泵系统性能及项目实施的可行性。
     对闭式湖水源系统验证,本文根据上海某项目采用的湖水源热泵项目,对其系统的设计和运行情况进行了测试和分析。用DEST能耗模拟软件计算建筑全年负荷导入软件,针对采用湖水源热泵实现冬季供热的方案与采用锅炉制热的传统方案分别对机组、水泵和系统整体的能耗和能效进行比较。
     对开式湖水源系统验证,本文拟采用重庆市主城区某综合性大楼通过软件对比定流量与变流量在节能情况上的差异,进行冬季逐时能耗对比发现部分负荷下,变流量下系统累计总能耗比定流量下能耗累计值减少20.62%,取水系统在变流量调控状态下将存在很大的节能潜力,取水系统节能量达到40.45%。
     由于静止水体的能量平衡主要取决于太阳辐射得热与水体表面蒸发耗热和夜间长波辐射耗热之间的平衡,这些自发过程主要发生在水体的表面,浅层水体由于深度和面积有限,底部可利用的低温冷水量存在一个极限值,随着热泵机组的运行,排入到水体的热量逐渐增加,水体热分层将遭到破坏,整体水温上升。本文建立了静水湖体全年温度模型,当湖体作为水源热泵冷热源时用于预测湖水的供冷极限,并与重庆开县人民医院湖水源热泵系统的水温测试数据选取相同时间进行水温对比分析,验证软件模型在工程应用上的准确性和可靠性。
The fundamental basis of thermal equilibrium of the mathematical model in this paper is energy conservation. According to the characteristics of engineering project, a kind of program design and estimate software which include subsystem such as energy consumption model of heat pump unit, open-type and close-type piping dynamic model, pipe coil design model, eulimnetic thermal capacity analytical model, total energy saving rate model of lake source heat pump system compared with traditional air-conditioning system has been exploited. With C# language programming, the analysis of dynamic energy consumption and coefficient of performance of heat pump unit under natural and on-load conditions are within our reach.
     First and foremost, the software began with overall system design, including systematic structure and functions, analyzing the development method, platform and needed programming tools. Secondly, specialty function designs were conduced in heat pump unit and piping subsystem respectively. At last, we tested and verified eulimnetic thermal capacity and hypothetical cooling capacity in order to evaluate the comprehensive performance and implementary feasibility of heat pump system projects.
     With the system design and operation being tested in open-type and closed-type lake water heat pump system, this paper proved the practicability of design and estimate of lake water source heat pump software. Under the operational performance measurement, the statistics data of closed-type system on the base of a lake water source heat pump system project in shanghai, shows that the average coefficient of performance of heat pump unit is 3.61 when the average water inlet temperature at 8.1 Celsius degree. Leading in year-round building load calculated by DeST software, in view of using lake water source heat pump system compare with traditional hydrocooling unit assist furnaces system to analyze the energy consumption of AHU, piping and total system by our software respectively.
     A lake water source heat pump system project of comprehensive buildings in Chongqing is used for verifying the open-type operating mode under constant flow or variable flow conditions respectively in winter, compared mutual energy saving differences. The theory outlined in this article, via software simulated two kinds of working conditions, indicates that variable flow operation decrease the total energy consumption by 20.62% at part load. Water piping system with variable speed controlled not only has important economical potential but also possesses energy saving potential as much as 40.45%.
     The static water energy balance depends mainly on the balance beteewn some parameters such as solar radiate heat gain, water surface evaporation consumption and longwave radiation heat consumption at night. Actually, these equilibrium process spontaneously occured mainly on the surface of shallow water, and those available cold water at the bottom of reservoir was restricted by the depth and area of the superficial layer. Along with operation of the pump unit, thermal stratification of waterbody will be destroyed when quantity of heat raising little by little, which cause the overall temperature rising gradually. This thesis established an annual temperature model of static water lake that used for predicting cooling limit of water source when heat pump operates continuely. Compare with water temperature test data published on existing paper refer to the People's Hospital located in Kaixian county seat, the accuracy and reliability of software model could be authenticated.
引文
[1] Dorota Chwieduk. Analysis of utilization of renewable energies as heat sources for heat hump in building sector in Poland. WREC.1996.
    [2]江亿.中国建筑节能年度发展研究报告[M].北京:中国建筑工业出版社,2007.
    [3]卢军,范芸青,陈静等.水轮机-水泵在水源热泵取水系统应用的可行性[J].湖南大学学报.2009,12(36):90~93.
    [4] Rose R. Heat pump in Europe—a overview. Proceedings of the 7th International Energy Agency Heat Pump Conference. Beijing,2002,47~53.
    [5] Calm J M. Heat pumps in USA [J]. International Journal of Refrigeration, 1987,10(4):190~196.
    [6] S.P.Kavanaugh. Design Considerations for Ground and Water Source Heat Pump in Southen Climates [J]. ASHRAE Transaction. 1989.89(1):1139~1149.
    [7] Thore Berntsson. Heat sources—technology, economy and environment [J]. International Journal of Refrigeration.2002,25:428~438.
    [8]姚杨,马最良.浅议“热泵”定义[J].暖通空调.2002,32(3):33~36.
    [9]倪龙,封家平,马最良.地下水源热泵的研究现状与进展[J].建筑热能通风空调.2004,23(2):16~19.
    [10]曲云霞.地表水源热泵的设计[J].可再生能源.2003,109(3).
    [11]吴浩,王勇,李文.地表水源热泵以长江水作为低位冷热源的可行性分析[J].制冷与空调.2009,23(1):12~15.
    [12] Kikegawa Y, Genchi Y, Kondo H, et al. Impacts of city-block-scale countermeasures against urban heat island phenomena upon a building’s energy consumption for air-conditioning [J]. Applied energy, 2006,83(6):649~668.
    [13]刘大能.水源热泵的技术特点及几种形式[J].现代机械. 2007(5):92~94.
    [14] Ministry of Water Resources of PR China, Water Resources Bulletin, the People’s Republic of China 2002, Beijing, China, 2003. Available from: .
    [15] Chenxiao, Guoqiang Zhang, Jianguo Peng. The performance of an open-loop lake water heat pumpsystem in south China [J]. Apply thermal energy.2006(26):2255~2261.
    [16]郁永章.热泵原理与应用[M].北京:机械工程出版社,1993.
    [17] Hanneke V. Large energy systems-an international overview [J]. IEA Heat Pump Centre Newsletter, 1998,16(1):10~15.
    [18] C.Yvuzturk, A.D.Chiasson. Performnce Analysis of U-Tube Concentric Tube, and Standing Column Well Ground Heat Exchangers Using a System Simulation Approach [J]. ASHRAETrans. 2002,108(1):925~938.
    [19] S.P.Kavanaugh, Woodhouse J G, Carter J R. Test results of water-to-air heat pumps with high cooling efficiency for ground-coupled applications [J]. ASHRAE Transactions. 1991,97:895~901.
    [20] S.P.Kavanaugh, Pezent M C. Lake water applications of water-to-air heat pumps [J]. ASHRAE Transactions.1990,96(1):813~820.
    [21] V.R. Tarnawski, W.H. Leong, T. Momose, Y. Hamada. Analysis of ground source heat pumps with horizontal ground heat exchangers for northern Japan [J]. Renewable Energy.2009,(34):127~137.
    [22] Satoru Okamoto. A heat pump system with a latent heat storage utilizing seawater installed in an aquarium [J]. Energy and Building.1996.(38):121~128.
    [23] JARN Ltd. A new river water source heat pump project [J]. Japan Air Conditioning, Heating & Refrigeration News.1996.8~25.
    [24] Tim Peer, P E. Lake-source cooling [J]. ASHRAE Journal.2002, 4(44): 37~39.
    [25] T.Davey. Deep lake water cooling a matter of degrees. Environmental Science Engineering, 2003 (9): 121~133.
    [26] Buyttkalaca O, Ekinci F, Yilmaz T. Experimental investigation of Seyhan River and dam lake as heat source (sink) for a heat pump [J]. Enemy, 2003,(28):157~169.
    [27] F.Ekinci, T.Yilmaz. Experimental investigation of Seyhan River and dam lake as heat source-sink for a heat pump [J]. Energy 2003,(28):157~160.
    [28] Johnson R R, Edwards J A,Mulligan J C.Experimental evaluation of three ground-coupled heat pump systems [J]. ASHRAE Transactions.1988,1:280~290.
    [29] Mohammad-Zadeh Y,Johnson R R,Edwards J A,etc.Model validation for ground-coupled heat pumps [J]. ASHRAE Transactions.1989,2:215~221.
    [30] Unsal M, Byrnes J S,Byrnes J F.Recent advances in Fourier analysis and its applications [J]. Dordrecth (The Netherlands):KluwerAcademic Publishers,1990,59~72.
    [31] Yumrutas R, Onsal M.Computational model of a heat pump system with a hemispherical surface tank as the ground heat source [J]. Energy.2000,25:371~388.
    [32]吕灿仁,马一太.运用热泵提高低温地热采暖系统能源利用率的分析[J].天津大学学报.1982:117~121.
    [33]陈金华,付祥钊,丁勇.重庆市开县人民医院湖水源热泵空调系统[J].暖通空调.2008,38(4):86~89.
    [34] Lu Jun, Wang Zuojun. Feasibility of surface water heat pump system in Xintiandi project in Chongqing [J].Journal of Central South University of Technology.2007.vol.14:240~244.
    [35]董孟能,李怀玉等.重庆江水水源热泵应用关键技术——取水及水质处理技术探讨[J].建筑科技.2007,17.
    [36]刘宪英,陈建萍,王文等.地表水-水热泵冬夏暖-冷联供实验研究[J].制冷学报.2002.23(2):10~14.
    [37]喻李葵,刘婷婷等.地表水源热泵空调系统供暖模式优化方法[J].制冷与空调.2004,8:1~4.
    [38]孙德兴,吴荣华等.开发水源技术解决热泵发展的瓶颈问题[J].暖通专题.2006 (5):30~32.
    [39]任玉迎,南远新等.海水源热泵的发展和应用[J].制冷与空调.2007,4(2):8~9.
    [40]林汉柱,陈晓等.湖南湘潭城市中心区采用地表水源热泵的区域供冷供热系统[J].暖通空调.2007,1:38~40.
    [41]陈金华,刘勇,丁勇等.重庆开县人民医院湖水源热泵空调系统实测分析[J].暖通空调HV&AC. 2008,38(8):111~114.
    [42] Orlod G T. Mathematical modeling of water quality: Stream, Lakes and Reserviors.ⅡASA , 1983.
    [43] Harleman D R F. Hydrothermal Analysis of Lakes and Reservoirs. J. Hyd. Div., ASCE, Vol1108, No1Hy3, 1982.
    [44]陈永灿,张宝旭,李玉梁.密云水库垂向水温模型研究[J].水利学报.1998,9(9):13~16.
    [45]李怀恩,沈晋.一维垂向水库水温数学模型研究与黑河水库水温预测[J].陕西机械学院学报.1990,4:58~62.
    [46]钱小蓉,廖红,顾恒岳等.水库水温预测模型研究[J].重庆大学学报.1997,20(3):134~140.
    [47]闵骞.道尔顿公式的应用研究[J].水利水电科技进展.2005,25(1):17~20.
    [48]陈惠泉,何树椿,刘长贵,张思群.超温水体水面蒸发与散热[J].水利学报.1989,10.
    [49]江春波,张庆海,高忠信.河道立面二维非恒定水温及污染物分布预报模型[J].水利学报.1998(9):25~30.
    [50]陈小红.湖泊水库垂向二维水温分布预测[J].武汉水利电力学院学报.1992,(4):12~16.
    [51]张仙娥,周孝德等.水库水温研究方法述评[J].水资源与水工程学报.2006,6:17(3):1~4.
    [52]陈凯麒,李平衡等.温排水对湖泊、水库富营养化影响的数值模拟[J].水利学报.1991,1.
    [53]林秉南.光滑平面二元风蒸发[J].水利学报.1985,1.
    [54] Wengefeld P., Plate E.J., Evaporation from a water current under the influence of wind-induced waves.17th congress IAHR,1977.
    [55] Shaw C.Y, Lee Y. Wind-induced turbulent heat and mass transfer over large bodies of water [J]. J Fluid Mech, vol.77, part 4,1976.
    [56]陈永灿,黄光伟,玉井信行等.日本谷中湖水流及水质特性分区模拟分析[A].中国环境水力学[M ].北京:中国水利水电出版社.2002:15~21.
    [57] Hattemer B, Kavanaugh S P. Design temperature data for surface water heating and coolingsystems [J]. ASHRAE Transactions.2005,111(1):15~20.
    [58] Sauer J H, Howell R H.Heat Pump systems [J].New York:John Wiley&Sons.1993,106~110.
    [59] Aittomaki. Lakes as heat source in cold climate. Proceedings of the 21st International Congress of Refrigeration,Washington.2003:111~115.
    [60]国家海洋局第二海洋研究所.象山港电厂温排水对海洋生态环境影响预测研究报告[R].2006.
    [61]陈晓,张国强,彭建国等.开式地表水源热泵在湖南某人工湖的应用研究[J].制冷学报.2006,6:221~225.
    [62]范亚明.开式静水水体水源热泵的水体传热与系统性能研究[D].2009,9.
    [63] Pezent M C. Kavanaugh S P Development and verification of a thermal model of lakes used with water source heat pumps [J]. ASHRAE Transactions. 1990.96(1):574~582.
    [64] Chiasson A D. Spitler J D.Rees S J A model for simulating the performance of a shallow pond as a supplemental heat rejecter with closed-loop ground-source heat pump systems 2000(2).
    [65] B.A.JUBRAN, A.R.EL-BAZ M. AEffects of climatic conditions on the permormance of carnallite solar ponds INTERNATIONAL JOURNAL OF ENERGY RESEARCH.VOL.20:1037~1048 (1996).
    [66] Lewis W, Incropera, F. and Viskanta, R.‘Interferometric study of mixing layer development in a laboratory simulation of solar pond condition, Solar Energy.1982,(28):389~401.
    [67] Joseph F.A wind-mixed layer model for solar ponds Solar Energy, 1983,31(3):243~259.
    [68]陆俊卿.水库水温数学模型及其应用[J].水利发电学报.2008,27(5):123~129.
    [69] Jason. Antenucci and Alan Imerito. The CWR Dynamic reservoir simulation model dyresm [M]. Australia: The University of Western Australia.
    [70] Sasamori, T 1972, A linear harmonic analysis of atmospheric motion with radiative dissipation [J]. Meteor Soc. Japan, Vol 50, 505~518.
    [71] Kuhn, F M.,1963 Radiometer sonde observations of infrared flux emissivity of water vapour [J]. Appl. Met., Vol.2,368~378.
    [72] stephens, G.L,1978,Radiation profiles in extended water clouds -Parameterization schemes [J]. Atoms. Sci.,Vol.35.2123~2132.
    [73] Andrew D. Chiasson. A Model for Simulating the Performance of a Shallow Pond as a Supplemental Heat Rejecter with Closed-Loop Ground-Source Heat Pump Systems[J]. ASHIRAE Trans,2000,vol106:107~122.
    [74]闵骞.水面蒸发计算模型研究[J].水利水电科技进展.2003,(23):41~44.
    [75] V.V.N.Kishore. A practical collector efficiency equation for nonconvecting solar pond [J] Solar Energy.1985,35(3):211~217.
    [76] John R.Hull. Solar pond ground heat loss to moving water table [J]. Solar Energy.1985,35(1):211~217.
    [77] J.Srinivasan. The effect of bottom reflectivity of a solar pond [J]. Solar Energy.1987,39(4):361~367.
    [78] John R.Hull. Dependence of ground heat loss upon solar pond size and perimeter insulation calculated and experimental results [J]. Solar Energy.1984,33(1):25~33.
    [79] ARHRAE handbook—fundamentals. Atlanta: American Society of Heating, Refrigerating, and Air-conditioning Engineers, Inc., 1997,132~135.
    [80] Gerhard H, Jirka. Donald R F Harleman. Stability and mixing of a vertical plane buoyant jet in confined depth [J]. Fluid Mech.1979,9(4):275~304.
    [81] Kuang C P, Lee J H W. A numerical study on the stability of a vertical plane jet in confined depth [A]. Environmental Hydraulics[C].Lee, Jayawardena &Wang(eds)(c).Balkema, Rotterdam ,ISBN 90 5800 035 3 ,19.
    [82] Jannis Andreopoulos ,etc. Experiments on vertical plane buoyant jets in shallow water [J]. Fluid Mech.1986 ,168 :305~336.
    [83] Kuang C P ,Lee J HW. Effect to downstream control on stability and mixing of a vertical buoyant jet in confined depth [J]. Journal of Hydraulic Research.2001 ,39(4):375~391.
    [84]汪训昌.空调冷水系统的沿革与变流量一次泵水系统的实践[J].暖通空调,2006,36(7):32~40.
    [85]张再鹏,陈焰华.一次泵变流量系统研究现状综述[J] .暖通空调,2009,36(6):47~50.
    [86] Hong Tianzhen. Chou S.K., Bong T.Y Building simulation: an overview of developments and information sources [J].Building and Environment.2000,35(4),347~361.
    [87]清华大学建筑技术科学系Dest开发小组.Dest用户使用手册.2004,4.
    [88]李力.建筑能耗计算法的分析比较[J]重庆建筑大学学报1999,21(5).
    [89] Allen J J,Hamilton J F. Steadu-state reciprocating water chiller models. ASHRAE Transactions, 1983,89(2):398-407.
    [90]赵宇.不同类型集中空调系统能耗模拟分析及评价[D].西安建筑科技大学硕士论文.2006,6.
    [91] Manske K A,Klein S A,Reindl D T.Load sharing strategies in multiple compressor refrigeration sys—terns [J].ASHRAE Transactions.2002,(1) 08:327~333.
    [92] Yu Fw,Chan KT.Optimum load sharing strategy for multiple-chillersystems serving air-conditioned buildings [J].Building and Environment.2007,42(4):1581~1593.
    [93]董天禄.离心式/螺杆式制冷机组及应用[M].机械出版社,2002.
    [94] Chow T T,Au W H,Yau R,et al. Applying district-cooling technology in HongKong. Applied Energy, 2004,79(11):275~289.
    [95]朱贞涛.制冷空调系统中离心泵变频调速的性能分析与试验[J].流体机械.2001,11:58~60.
    [96]尹丽春.变频调速系统特性参数的分析与预测[D].大庆石油学院硕士学位论文.2004,(2):30~50.
    [97]孙一坚.空调水系统变流量节能控制_续1_水流量变化对空调系统运行的影响[J].暖通空调.2004,34(7):60~62.
    [98]孙一坚,潘尤贵.空调水系统变流量节能控制_续2_变频调速水泵的合理应用[J].暖通空调.2005,35(10):90~92.
    [99]罗新梅.空调冷水变流量系统优化设计与控制研究[D].湖南大学硕士学位论文.2003,3.
    [100]刘俊.空调水系统变频及其控制策略的研究[J].建筑科学.2006.NO.4.
    [101]李苏泷.一次泵系统冷水变流量节能控制研究[J].暖通空调.2006.NO.4.
    [102]伍小亭,芦岩.循环水泵变频调速运行实例研究[J ] .暖通空调.2006,36 (8) :25~32.
    [103]柏晨,柏峻.空调冷冻水系统末端定压差法中控制带的研究[J].建筑热能通风空调.2005,24 (3) :36~39.
    [104]黄奕,张玲.压差控制水泵变频调节的工作特性探讨[J].暖通空调.2006 ,36 (4) :75~78.
    [105]吴浩.湖水源热泵系统水体热承载能力的研究[D].重庆大学硕士学位论文.
    [106]黄向阳,杜国军.湖水源热泵冷排水对湖泊水温的影响模拟研究[J].水科学与工程技术.2009,4:44~46.
    [107]陈金华,刘猛等.湖水源热泵空调系统取水方式性能分析[J].湖南大学学报2009,12(36):79~83.
    [107]李永安,常静,徐广利,戎卫国,刘学来.封闭式冷却塔供冷系统气象条件分析[J].暖通空调,2005,35(6): 107~108.
    [108]秦红,文远高,张文华.空调系统的地表水利用及其节能和环境影响分析[C].全国暖通空调制冷1998年学术文集,1998: 322~326.
    [109]李永安,刘杰,李继志.空调用封闭式冷却塔热工性能的实验方法[J].实验室研究与探索, 2005, 24(1): 122~125.
    [110]刘泽华,彭梦珑,周湘江.空调冷热源工程[M].北京:机械工业出版社,2005.
    [111]范亚明,付祥召.湖泊、池塘的水温模型与最大供冷能力的分析研究[J].暖通空调,2009,39(7): 27~32.
    [112]濮培民.水面蒸发与散热系数公式研究(Ⅰ) [J].湖泊科学.1994,6(1) :1~12.
    [113]濮培民.水面蒸发与散热系数公式研究(Ⅱ) [J].湖泊科学.1994,6(3) :201~210.
    [114]陈小红.分层型水库水温水质模型预测研究[M].武汉:武汉水利电力学院出版社,1991.
    [115]戚琪,彭虹,张万顺等.丹江口水库垂向水温模型研究[J].人民长江,2007,38(2):51~53.
    [116]贺伟伟,李兰,张洪斌.水库垂向水温数值模拟研究[J].水电能源科学,2009,27(1):109~111.
    [117]雒文生,宋星原.水环境分析及预测[M] .武汉:武汉水利电力大学出版社,2000.
    [118]殷学鹏,杨传智.垂向一维水质模型及在龙滩水库水质预测中的应用[J].水利水电环境, 1991 (1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700