杉木人工林生态系统碳贮量与碳平衡的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杉木是我国南方亚热带地区特有的优良速生乡土用材树种。目前,我国杉木林面积达1239.1×10~4hm~2,蓄积量为47357.33×10~4m~3,分别占全国人工林面积和蓄积的26.55%和46.89%,杉木人工林是南方集体林区的主要森林类型之一,在缓解我国经济发展对木材需求增长的压力和支持天然林保护等重大生态工程的实施方面起着重要作用。杉木人工林生态系统碳循环研究将为进一步深入研究我国乃至全球范围内的森林生态系统碳循环提供正确的基础数据,为正确估算森林的生态效益提供参考。本研究根据长期定位观测的数据,从能量转化的角度评估了杉木人工林生态系统碳的吸收、储存和排放情况。主要的研究结果为:
     不同层次的杉木叶中碳素含量平均值的大小排序为:上层叶>中层叶>下层叶,变化范围为46.12%~55.24%,不同层次的杉木枝中碳素含量平均值的大小排序为:中层枝>上层枝>下层枝,在39.17%~49.65%之间变化;不同年龄杉木枝、叶中碳素含量的季节变化规律均表现为:冬季的>秋季的>夏季的>春季的,杉木叶中碳素含量的年平均值为50.44%,杉木枝中碳素含量的年平均值为44.79%,变异系数为2.08%~2.25%。10年生杉木各器官的平均碳素含量变化范围为45.29%~49.72%,11年生的为45.80%~50.22%,14年生的为45.80%~50.93%,变异系数均为1.68%~8.44%。不同年龄杉木各器官按其碳素含量的大小排序基本上为:树叶>树皮>树根>树干>树枝>球果。10年生杉木各器官碳素含量的算术平均值为47.56%,11年生的为47.79%,14年生的为48.07%。杉木林年龄的增长并未明显地影响林下植被各组分、死地被物的碳素含量的变化规律。不同年龄杉木林中各层次植物按其碳素含量大小顺序排列均为:乔木层>灌木层>草本层。
     10年生和14年生杉木林土壤各层的碳素含量随土壤深度的增加而逐渐下降,11年生杉木林地土壤各层的碳素含量却明显低于10年生和14年生的,表土层(0~15cm)的碳素含量仅为0.60%。14年生杉木人工林不同层次土壤有机碳含量的分异表现为:0~15cm土层(2.06%)>15~30cm土层(1.71%)>30~45cm土层(1.24%)>45~60cm土层(0.98%)>60~75cm土层(0.82%)。3种不同经营方式杉木人工林采伐迹地土壤中平均有机碳含量依大小顺序排列为:杉木林地(1.36%)>经济林地(2.06%)>农用后撂荒地。同林区内,3种不同森林类型土壤不同层次中的有机碳素含量分布规律基本一致,均随着土壤深度的增加而下降。杉木人工林不同层次土壤有机碳含量与土壤pH值呈线性正相关,相关系数r≥0.4,与土壤全氮含量、C/N比呈显著的线性正相关,相关系数分别为r≥0.81和r≥0.87。
     湖南会同杉木人工林生态系统中碳素贮量主要由三个部分组成,即植被层、死地被物层和土壤层,按其大小顺序排列为:土壤层>植被层>死地被物层。10年生、11年生和14年生杉木林生态系统中碳素贮量分别为120.52、90.48和171.40t/hm~2,具有一定的年龄阶段和地带性特点。随着杉木林分年龄的增长,乔木层碳素贮量的优势逐渐加强,乔木层的碳素贮量从10年生的30.38t/hm~2增加到14年生的61.24t/hm~2,10年生时,乔木层的碳素贮量占整个生态系统总碳素贮量的25.21%,
Chinese fir (Cunninghamia lanceolata (Lamb) Hook) is a fast-growing native Chinese species with valuable timber attributes in subtropical area of southern China. The statistics from the 5th National Forest Resources Inventory showed that the total area and stocking volume of Chinese Fir plantation have reached 12.39 million hm2 and 473.57 million m~3 respectively, accounting for 26.55% and 46.89% of those of plantations in the whole nation. Chinese fir plantation is one of main forest types in southern forest zone and will contribute a great deal to alleviating the huge timber demand from rapid economic growth and assisting national forest conservation at the national level. Study on carbon cycling in Chinese fir plantation ecosystem could provide some correct and basic data for making a further thorough study on carbon cycling in forest ecosystems by region scale or nation scale, or even by globe scale, and provide some references for correctly estimating ecological benefits of forest. Based on the data collected from long-term located observation and from angle of energy transformation, the absorption, storage and release rates of carbon in Chinese fir plantation ecosystem were investigated in this dissertation. The main results of the research are as follows:Used permanent sampling plots data investigated the carbon content of a Chinese fir plantation ecosystem. The results showed that the average foliar carbon contents in the vertical canopy profile varied from 46.12% to 55.24%, decreasing from the top to the bottom of the canopy and the average carbon content of branches in the vertical canopy profile varied from 39.17% to 49.65% in the following order: middle canopy > upper > lower canopy, The carbon contents of branches and leaves of different ages varied with the season in the following order: winter>autumn>summer>spring. The average foliar carbon content was 50.44%, with a coefficient of variation of 2.08%. The average carbon content for branches was 44.79%, with a coefficient of variation of 2.25%. The carbon contents of different organs varied form 45.29% to 49.72% for the 10-year-old plantation, form 45.80% to 50.22% for the 11-year-old stands, and 45.80% to 50.93% for the 14-year-old plantation. The variation coefficient ranged form 1.68% to 8.44%. The carbon contents of different organs varied in the following order: leaves> bark> roots > stems >branches >cones. The arithmetic average carbon content of different organs was 47.56% for the 10 years old Chinese firs, 47.79% for the 11-year-old Chinese firs, and 48.07% for the 14 years old Chinese firs. No obvious trends were detected for the carbon content in different groups of under-storey of plants or the duff layer as the forest aged. The carbon content in the whole canopy profile of a stand varied in the following order: over-storey trees > shrubs > herbaceous species.The soil organic carbon content decreased as the depth increased in the 10-year-old and the
    14-year-old Chinese Fir plantation, but that in the 11-year-old Chinese Fir plantation was lower and that in 0~l 5cm soil layer only was 0.60%. The diversity of soil organic carbon content in different layers displayed as: the 0~15cm soil layer (2.06%)>the 15~30cm soil layer (1.71%)>the 30~45cm soil layer>(1.24%)the 45~60cm soil layer (0.98%)>the 60~75cm soil layer (0.82%) in the 14- year-old Chinese fir plantation. Average soil organic carbon contents with three kinds of land use patterns was in the order as: the closed Chinese Fir forest-lands (1.36%)>the cash-tree forest-lands (1.23%)>the fallow-lands after farming (1.10%). The Vertical distribution law of soil carbon contents had no difference in three kinds of forest types, and soil carbon content decreased as the soil depth increased. Soil organic carbon contents of different layers in Chinese fir plantation was positive linear correlation with the soil pH value (r≥0.4), and had a significant positive relationship with total nitrogen (r≥0.81) and C/N ratio(r≥ 0.87).Carbon storage of Chinese fir plantation ecosystem mainly consisted of three sections, that was the trees, the litter and the soil at Huitong, Hunan, and the order of whose carbon storage could be ranked as follow: the soil > the trees > the litter. Carbon storage of the 10-year-old Chinese fir plantation, the 11-year-old Chinese fir plantation and the 14-year-old Chinese Fir plantation was 120.52, 90.48 and 171.40 t/hm2, respectively, with characteristics of age stage and zone. Superiority of carbon storage in the trees gradually strengthen with the forest stands age growth, carbon storage of the trees had gone up from 30.38 t/hm2 in the 10-year-old to 61.24 t/hm2 in the 14-year-old, carbon storage of the trees in the ten-year-old, the 11-year-old and the 14-year-old occupied 25.21%, 38.44% and 38.50% of total carbon storage in the whole ecosystem, respectively, carbon storage of different organs was basically direct proportion with its biomass, for example, biomass of the trunk occupied greatest proportion of stands biomass, its carbon storage accounted for greatest proportion of the trees carbon storage, up to 47.17%, and increased with the forest stands age growth, carbon storage in branches, leaves, bark and roots occupied more than 48.11% of that in the trees, and carbon storage of aboveground accounting for more than 84.73% of that in the trees.Carbon storage in forestlands soil layer (0~60cm) was a considerable figure, soil carbon storage in the 10-year-old, the 11-year-old and the 14-year-old Chinese fir forestlands was up to 88.21, 54.03 and 108.20 t/hm2, respectively, accounting for more than 59.59% of carbon storage in the whole ecosystem. In the soil layer, carbon storage of the surface soil (0~15cm) layer in the 10-year-old, the 11-year-old and the 14-year-old Chinese fir forestlands held 36.57%, 18.53% and 34.26% of that in the soil layer (0~ 60cm) respectively, and that of the soil layer (0~30cm) in the 10-year-old, the 11-year-old and the 14-year-old Chinese fir forestlands took up 63.44%, 55.62% and 61.05% of that in the soil layer (0~
    60cm), respectively. The ratio of carbon storage of aboveground to that of underground in the 10-year-old, the 11-year-old and the 14-year-old Chinese fir plantation ecosystem was 1 : 3.53, 1 : 2.05 and 1 : 2.22, respectively, and deceased as the Chinese fir forest age growth. Extant carbon storage, potential carbon storage and potentiality of carbon sequestration of Chinese fir forest vegetation in Hunan Province was 0.1916×10~8t, 1.4710×10~8t and 1.2794×10~8t, respectively, extant carbon storage was only accounting for 13.03% of potential carbon storage, was less than the whole national level 26.46%. The annual net primary production of the 10-year-old, the 11-year-old and the 14-year-old Chinese fir plantation was respectively 11.624, 12.807 and 19.459 t/hm2 · a, while their annual carbon amount was up to 5.488, 6.059 and 9.285 t/hm2 · a, respectively, the annual carbon amount in the litter-fall was respectively 0.305, 1.141 and 0.550 t/hm2 · a.Before deforestation, carbon storage of forestlands soil (0~60 cm) amounted to 160.38 t/hm~2 in the 22-year-old Chinese Fir plantation, that one year after 100% of clear cut, carbon storage in the deforested-land soil (0-60 an) lost 35.00%, two years, 44.65%, and three years, 43.93%, compared with the control standing forest, three years after 50% thinning and 100% of clear cut, carbon storage in the deforested-land soil (0~60 cm) lost 16.14%and 45.15%, respectively, and carbon storage in the deforested-land soil (0~60 cm) indicated evidently the diversity with different land use patterns. Carbon storage in the deforested-land soil (0~60 cm) with three kinds of land use patterns was ranked in the order as: the closed Chinese Fir forest-lands (108.20t/hm2)>the economic forest-lands (98.64 t/hm2)>the fallow-lands after farming (94.21t/hm2). In contrast to the closed Chinese Fir forest-lands, carbon storage in the fallow-lands after farming soil (0~ 15 cm) layer lost 12.70%, soil (0~30 cm) layer 21.33%, soil (0~ 60 cm) layer 51.78%. Carbon storage in the fired land soil (0~45 cm) lost 22.60% within 40 days after fired, the loss in soil (0~45 cm) attained 12.52 t/hm2, accounting for 75.51 % of the total loss. In the same forest zone, carbon storage of the soil (0~75 cm) in Chinese fir forest-land, Masson Pine forestland and the second broadleaf forestlands was respectively 123.45, 89.95 and 134.41 t/hm2, the order of which could be ranked as follow: Masson Pine forestland> Chinese fir forest-land > the second broadleaf forestlands, and mainly distrusted in the soil (0~30cm) layer.The average annual litter-fall was 1201.24 kg/hm2 (dry weight) in the 14~ 16-year-old Chinese fir plantation, of which needle accounted for 69.84%, twig, 24.54%, fallen fruit and other fragments, 5.63%, carbon contents of which had some difference, varied with the components of litter-fall, carbon storage in different components was in the order as follow: needle>fallen fruit>other fragments>twig. The annual return of carbon amount gradually increased with the forest stands age growth. Variation of carbon content in litter-fall possessed different not only in time but also in components, carbon contents in needle or in
    twig decreased but their release ratios increased with the passage of time in the decomposition course, carbon release ratios of needle was higher than that of twig, there were some difference between carbon release law of litter-fall and decomposition speed of total dry matter. The annual release amount of carbon was about 149.25 kg/hm2 · a through one year decomposition, occupying 27.22% of carbon amount in the falling, of which carbon release amount of needle was up to 120.12 kg/hm2 · a, accounting for 81.03%, twig, fallen fruit and other fragments, 29.13 kg/hm2 · a, accounting for 18.97%.The soil CO2 release from three kinds of forestlands of Chinese fir plantation was in the range of 0.1005~0.8865 g/m2 · h at Huitong, Hunan, the average value of which was in the order as: the afforested land > the deforested land > the closed woodland, there was significant difference of average soil CO2 release between the afforested land, the deforested land and the closed woodland. The soil CO2 release from forestland had a certain seasonal change; the highest value of soil CO2 release appeared in summer and the lowest in winter. The soil CO2 release circadian change with a regular rhythm, the soil CO2 release on day was higher than that at night. The soil CO2 release from the deforested lands with different treatments was evident difference in a certain time lapse. The average value of soil CO2 flux from the afforested lands was 127.776 kg/hm2 · d, from the closed woodland, 86.352 kg/hm2 · d, and form the deforested lands, 120.00 kg/hm2 · d.The soil CO2 release was positive liner correlation with the soil temperature and soil moisture at a certain range, and also with the soil C/N ratio, was parabola correlation with air temperature in stands. The relationship between the soil CO2 release and environment factors was more complicated, and different with the difference of forestlands type. The order of correlation coefficients between soil CO2 release and environment factors in the afforested land ranked as: soil temperature at 10cm depth > soil temperature at 5cm depth>ground temperature>soil temperature at 15cm depth>soil temperature at 20cm depth>C/N ratio in soil (0~45cm)>air temperature in stands>soil moisture at 10cm depth>C/N ratio in soil (0~15cm)>soil moisture at 20cm depth>ground moisture, in the closed woodland, as: air temperature in stands >ground temperature > soil temperature at 10cm depth>soil temperature at 5cm depth > soil temperature at 15cm depth > soil temperature at 20cm depth > ground moisture > C/N ratio in soil (0~15cm)>C/N ratio in soil (0~45cm)>soil moisture at 10cm depth>soil moisture at 20cm depth, in the deforested lands, as: soil temperature at 10cm depth>soil temperature at 5cm depth>C/N ratio in soil (0~45cm)>soil temperature at 15cm depth>soil temperature at 20cm depth>ground temperature >soil moisture at 10cm depth>C/N ratio in soil (0~15cm)>ground moisture>soil moisture at 20cm depth. P value of t-test showed that the soil CO2 release in Chinese fir forestlands was the result of comprehensive effects by manifold environment factors. The soil CO2 release from the afforested lands
引文
[1] 李克让主编.土地利用变化和温室气体净排放与陆地生态系统碳循环[M].北京:气象出版社,2002,1-3
    [2] Elisabeth K. Greenhouse gas emission, Asia and the Pacific: Moving ahead [J]. AMBIO, 1996, 25(4): 219
    [3] Keeling C D, Bacastow R B, Bainbridgeetal A E. Atmospheric carbon dioxide variations at Mauna Loa observatory [J], Haw Waii Tellus 1976b, 28:538-551
    [4] Keeling C D, Adams Jr, Ekdahl Jr, et al. Atmospheric carbon dioxide variations at South Pole [J], Tellus, 1976a, 28:538-551
    [5] Keeling C D, Bacastow R B. Impact of industrial gases on climate In: Energy and climate [M]. National Academy of Sciences. Washington D.C. USA, 1977, 72-95
    [6] Houghton R A, Jenkins G J, Ephraums J J. Climate Change: The IPCC scientific assessment [M]. Cambridge University Press, Cambridge, 1990, 1-150
    [7] IPCC. Climate Change 2001[M]. Cambridge University Press, Cambridge, 2001, 12-14
    [8] 徐德应,刘世荣.温室效应、全球变暖与林业[J].世界林业研究,1992,5(1):25-28
    [9] Manabe S, Stouffer R J. A CO_2-Climate sensitivity study with a mathematical model of the global climate [J]. Nature 1979, 282:491-493
    [10] 贺庆棠.全球性环境污染和资源破坏的现状与对策[J].北京林业大学学报,1989,11(4):126-127
    [11] 赵宗慈.近39年中国气温变化与城市化影响[J].气象,1990,17(4):14-17
    [12] 钟秀丽,林而达.气候变化对我国自然生态系统影响的研究综述[J].生态学杂志,2000,19(3):62-66
    [13] 窦贻俭等编著.环境科学原理[M].南京大学出版社,1998
    [14] Lashof D A. The dynamic greenhouse: feedback processes that may influence future concentrations of atmospheric trace gases and climate change [J]. Climate Change. 1989, 14, 213-242
    [15] 张金屯.全球气候变化对自然土壤碳、氮循环的影响[J].地理学报,1998,18(5):465-471
    [16] Woodward F I. The ecological consequences of global climate change [A]. In: Begon, Fitter M A H, Macfadyen A eds. Advances in ecological research [C]. Academic Press, 1992, 22:1-62
    [17] Kosinski L A. Issues in global change research: problems, data and programmers [J]. HDP Report, 1996(6): 7-21
    [18] Sims Z R, Nielsen G A. Organic carbon in Montana soil as related to clay content and climate [J]. Soil Soc. Sci. Amer. J, 1986, 50:1269-1271
    [19] 赵其国.土壤圈在全球变化是的意义与研究内容[J].地学前缘,1997,4(1-2):153-162
    [20] 徐德应.大气CO_2增长和气候变化对森林的影响研究进展[J].世界林业研究,1994,(2):26-32
    [21] 钟秀丽,林丽达.气候变化对我国自然生态系统影响的研究综述[J].生态学杂志,2000,19(5):62~66
    [22] Schimel D S, Braswell B H, Holland E A, et al. Climatic edaphic, and biotic controls over storage and turnover of carbon in soils [J]. Global Biogeochem Cycles, 1994,8:279-293
    [23] Mcguire A D, Melillo J M, Kicklighter D W, et al. Equilibrium responses of soil carbon to climate change: empirical and process based estimates [J]. Biogeog, 1995,22:785-796
    [24] 刘璨.温室效应及林业对策[J].世界林业研究,1993,(5):1-8
    [25] 李意德,中国热带天然林变迁对大气CO_2的影响及经济损益评估[J].生态科学,1999,18(2):1-7
    [26] 白希光.日本治理“温室效应”研究现状[J].环境就学进展,1994,(6):58-65
    [27] 全球变化与陆地生态系统国际研讨会.植物生态学报,1996,(1):40
    [28] 黄耀.中国陆地和近海生态系统碳收支研究[J].中国科学院院刊,2002,2:104-107
    [29] 袁道先.地球系统的碳循环和资源环境效应[J].第四纪研究,2001,21(3):223-232
    [30] 王凯雄,姚铭,许利君.全球变化研究热点——碳循环[J].浙江大学学报(农业与生命科学版),2001,27(5):473-478
    [31] 李绚丽,谈哲敏.大气圈碳循环的模拟研究进展[J].气象科学,2000,20(3):400-412
    [32] 秦建华,姜志林.森林在大气碳平衡中的作用[J].世界林业研究,1997,(4):18-25
    [33] Olson J S, Watts J A, Allison L J. Major world Ecosystems Ranked by Carbon in live Vegetation: A Database [J]. 1983, Oak Ridge National Laboratory, TN, NDP-017
    [34] Post W M, Emanuel W R, Paul J, et al. Soil carbon pools and world life zones [J]. Nature, 1982,298:156-159
    [35] WBGU Special Report. The accounting of biological sinks and sources under the Kyoto Protocol. 1998
    [36] Dixon R K, Brown S, Houghton R A. et al. Carbon Pools and Flux of Global Forest Ecosystem [J]. Science, 1994,264(14): 185-190
    [37] Ajtay G L. Terrestrial primary production and phytomass [A]. The Global Carbon Cycle[C], SCOPE 13, John Wiley, Sons, Chichester, New York: 1979, 129-181
    [38] 徐德应译.土地利用变化和林业的温室气体排放[J].政府间气候变化委员会(IPCC).1992
    [39] Houghton R A. Land-use change and the carbon cycle [J]. Global Change Biology, 1995,1:275-287
    [40] Potter C S. Terrestrial biomass and the effects of deforestation on the Global Carbon [J]. Bioscience, 1999, 49(10): 769-778
    [41] Winjum, Jack K, Robert K, et al. Forest management and Carbon storage: An analysis of 12 key forest nations [J]. Water, Air, and Soil Pollution, 1993,70:239-257
    [42] Tans P P, Fung I Y, Takahashi T. Observational constraints on the global atmosphere CO_2 budget [J]. Science, 1990, 247:1431-1438
    [43] Siegenthaler U, Sarmiento J L. Atmospheric dioxide and the ocean [J]. Nature, 1993, 365:119-125
    [44] IPCC. Special Report for the UN Framework Convention on Climate Change on Radioactive Forcing of Climate Change. 1994, 1-13
    [45] Keeling R F, Piper S C, Heimann M. Global and hemispheric CO_2 sinks deduced from change in atmosperic O_2 concentration. Nature, 1996, 381: 218-221
    [46] M. J. APPS. Boreal Forests and Tundra [J]. Water, Air, and Soil Pollution, 1993,70:39-53
    [47] Tatyana P.Koichugina Ted S. Vinson.(朱云辉译)俄罗斯森林在全球碳平衡中的作用[J].人类环境杂志,1995,24(5):258-264
    [48] Hazel R, Delcourt W F, Harris. Carbon budget of the southeastern U.S.Biota: analysis of historical change in trend from source to sink [J]. Science, 1980,210:321-323
    [49] 王效科,冯宗炜.森林生态系统中生物量和碳贮量的研究历史[A].见:王如松主编.现代生态学热点[C].北京:中国科学与技术出版社,1995,335-347
    [50] Ciais P, Tans P P, Troiler M, et al. A large northern hemisphere CO_2 sink indicated by the ~(13)C/~(12)C ratio of atmospheric CO_2[J]. Science, 1995, 269:1098-1102
    [51] Buringh P. Organic carbon in soils of the world[A]. Woodwell G M ed. The Role of Terrestrial Vegetation in the Global Carbon Cycle, Measurement by Remote Sensing SCOPE 23 [C]. New York: Wiley, Sons, 1984, 91-109
    [52] Batjes N H, Brides E M, eds. A Review of Soil Factors and Processes that Control Fluxes of Heat. Moisture and Greenhouse Gases [R]. International Soil Reference and Information Center, Wageningen, 1994, 97-148
    [53] Brown S. Present and potential roles of forests in the global climate change debate [J]. Unasylva 185, 1996, 47:3-10
    [54] 杨昕,王明星.陆面碳循环研究中若干问题的评述[J].地球科学进展,2001,16(3):427-435
    [55] 方精云.北纬中高纬度的森林碳库可能远小于目前的估算.植物生态学报,2000,24(5):635-638
    [56] Marland G. The prospect of solving the carbon dioxide problem forestation [M]. U.S.Department of Energy, DOE/NBB-0082, Oak Ridge National Laboratory. TN, 1998
    [57] Kolchugina, Tatyana P, Ted S Vinson. Comparison of two methods to assess the carbon budget of forest biomass in the former Soviet Union [J]. Water, Air, and Soil Pollution, 1993, 70:207-221
    [58] Fang J, Wang G G. Liu G, et al. Forest biomass of China: An estimate based on the biomass-volume relationship [J]. Ecological Applications, 1998, 8(4): 1084-1091
    [59] 冯宗炜,王效科,吴刚.森林生态系统的生物量与生产力[M].北京:科学出版社,1999
    [60] 陶波,葛全胜,李克让,等.陆地生态系统碳循环研究进展[J].地理研究,2001,20(5):563-575
    [61] Holdridge L R. Determination of world plant formation from simple climate data [J]. Science, 1977, 105:367-367
    [62] Leith H. Modeling the primary production of the world [A]. In: Leith H, Whittaker R Heds. Primary Productivity of Biosphere [M]. New York: Springer, 1975, 40:237-263
    [63] Friedlingstein C, Delire C, Muller J F. The climate induced variation of continental biosphere: A model simulation of the last glacial maximum [J]. Geophysical Research Letter, 1992, 19:897-900
    [64] Francois L M, Delire C, Warnant P. Modeling the glacial-interglacial changes in the continental biosphere [J]. Global and Planetary Change, 1998, (16-17): 37-52
    [65] Francois L M, Godderis Y, Warnant P. Carbon stocks and isotopic budgets of the terrestrial biosphere at mid-Holocene and last glacial maximum times [J]. Chemical Geology, 1999, 159:163-189
    [66] Esser G. Sensitivity of global carbon pools and fluxes to human and potential climatic impacts [J]. Tullus, 1987, 39B: 245-260
    [67] Guiot J, Harrison S P, Prentice I C. Reconstruction of Holocene precipitation patterns in Europe using pollen and lake-level data [J]. Quaternary Research, 1993, 40:139-149
    [68] Ludeke M K B, Badeck F W, Otto R D, et al. The Frankfurt Biosphere Model: A global process oriented model for the seasonal and long-term CO_2 exchange between terrestrial ecosystems and the atmosphere [J]. Climate Research, 1994, 4:143-166
    [69] Melillo J M, McGuire A D, Kicklighter D W. Global climate change and terrestrial net primary production [J]. Nature, 1993, 363:234-240
    [70] Haxeltine A, Prentice I C. BIOM3: An equilibrium terrestrial biosphere models baesd on ecophysiological constraints, resource availability, and competition among plant functional types[J]. Global Biogeochemical Cycles, 1996, 10:693-709
    [71] Woodward F I, Smith T M, Emanaul W R. A global land primary productivity and phytogeography model [J]. Global Biogeochemical Cycles, 1995, 9:471-490
    [72] Wamant P, Francois L M, Strivay D, et al. CARBIB: A global model of terrestrial biological productivity [J]. Global Biogeochemical Cycles, 1994, 8:255-270
    [73] Pan Y, McGuire A D, Kicklighter D W. The importance of climate and soil data on estimates of net primary production: A sensitivity analysis with the terrestrial ecosystem model [J]. Global Change Biology, 1996, 2:5-23
    [74] 方精云.吉良龙夫与生态学的发展[J].生态学杂志,1995,14(2):70-75
    [75] Oikawa T. Simulation of forest dynamics based on a dry-matter production model. Ⅲ. Effects of increasing CO_2 upon a tropical rain forest ecosystem [J]. Bot. Mag. Tokyo, 1985, 99:419-430
    [76] Heath L S, Kauppi P E, Burschel P, et al. Contribution of temperate forests to the world's carbon budget [J]. Water, Air, and Soil Pollution, 1993, 70:55-69
    [77] Alexeyev V, Birdsey R, Stakanov V, et al. Carbon in vegetation of Russian forests: Methods to estimate storage and geographical distribution [J]. Water, Air, and Soil Pollution. 1995,82:271-282
    [78] Apps M J, Kurz W A. The role of Canadian forests in the global carbon budget [A]. In: Kanninen M ed. Carbon Balance of World's forested ecosystems: Towards a Global Assessment. SILMU [C]. Findand: 1994, 12-20
    [79] Brown S, Iverson L R. Biomass estimates for tropical forests [J]. World Resource Rev, 1992,4: 366-384
    [80] 方精云,刘国华,徐嵩龄.中国陆地生态系统的碳库[A].现代生态学的热点问题研究[M].上册,北京:中国科学技术出版社,1996,109-127
    [81] 方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967-973
    [82] 王效科,冯宗炜.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13-16
    [83] 王效科,冯宗炜.中国森林生态系统中植物同定大气碳的潜力[J].生态学杂志,2000,19(4):72-74
    [84] 刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740
    [85] 周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5).518-522
    [86] Changhui Peng, Michael J A. Contribution of China to the Global Carbon Cycle since the Last Glacial Maximum Reconstruction from Palaeovegetation Maps and an Empirical Biosphere Model [J]. Tellus,1997, 49(B): 393-408
    [87] Wang X, Zhuang Y, Feng Z. Carbon dioxide release due to change in land use in China Mainland [J]. Environ Sci. 1994, 6:287-295
    [88] 马钦彦,谢征鸣.中国油松林储碳量基本估计[J].北京林业大学学报,1996,18(3):31-34
    [89] 李意德,曾庆波,吴仲民,等.我国热带天然林植被C贮存量的估算[J].林业科学研究,1998,12(2):156-162
    [90] 王绍强,周成虎,刘纪远,等.东北地区陆地碳循环平衡模拟分析[J].地理学报,2001,56(4):390-400
    [91] 赵海珍,王德艺,张景兰,等.雾灵山自然保护区森林的碳汇功能评价[J].河北农业大学学报,2001,24(4):43-47
    [92] 张德全,桑卫国,李日峰,等.山东省森林有机碳储量及其动态的研究[J].植物生态学报,2002,26(增刊):93-97
    [93] 李凌浩,林鹏,刑雪荣.武夷山甜槠林细根生物量和生产量研究[J].应用生态学报,1998,9(4):337-340
    [94] 王燕,赵士洞.天山云杉林生物量和生产力的研究[J].应用生态学报,1999,10(4):389-391
    [95] 管东生.香港草地、芒萁、灌木群落的C素动态[J].生态学报,2001,21(3):440-445
    [96] 管东生,M.R.Peart.华南南亚热带不同演替阶段植被的环境效应[J].环境科学,2000,21(5):1-5
    [97] 李意德,吴仲民,曾庆波,等.尖峰岭热带山地雨林群落生产和二氧化碳同化净增量的初步研究[J].植物生态学报,1998,22(2):127-134
    [98] 李意德,吴仲民,曾庆波,等.尖峰岭热带山地雨林生态系统碳平衡的初步研究[J].生态学报,1998,18(4):371-378
    [99] 吴仲民,李意德,曾庆波,等.尖峰岭热带山地雨林C素库及皆伐影响的初步研究[J].应用生态学报,1998,9(4):341-344
    [100] 方运霆,莫江明,黄忠良,等.鼎湖山马尾松、荷木混交林生态系统碳素积累和分配特征[J].热带亚热带植物学报,2003,11(1):47-52
    [101] 方运霆,莫江明.鼎湖山马尾松林生态系统碳素分配和贮量的研究[J].广西植物,2002,22(4):305-310
    [102] 方运霆,莫江明,张德强,等.鼎湖山山马尾松林与季风常绿阔叶林植物碳素含量的比较[A].见:热带亚热带森林生态系统Vol.9[C].2002,64-72
    [103] 阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究—含量与分布规律[J].生态学杂志,1997,16(6):17-21
    [104] 李铭红,于明坚,陈启常,等.青冈常绿阔叶林的碳素动态[J].生态学报,1996,16(6):645-651
    [105] 陈楚莹,廖利平,汪思龙.杉木人工林生态系统碳素分配与贮量的研究[J].应用生态学报,2000,11(增刊):175-178
    [106] 方晰,田大伦,项文化.速生阶段杉木人工林碳素密度、贮量和分布[J].林业科学,2002,38(3):14-19
    [107] 方晰,田大伦,项文化,等.第二代杉木中幼林生态系统碳动态与平衡[J].中南林学院学报,2002,22(1):1-6
    [108] 方晰,田大伦,胥灿辉.马尾松人工林生产与碳素动态[J].中南林学院学报,2003,23(2):11-15
    [109] 桑卫国,马克平,陈灵芝.暖温带落叶阔叶林碳循环的初步估算[J].植物生态学报,2002,26(5):543-548
    [110] 王金叶,车克钧,蒋志荣.祁连山青海云杉林碳平衡研究[J].西北林学院学报,2000,15(4):9-14
    [111] 延晓冬,赵士洞.温带针阔混交林分碳贮量动态的模拟模型Ⅰ.乔木层的碳贮量动态[J].生态学杂志,1995,14(2):6-12
    [112] 蒋延玲,周广胜.兴安落叶松林碳平衡和全球变化影响研究[J].应用生态学报,2001,12(4):481-484
    [113] 聂道平,徐德应,王兵.全球碳循环与森林关系的研究——问题与进展[J].世界林业研究,1997.(5):33-40
    [114] Post W M, Peng T H, Emanuel W R, et al. The Global Carbon Cycle [J]. American Scientist, 1990, 78:310-326
    [115] Houghton R A, Skole D L, Carbon. The Earth As Transformed by Human Action [M]. In: Turner B L, Clark W C, Kates R W, et al eds. Cambridge University Press, 1990, 393-408
    [116] Post W M, Emanuel W R, Zinke PJ, et al. Soil carbon pools and life zones [J]. Nature, 1982, 298: 156-159
    [117] 杨平,杜宝华.国外土壤二氧碳释放问题的研究动态[J].中国农业气象,1996,17(1):48-50、37
    [118] Sedjo R A. The carbon cycle and global forest ecosystem [J]. Water, Air, and Soil Pollution, 1993, (70): 295-307
    [119] 徐德应.人类经营活动对森林土壤碳的影响[J].世界林业研究,1994,(5):26-31
    [120] 王艳芬,陈佐忠,Larry T Tieszen.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响[J].植物生态学报,1998,22(6):545-551
    [121] Brown S, Lugo A E. The storage and production of organic matter in tropical forests and their role in the global carbon cycle [J]. Biotropia, 1982, (4): 161-187
    [122] Lugo A E. Land use and organic carbon content of some subtropical soils [J]. Plant and Soil. 1986, (96): 185-196
    [123] Woodwell G M. The biota and world carbon budget [J]. Science, 1978, 199:141-146
    [124] Shang C, Tiessen H. Organic matter labiality in a tropical oxisol: Evidence from shifting cultivation, chemical oxidation, particle size, density, and magnetic fractions [J]. Soil Science, 1997, 162(11): 795-807
    [125] 黄承才.浙江省毛竹林和茶园土壤碳库的研究[J].绍兴文理学院学报,2001,21(1):56-57
    [126] 骆土寿,陈步峰,陈永富,等海南岛霸王岭热带山地雨林采伐经营初期土壤碳氮储量[J].林业科学研究,2000,13(2):123-128
    [127] 李跃林,彭少麟,赵平,等.鹤山几种不同土地利用方式的土壤碳储量研究[J].山地学报,2002,20(5):548-552
    [128] 王金叶,车克钧,张学龙,等.祁连山森林土壤碳的初步研究[J].甘肃农业大学学报,1996,(4):356-360
    [129] 张万儒,刘寿坡等著.中国森林土壤[M].北京:中国林业出版社,1985
    [130] Bowden R D, Nadelhoffer K J, Boone R D, et al. Contributions of above ground litter, below ground litter, and root respiration total soil respiration in a temperate mixed hard wood forest [J]. Can J For. Res. 1993, 23:1402-1407
    [131] 郑洪元,张德生主编.土壤动态生物化学研究法[M].北京:科学出版社,1982
    [132] Macfadyen A. Simple methods for measuring and maintaining the proportion of carbon dioxide in air, for use in ecological studies of soil respiration [J]. Soil Biol. Biochem., 1970, 2:9-8
    [133] Neilson J W, Pepper I L. Soil respiration as an index of soil aeration [J]. Soil Sci. Soc. Am. J, 1990, 54:428-432
    [134] 李玉宁,王关玉,李伟.土壤呼吸作用和全球碳循环[J].地学前缘,2002,9(2):351-357
    [135] Anderson J M, Carbon dioxide evolution from two temperate, deciduous woodland soils [J]. Journal of Applied Ecology, 1973, 10:361-368
    [136] Carlyle J C, Than U B A. A biotic controls of soil respiration between an eighteen-year-old Pinus rediata stand in South-eastern Australia [J]. The Journal of Ecology, 1988, 76:654-662
    [137] Kucera C, Kirkham D. Soil respiration studies in tall grass prairie in Missouri [J]. Ecology, 1971, 52: 912-915
    [138] Bunce J A. Short and long-term inhibition of respiration of carbon dioxide efflux by elevated carbon dioxide [J]. Annals of Botany, 1990, 65:637-642
    [139] Korner C, Amome J A. Respiration to elevated carbon dioxide in artificial tropical ecosystems [J]. Science, 1992, 257:1672-1675
    [140] Johnson D, Gensinger D, Walker R, et al. Soil CO_2, soil respiration, and root activity in CO_2 fumigated and nitrogen-fertilized ponderosa pine [J]. Plant and Soil, 1994, 165:129-138
    [141] Beath E, Arnebrant K. Growth rate and response of bacterial communities to pH in limed and ash reared forest soils [J]. Soil Biol. Biochem, 1994, 26(8): 995-1001
    [142] Bohlen P J, Edwards C.A. Earthworm effects of N dynamics and soil respiration in microcosms receiving organic and in organic nutrients [J]. Soil Biol. Biochem, 1995, 27(3): 341-348
    [143] Edwards N T, Harris W F. Carbon cycling in a mixed deciduous forest floor [J]. Ecology, 1977, 58: 431-437
    [144] Edwards N T, Ross-Todd B M. Soil carbon in a mixed deciduous forest following clear-cutting with and without residue removal [J]. Soil Sci. Soc. Am. J., 1983, 47:1014-1021
    [145] Fernandez I J. Soil carbon dioxide characteristics under different forest types and harvest [J]. Soil Sci. Soc. Am. J, 1993, 57:1115-1121
    [146] Koizumi H. Effect of carbon dioxide concentration on microbial respiration in soil [J]. Ecol. Res., 1991, 6(3): 227-232
    [147] Toland D E, Zak D R. Seasonal pattern of soil respiration in intact and clear-cut northern hardwood forests [J]. Can. J. For. Res., 1994, 24(8): 1711-1716
    [148] Weber M G. Forest soil respiration in eastern Ontario jack pine ecosystem [J]. Can. J. For. Res., 1985, 15:1069-1073
    [149] 方精云,刘国华,徐嵩龄.中国陆地生态系统的碳循环及全球意义[A].见:王如松,方精云等编,现代生态学的热点问题研究[C].上册,北京:中国科学技术出版社,1996,129-139
    [150] 单正军,蔡道基,任阵海.土壤有机质矿化与温室气体释放初探[J].环境科学学报,1996,16(2):150-154
    [151] 刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997,17(5):469-476
    [152] 孙向阳,郭青俊.妙峰山林地CO_2释放量的初步研究[J].北京林业大学学报,1995,17(4):22-28
    [153] 孙向阳,乔杰,谭笑.温带森林土壤中的CO_2排放通量[J].东北林业大学学报,2001,29(1):34-39
    [154] 蒋高明,黄银晓.北京山区辽东栎林土壤释放CO_2的模拟实验研究[J].生态学报,1997,17(5):477-482
    [165] 刘绍辉,方精云,清田信.北京山地温带森林的土壤呼吸[J].植物生态学报,1998,22(2):119-126
    [166] 刘建军,王得祥,雷瑞德,等.秦岭天然油松、锐齿栎林地土壤呼吸与CO_2释放[J].林业科学,2003,39(2):8-13
    [157] 赵景波,袁道先,马占武,等.西安地区4-5月份土壤CO_2释放规律研究[J].中国岩溶,2000,19(4):299-313
    [158] 赵景波,袁道先,杜娟,等.东南部7月份土壤CO_2释放量和释放规律研究[J].陕西师范大学学报(自然科学版),2001,29(2):81-86
    [159] 赵景波,杜娟,袁道先,等.西安地区土壤CO_2释放量和释放规律[J].环境科学,2002,23(1):22-25
    [160] 方晰,田大伦.杉木人工林林地CO_2释放量的研究[J].林业科学,1997,Vol.33(sp.2):94-103
    [161] 汪思龙,廖利平,于小军,等.杉木人工林退化土壤生态恢复过程中CO_2释放与净N矿化[J].应用生态学报,2000,11(增刊):197-202
    [162] 黄承才,葛滢,常杰,等.中亚热带东部三种主要木本群落土壤呼吸的研究[J].生态学报,1999,19(3):324-328
    [163] 罗辑,杨忠,杨清伟.贡嘎山东坡峨眉冷杉林区土壤CO_2排放[J].土壤学报,2000,37(3):402-409
    [164] 刘其汉,李艳敏.海南岛尖峰岭半落叶季雨林生态效应的研究Ⅲ—土壤二氧化碳的特征[J] 热带林业科技,1987,(5):53-58
    [165] 李意德.林木土壤和凋落物呼吸测定[A].见:曾庆波,等主编.热带森林生态系统研究与管理[C].北京:中国林业出版社,1997,173-186
    [166] 骆土寿,陈步峰,陈永富,等.海南岛尖峰岭热带山地雨林土壤和凋落物呼吸研究[J].生态学报,2001,21(12):2013-2017
    [167] 董文福,管东生.森林生态系统在碳循环中的作用[J].重庆环境科学,2002,24(3):25-31
    [168] Yadvinder Malhiand John Grace. Tropical forests and atmospheric carbon dioxide [J]. Tree, 2000,15(8): 332-337
    [169] Kauppi P E, Mielikainen K, Kuusela K. Biomass and carbon budget of European Forests, 1971 to 1990 [J]. Science, 1992,256:70-74
    [170] Sedjo R A. Temperate forest ecosystems in the global carbon cycle [J]. Ambio, 1992, 21:274-277
    [171] Klchugina T P, Vinson T S. Role of Russian forests in the global carbon balance [J]. Ambio, 1995, 24(5): 258-264
    [172] Kurz W A, Apps M J. Contribution of northern forests to the global carbon cycles: Canada as a case study [J]. Water, Air, and Soil Pollution, 1993, 70:163-176
    [173] Wofsy S C, Goulden M L, Munger J M, et al. Next exchange of CO_2 in a mid-latitude forest [J]. Science, 1993,260:1314-1317
    [174] Goulden M L, Munger J W, Fan S, et al. Exchange of carbon dioxide by a deciduous forest: response to inter-annual climate variability [J]. Science, 1996, 271:1576-1578
    [175] Martin P. Global CO_2 monitoring network [J]. Science, 1998, 281:1805
    [176] Valentini R, Matteucei G, Dolman A J, et al. Respiration as the main determinant of carbon balance in European forests [J]. Nature, 2000, 404:861-865
    [177] Lugo A E, Brown S. Tropical forests as sinks of atmosphere carbon [J]. Forest Ecology and Management, 1992, 54:239-255
    [178] Phillips O L, Malhi Y, Higuchi N, et al. Changes in the carbon balance of tropical forests: evidence from long-term plots [J]. Science, 1998, 282:439-442
    [179] 赵士洞,汪业勖.森林与碳循环[J].科学对社会的影响,2001,(3):1-4
    [180] 贺庆棠.森林对地气系统碳素循环的影响[J].北京林业大学学报,1993,15(3),132-136
    [181] 康惠宁,马钦彦,袁嘉祖.中国森林C汇功能基本估计[J].应用生态学报,1996,7(3):230-234
    [182] 石广生,丁一汇,张鹏,等.中国森林CO_2释放与吸收的评估[A].见:丁一汇主编.中国的气候变化与气候影响研究[C].北京:气象出版社,1997,85-94
    [183] 耿元波,董云社,孟维奇.陆地碳循环研究进展[J].地理科学进展,2000,19(4):297-306
    [184] Leemans R, Zuidema G. Evaluating changes in land cover and their importance for global change [J]. Tree, 1995, 10(2): 76-81
    [185] Walker B H. Landscape to regional scale responses of terrestrial ecosystems to global change [J]. AMBIO, 1994, 23(1): 67-73
    [186] 汪业勖.陆地碳循环研究中的模拟方法[J].应用生态学报,1998,9(6):658-664
    [187] 王绍强,周成虎,罗承文.中国陆地自然植被碳量空间分布特征探讨[J].地理科学进展,1999,18(3):238-244
    [188] 方精云主编.全球生态学:气候变化与生态响应[M].北京:高等教育出版社、施普林格出版社,2000
    [189] Schimel D S. Terrestrial ecosystems and the carbon cycle [J]. Global Change Biology, 1995, 1: 77-91
    [190] Walker B H, Steffen W L. The nature of global change [A]. In: Walker B H, Steffen W L, Canade J Ⅱ, Ingram J, eds. The terrestrial biosphere and global change [C]. Cambridge: Cambridge University Press, 1999,1-18
    [191] Schiesinger W H. Carbon sequestration in soils [J]. Science, 1999, 284:20-95
    [192] Pacala S W. Consistent land and atmosphere-based U.S. carbon sink estimates [J]. Science,2001,292: 2316-2320
    [193] 汪业勖,赵士洞,牛栋.陆地土壤碳循环的研究动态[J].生态学杂志,1999,18(5):20-35
    [194] Anderson J M. Soil and climate change [J]. Advances in Ecological Research, 1992, 22:188-210
    [195] Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate [J]. Tullus, 1992, 44B: 81-99
    [196] Jenkinson D S, Adams D E, Wild A. Model estimates of CO_2 emission from soil in response to global warming [J]. Nature, 1991, 351:304-306
    [197] Koch, George W, Harold A, Mooney. Response of terrestrial ecosystems to elevated CO_2: A synthesis and summary [A]. Carbon Dioxide and Terrestrial Ecosystem[C], Academic press, Inc. 1996, 415-429
    [198] Esser, Gerd. Contribution of monsoon Asia to the carbon budget of biosphere, past and future [J]. Vegetatio, 1995,121:175-188
    [199] Krner C, Arnone J A I. Responses to elevated carbon dioxide in artificial tropical ecosystems [J]. Science, 1992, 257:1672-1675
    [200] Rogers H H, Runion G B, Krupa S V. Plant responses to atmospheric CO_2 enrichment with emphasis on roots and the rhizosphere [J]. Environ. Pollut., 1994, 83:155-159
    [201] Bazzaz F A. The response of natural ecosystem to the rising global CO_2 levels [J]. Annu. Rev. Ecol. Syst., 1990, 21:1671-1699
    [202] Prentice K C, Fung I Y. The sensitivity of terrestrial carbon storage to Climate Change [J]. Nature, 1990, 346:48-51
    [203] Delucia E H, Hamilton J G, Naidu S L, et al. Net primary production of a forest ecosystem with experimental CO_2 enrichment [J]. Science, 1999, 284:1177-1179
    [204] 林伟宏,张福锁,白克智.大气CO_2浓度升高对植物根际微生态系统的影响[J].科学通报,1999,44:1690-1696
    [205] 方精云.中国森林生产力及其对全球气候变化的响应.植物生态学报,2000,24(5):513-517
    [206] Schlesinger W H, Anderws J A. Soil respiration and the global carbon cycle [J]. Biogeochemisty, 2000,48:7-20
    [207] Billings W D, Luken J O, Mortensen K A, et al. Arctic Tundra: A source or sink for atmospheric carbon dioxide in a changing environment? Oecologia, 1982, 53: 7-11
    [208] Oechel W C, Vourlitis G L. The effects of climate change on land-atmosphere feedbacks in Arctic Tundra regions. Trends Ecolo. Evolution, 1995(a), 9:324-329
    [209] Food and Agriculture Organization of the United Nations (FAO). Tropical forest assessment project: foresr resources of tropical Asia [M]. Rome, 1981
    [210] WBGU Special Report. The accounting of biological sinks and sources under the Kyoto Protocol. 1998
    [211] Cooper C F. Carbon storage in managed forests. Canadian Journal of Forest Research, 1983, 13: 155-166
    [212] Houghton R A, Hobbie J E, Melillo J M, et al. Changes in carbon content of terrestrial biota and soils between 1860 and 1980: A net release of CO_2 to the atmosphere [J]. Ecological Monogragh, 1983, (53): 235-262
    [213] Brown S, Ligo A E, Iverson L R. Process and lands for sequestering carbon in the tropical forest landscape [J].. Water, Air, and Soil Pollution, 1992, 64:139-155
    [214] Mann L K. Change in soil carbon storage after cultivation [J].. Soil Science, 1986, 142:279-288
    [215] Davison E A, Acherman I L. Change in soil Carbon Inventions Following Cultivation of Previously Untilled Soils [J]. Biogeochemisty, 1993, 20:161-193
    [216] Bouman A F. Land-use related sources of greenhouse gases [J]. Land-use Pol., 1974, 20:154-164
    [217] Turner B L, Moss R H, Skole D L. Relating land use and global land-cover change [J]. IGBP report, 1993, (24): 8-15
    [218] Dyer M L, Meettemeyer V, Berg B. Apparent controls of mass-loss rate of leaf litter on a regional scale [J]. Seand J. For. Res. 1990, 5:1-3
    [219] 周广胜,王玉辉,蒋延玲,等.陆地生态系统类型转变与碳循环[J].植物生态学报,2002,26(2):250-254
    [220] Jenkinson D S. The Roth Amsted long-term experiments: Are they still of use? [J]. Journal of Agronomy, 1991, 83:2-10
    [221] Kasperson J, Kasperson R E, Turner B L. Regions at risk-comparison of threatened environments [J]. New York: United Nation University Press, 1995, 43-59
    [222] Potter C S, Klooster S A. North American carbon sink [J]. Science, 1999, 283:18-15
    [223] Detwiler R P, Charles A S, Hall. Tropical forests and the global carbon cycle [J]. Science. 1988,239: 42-47
    [224] Brown, Sandra, Charles A S, et al. Tropical forests: their past, present, and potential future role in the terrestrial carbon budget [J]. Water, Air, and Soil Pollution, 1993, 70:71-94
    [225] Brown, Sandra, Iverson L R, et al. Land-use and biomass change of forests in Peninsular Malaysia from 1972 to 1982: a GIS approach [A]. In Effects of Land-use Change on Atmospheric CO_2 Concentration: South and Southeast Asia as a Case Study [C]. New York: Spdng-Verlag, 1994,117-143
    [226] Ciais P, Tans P P, Trolier M, et al. A Large Northern Hemisphere Terrestrial CO_2 Sink Indicated by the ~(13)C/C~(12) Ratio of Atmospheric CO_2 [J]. Science. 1995, 269:1098-1102
    [227] 秦玉才编译.21世纪林业科学展望[M].北京:中国林业出版社,1996,1-5
    [228] Schimel, David S, Braswell B H, et al. Climate and nitrogen controls on the geography and time scales of terrestrial biogeochemieal cycling [M]. New York: Academe Press, 1996,1-37
    [229] Moore B. Global carbon cycle [A]. In: Encyclopedia of Environmental Biology [C]. Vol. 2. San Diego: Academic Press, 1995:215-223
    [230] Battle M, Bender M L, Tans P P, et al. Global carbon sinks and their variability inferred from atmospheric O_2 and δ ~(13)C [J]. Science. 2000,287-2470
    [231] 赵平,彭少麟,曾小平.全球变化背景下大气CO_2浓度升高与森林群落结构和功能的变化[J].广西植物,2001,21(4):287~294
    [232] Keeling R F, Piper S C, Heimann M. Global and hemispheric CO_2 sinks deduced from changes in atmospheric CO_2 concentration [J]. Nature, 1996, 381:218-221
    [233] Cannadell J G, Mooney H A. Carbon Metabolism of the Terrestrial Biosphere: A Multitechnique Approach for Improved Understanding [J]. Ecosystem, 2000,3: 115-130
    [234] Heimann M, Esser G, Haxeltione A, et al. Evaluation of terrestrial carbon cycle models through simulations of the seasonal cycle of atmospheric CO_2: first results of a model inter comparison study [J]. Global Biogeochemical Cycles. 1998,12:1-24
    [235] Cramer W, Kicklighter D W, Bondeau A, et al. Comparing global models of terrestrial net primary productivity: overview and key results [J]. Global Change Biol, 1999,5: 1-15
    [236] Baldocchi D D, Vogel C. A comparative study of water vapor, energy and CO_2 flux densities above and below a temperate broadleaf and a boreal pine forest [J]. Tree Physiology. 1996,16:5-16
    [237] Lambers H, Poorter H. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences [J]. Adv.Ecol.Res., 1992, 23:187-261
    [238] Vogt K A, Gordon J C, Wargo J P, et al. Ecosystems: Balancing science with management [M]. New York: Springer-Verlag, 1996, 26-31
    [239] 周广胜.生物地球化学循环模型[A].韩兴国等编.生物地球化学概论[C].北京:高等教育出版社,1999,293-313
    [240] Foley J A, Prentice I C, Ramankutty N, et al. An integrated biosphere model of land surface process, terrestrial carbon balance, and vegetation dynamics [J]. Global Biogeochemical Cycles. 1996, 10(4): 603-628
    [241] Running S W, Gower E R. FOREST-BGC, a general model of forest ecosystem process for regional applications Ⅱ. Dynamic carbon allocation and nitrogen budgets [J]. Tree Physiol. 1991, 9:147-160
    [242] Parton W J. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide [J]. Global Biogeochem. Cycles. 1993, 7(4): 785-809
    [243] McGuire A D, Joyce L A, Kicklighter D W, et al. Equilibrium responses of soil carbon to climate change: empirical and process-based estimates [J]. J. Biogeography. 1995, 22:23-53
    [244] Kicklighter D W, Bruno M, Dongers S, et al. A first-order analysis of the potential role of CO_2 fertilization to affect the global carbon budget: a comparison of four terrestrial biosphere models [J]. Tellus. 1999, 51B: 343-366
    [245] Gower S T, McMirtrie R E, Murty D. Aboveground net primary production decline with stand age: potential cause [J]. Trends Eclo. 1996, 11: 378-382
    [246] Ryan M G, Binkley D, Fownes J H. Age-related decline in forest productivity: pattern and process [J]. Adv. Ecol. Res. 1997, 27:213-262
    [247] Houghton R. A. Emissions of carbon from land-use change [A]. In: The Carbon Cycle[C]. Edited by Wigley T M L. Cambridge University Press, 2000, 64-76
    [248] 陈全胜,李凌浩,韩兴国,等.水分对土壤呼吸的影响及机理.生态学报,2003,23(5):972-978
    [249] Meyer W B, Turner B L. Human population growth and global land-use/cover change [J]. Annu. Rev. Ecol. Syst. 1992, 23:39-61
    [250] Food and Agriculture Organization of the United Nations (FAO). Forest resources assessment 1990: tropical countries Rome, 1993, 112
    [251] Hall D O, Scurlock J M O, Ojima D S, et al. Grasslands and the global carbon cycle: modeling the effects of climate change [A]. In: The Carbon Cycle[C]. Edited by wigley T M L. Cambridge University Press, 2000, 103-114
    [252] Harvey L D D. Box models of the terrestrial biosphere [A]. In: The Carbon Cycle [C]. Edited by Wigley T M L. Cambridge University Press, 2000, 239-247
    [253] 中根周步.森林生态系统中碳素循环的研究(张仁和译)[M].北京:科学出版社,1986,20-27
    [254] Moore Berrien,Braswell B H Jr.地球的新陈代谢:了解碳循环[J].AMBIO——人类环境杂志,1994,23(1):2-5
    [255] Vitousek P M, Mooney H A. Human dominated terrestrial ecosystem [J]. Science, 1997, 277: 494-499
    [256] Knorr Wolfgang. Annual and intetrannual CO_2 exchange of the terrestrial biosphere: Process-based simulations and uncertainties [J]. Global Ecology & Biogeography, 2000, 9:225-252
    [257] Bolin B, Degens E T. The global biogeochemical carbon cycle [A]. In: The Global Carbon Cycle[C], SCOPE 13. Chichester, John Wiley, Sons, New York: 1979,1-56
    [258] 陈波,王良衍.陆地植被与全球变化中碳之间的关系[J].浙江林业科技,2001,21(3):1-4
    [259] 李克让,陈育峰,刘世荣,等.减缓及适应全球气候变化的中国林业对策[J].地理学报,1996,5(supp.):109-119
    [260] 潘维俦,田大伦.森林生态系统第一性生产量的测定技术与方法[J].湖南林业科学,1981,(2):1-12
    [261] 郑洪元,张德生主编.土壤动态生物化学研究法[M].北京:科学出版社,1982
    [262] 中国土壤学会农业化学专业委员会编.土壤农业化学常规分析方法[M].北京:科学出版社,1984
    [263] 马钦彦,陈遐林,王娟,等.华北主要森林类型建群种的含碳率分析[J].北京林业大学学报,2002,24(5/6):96-100
    [264] 李景文主编.森林生态学[M].北京:中国林业出版社,1994,70-85
    [265] 北京林学院主编.土壤学[M].北京:中国林业出版社,1982,98-117
    [266] 蒋有绪,卢俊培等著.中国海南岛尖峰岭热带林生态系统[M].北京:科学出版社,1991,218-234
    [267] 苏永中,赵哈林.土壤有机碳储量、影响因素及其环境效应的研究进展[J].中国沙漠,2002,22(3):220-228
    [268] Jobbagy E G, Jackson R B. The vertical Distribution of Soil Organic Carbon and its Relation to Climate and Vegetation [J]. Ecological Applications, 2002,10(2): 423-436
    [269] N.C布雷迪(美)著.南京农学院土化系等译.土壤的本质与性状[M].北京:科学出版社,1982
    [270] 刘景双,杨继松,于君宝,等.三江平原沼泽湿地土壤有机碳垂直分布特征研究[J].水土保持学报,2003,17(3):5-8
    [271] 李忠,孙波,林心雄.我国东部土壤有机碳的密度及转化的控制因素[J].地理科学,2001,21(4):301-307
    [272] 姚槐应,何振立,陈国潮,等.红壤微生物量在土壤黑麦草系统中的肥力意义[J].应用生态学报,1999,10(6):725-728

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700