塔克拉玛干沙漠腹地2007年春夏季辐射及沙尘气溶胶特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用2007年4月和2007年8月塔克拉玛干沙漠塔中气象站地面气象观测数据和塔中大气环境监测地表能量收支探测系统中辐射监测部分辐射数据,以及沙尘气溶胶质量浓度数据,分析了2007年4月和8月塔克拉玛干沙漠太阳辐射各波段特征变化以及不同天气型辐射收支特征,重点利用地面观测数据分析不同天气情况下气溶胶分布特征及辐射收支特征。此外对沙尘暴天气采集的不同下垫面梯度样本进行粒度特征分析。
     本文主要结论如下:
     1.天气型分析
     通过地面气象观测数据分析,2007年4月沙尘天气居多,8月沙尘天气较少,水汽丰富,云的变化比较复杂。配合风速、气温、相对湿度和气压的变化趋势,可以分析出典型天气为4月15日和8月19日为晴天,4月7日和8月7日为阴天,4月4日和8月22日为浮尘天气,4月22日和8月12日为沙尘暴。以分析结果为分析辐射收支特征及气溶胶质量浓度特征提供天气气候背景。
     2.典型天气辐射收支特征
     2007年4月和8月中四种天气类型中,以晴天为背景值分析不同天气情况下辐射收支的变化。结果表明在阴天、浮尘、沙尘天气时短波辐射通量减小,长波辐射通量增加,净辐射通量减小。在不同强度干扰天气下,辐射通量变化程度不同。
     3.沙尘气溶胶质量浓度特征
     2007年4月PM10质量浓度数据最高值为4.227mg/m~3,出现在4月22日天气为沙尘暴。2007年8月TSP质量浓度数据最高值19.59mg/m~3,出现在8月22日天气为浮尘与扬沙交替。PM10质量浓度对天气和辐射通量有影响。
     4.梯度沙尘样本粒度特征
     2007年4月22日沙尘暴天气采集的沙尘样本,表现同一地点高层沙尘样本比低层沙尘样本平均粒径小,分选好,峰度集中,正偏,沙垄下方a点沙尘样本比沙垄顶端b点沙尘样本的平均粒径小,分选好,峰度集中,正偏。
In this thesis,According to the data of Meteorological Station ground meteorological observation data in the Taklimakan Desert and the atmospheric environment monitoring surface energy budget in the radiation detection system to monitor part of the radiation data,as well as the magnitude of dust aerosol concentration Data in April and in August 2007,We analyzed the Taklimakan Desert-band features of the solar radiation changes and different weather characteristics of Radiation Budget,focusing on data of ground-based observations,We analyzed the characteristics of the Distribution of aerosols and Radiation Budget in different weather conditions. Futher more,study to the acquisition of the sandstorm weather surface gradient samples for different characteristics of particle size.
     The main conclusions as below:
     1. Weather Analysis
     By ground meteorological observation data analysis,in April 2007 the majority of sand and dust weather,dust weather in August less abundant water vapor,clouds change is more complicated. With wind speed,temperature,relative humidity and air pressure changes in trends can be analyzed typical weather for April 15 and August 19 for the sunny,April 7 and August 7 to cloudy,April 4 and 8 From 22 to dust weather,on April 22 and August 12 for the dust storms. To analyze the results for the balance of payments characteristics of radiation and aerosol concentration to provide weather and climate characteristics of the background.
     2. Radiation Budget characteristics of the typical weather
     Four typical weather in April and August 2007,with sunny weather for the background value of different weather conditions radiation balance of payments changes. The results showed that in the cloudy day,dust,sand and dust weather short-wave radiation flux decreases,long-wave radiation flux increased,the net decrease radiation flux. Strength in different weather interference,radiation flux change to different degrees.
     3. Aerosol concentration characteristics of the dust
     April 2007 the highest concentration of PM10 value of 4.227mg/m3,appear in the April 22 weather for the sandstorm. August 2007 TSP the highest concentration of 19.59 mg/m3,appear in the August 22 for dust and Yangsha. PM10 concentration of radiation fluxes have an impact.
     4. Gradient particle size characteristics of the dust samples
     April 22,2007 Sandstorm collected samples of dust,sand and dust high-level performance for the same location lower than the average size of small dust samples,selected at peak concentrated,is biased,a point below the sand ridge of sand and dust samples Sand Ridge show the same tendency .
引文
[1]王明星,张仁健.大气气溶胶研究的前沿问题[J].气候与环境研究,2001,6(1):119-124.
    [2] Sinyuk A.Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite data[J].REMOTE SENSING OF ENVIRONMENT, MAR 15 2007,107(1-2):90-108.
    [3] Garratt JR.Clear-sky longwave irradiance at the earth's surface - Evaluation of climate models[J].JOURNAL OF CLIMATE,2001,14(7):1647-1670.
    [4] Garratt JR.Surface radiation fluxes in transient climate simulations[J].GLOBAL AND PLANETARY CHANGE,JAN 1999,20(1):33-55.
    [5] Garratt JR.Clear-sky longwave irradiance at the earth's surface - Evaluation of climate models[J].JOURNAL OF CLIMATE,2001,14(7):1647-1670.
    [6] Garratt JR.Surface radiation fluxes in transient climate simulations[J].GLOBAL AND PLANETARY CHANGE, JAN 1999,20(1):33-55.
    [7] Nijegorodov N.Comprehensive experimental and theoretical investigation of solar radiation conditions in Botswana: A semi-desert region[J].International Energy Journal,2005,6(2):1-12.
    [8] Malek Esmaiel.International Journal of Climatology [J].Mar 15,2003:333-345
    [9] Quijano AL.Radiative heating rates and direct radiative forcing by mineral dust in cloudy atmospheric conditions[J].JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, MAY 27 2000,105(D10):12207-12219.
    [10] Horvath H.Angular scattering of the Gobi Desert aerosol and its influence on radiative forcing[J].Journal of Aerosol Science, 2006,10(37):1287-1302.
    [11] Legrand M.Satelfite detection of Saharan dusl:opfinfized jmng during dghttime[J].Journal of Climate,1988,1(3):256-264.
    [12] R.Arimoto.Z.X.Y.,et.al.Chemical composition of atmospheric aerosols from Zhenbeitai,China,Gosan,South Korea,during ACE-Asia.J.Geophs.Reas,2004,109,D19S04.doi:10.1029/2003JD004323.
    [13] C.M Peng,N.H.L.In Long-range Transport of Asian Dust: An Integrated Modeling Study: An Integrated Modeling Study[J].The 6th International Aerosol Conference, Taiwan, 2002;Taiwan,2002:663-664.
    [14] Shirahata H.,Elias R.W.,Patterson C.C..Koide M.,Chronological variations in concentrations and isotopic compositions of anthropogenic atmospheric lead in sediments of a remote subalpine pond[J].Geochimica et Cosmochimica Acta,1980,44(2):149-162.
    [15] Ottar B.,Pacyna J.M.,Berg T.C..Aircraft measurements of air pollution in the norwegian arctic[J].Atmospheric Environment(1967),1986,20(1):87-100.
    [16] Gasso S.,Hegg D.A..Comparison of Columnar Aerosol Optical Properties Measured by the MODIS Airborne Simulator with In Situ Measurements: A Case Study[J].Remote Sensing of Environment 1998,66(2):138-152.
    [17] Yamamoto M.The Venusian Y-shaped Cloud Pattern Based on an Aerosol-Transport Model[J].J.Atmos. Sci,1998,55:1400-1416.
    [18] Marquez C.,Castro T.,Muhlia A.,Moya M.,Martinez-Arroyo A.,Baez A..Measurement of aerosol particles,gases and flux radiation in the Pico de Orizaba National Park,and its relationship to air pollution transport[J].Atmospheric Environment,2005,39(21):3877-3890.
    [19] Carlson T N,S Benjamin.Radiative healing rates for Saharan dust[J].J Atmos Sci,1980(37):193-197.
    [20] Perlwitz J,Tegen I,Miller RL.Interactive soil dust aerosol model in the GISS GCM1[J].Sensitivity of the soil dust cycle to radiative properties of soil dust aerosols. J Geophys Res, 2001,106:18167-18192.
    [21] Satheech S K,Ramanathan V,Large difference in tropical aerosol forcing at the top of atmosphere and earth’s surface[J]. Nature,2000,405:60-63.
    [22]刘艳,翁笃鸣.青藏高原云对地气系统短波吸收辐射强迫的气候研究[J].南京气象学院学报,2000,23(1):124-129.
    [23]刘艳,翁笃鸣.青藏高原云对地气系统长波吸收辐射强迫的气候研究[J].南京气象学院学报,2000,23(2):270-276.
    [24]翁笃鸣.中国大气净辐射的气候特征[J].南京气象学院学报,1996,19(4):450-455.
    [25]李江风.《塔克拉玛沙漠和周边山区天气气候》[M].科学出版社出版,2003年9月.
    [26]李江风.《沙漠气候》[M].气象出版社,2002年6月.
    [27]王明星,张仁健.大气气溶胶研究的前沿问题[J].气候与环境研究,2001,6(1):p119-124.
    [28]韩晶晶,王式功.气溶胶关学厚度的分布特征及其与沙尘天气的关系[J].中国沙漠,2006,5(3):362-369.
    [29]延昊,矫梅燕.塔克拉玛干沙漠中心的沙尘气溶胶观测研究[J].中国沙漠,2006.3:389-393.
    [30]罗云峰,吕达仁.30年来我国大气气溶胶光学厚度平均分布特征分析[J].大气科学,2002,36(6):721-730.
    [31]牛生杰,孙照渤.中国西北沙漠地区沙尘气溶胶物理特性的飞机观测[J].高原气象,2005,2(4):9-14.
    [32]卞林根,陆龙骅.1998年夏季青藏高原辐射平衡分量特征[J].大气科学,2001,2(5):577-588.
    [33]毛节泰,李成才.气溶胶辐射特性的观测研究[J].气象学报,2005,63(5):622-635.
    [34]刘毅,周明煜.北京及中国海春季沙尘气溶胶浓度变化规律的研究[J].环境科学学报,1999,11(19):642-647.
    [35]王赞红,夏正楷.北京2002年3月20~21日尘暴过程的降尘量与降尘粒度特征[J].第四纪研究,2004,1(24):95-99.
    [36]刘新罡,吕达仁,肖稳安,等.北京晴天紫外波段气溶胶光学厚度反演与分析[J].南京气象学院学报,2005,2(28):51-57.
    [37]周秀骥,徐祥德,颜鹏,等.2000年春季沙尘暴动力学特征[J].中国科学,2002,32(4):327-334.
    [38]张文煜,辛金元,袁九毅,等.腾格里沙漠气溶胶光学厚度多波段遥感研究[J].高原气象,2003,12(6):613-617.
    [39]辛金元,张文煜,袁九毅,等.沙尘气溶胶对直接太阳辐射的衰减研究[J].中国沙漠,2003,5(3):311-315.
    [40]辛金元,张文煜,袁九毅,等.消光法反演腾格里沙漠地区沙尘气溶胶谱分布[J].高原气象,2004,10(23):654-659.
    [41]申彦波,沈志宝,杜明远.敦煌地区春季大气气溶胶粒子数浓度的分析[J].高原气象,2007,2(1):158-164.
    [42]刘立超,沈志宝,王涛,等.敦煌地区沙尘气溶胶质量浓度的观测研究[J].高原气象,2005,10(5):765-771.
    [43]李韧,季国良.敦煌地区大气气溶胶的辐射效应[J].太阳能学报,2004,6(25):320-324.
    [44]牛生杰,章澄昌.贺兰山地区春季沙尘气溶胶的化学组分和富集因子分析[J].中国沙漠,2000,9(20):264-268.
    [45]牛生杰,孙继明.贺兰山地区春季沙尘气溶胶质量浓度的观测分析[J].高原气象,2001,2(20):82-87.
    [46]樊曙先.贺兰山地区沙尘气溶胶的化学组分[J].宁夏农林科技,2000,1:37.
    [47]成天涛,吕达仁,徐永福.浑善达克沙地沙尘气溶胶的辐射强迫[J].高原气象,2005,12(24):920-926.
    [48]成天涛,吕达仁,陈洪滨.浑善达克沙地沙尘气溶胶的粒谱特征[J].大气科学,2005,1(29):147-153.
    [49]季国良,马晓燕,邹基玲.黑河地区绿州和沙漠地面辐射收支的若干特征[J].干旱气象,2003,9(3):29-33.
    [50]张艳武,冯起,黄静,等.黑河下游绿洲地表辐射平衡及小气候特征分析[J].冰川冻土,2006,4(28):191-198.
    [51]沈志宝.黑河地区大气沙尘对地面辐射能收支的影响[J].高原气象,1999,2(18):1-8.
    [52]延昊,矫梅燕,毕宝贵,等.塔克拉玛干沙漠中心的沙尘气溶胶观测研究[J].中国沙漠,2006,5(3):389-393.
    [53]刘晓东,田良,张小曳.塔克拉玛干沙尘活动对下游大气PM10浓度的影响[J].中国环境科学,2004,2(5):528-532.
    [54]高卫东,魏文寿,刘明哲,等.塔里木盆地区域沙尘气溶胶特征分析[J].干旱区地理,2002,6(2):165-169.
    [55]徐希慧.塔里木盆地沙尘暴卫星云图特征分析[J].甘肃气象,1997.15(2):1-3.
    [56]杨利普.新疆维吾尔自治区地理[M].新疆人民出版社,1987.
    [57]李锡纯.新疆国土资源第二卷[M].新疆人民出版社,1986.
    [58]中国科学院登山科学考察队主编.天山托木尔峰地区的自然地理[M].新疆人民出版社,1985.
    [59]李江风.罗布泊和古楼兰之谜[M].气象出版社,1991.
    [60] Kipp&Zonen产品说明下载[EB/OL]:http://www.kippzonen.com/pages/3/3/SolarAtmosph
    [61] Vaisala产品说明[EB/OL]: http://www.vaisala.com/cn/instruments/products/visibility/fd12
    [62]马尔文仪器有限公司.马尔文MS2000激光粒度仪分析使用手册[K].郑州:黄河水利出版社.2001.
    [63]《大气总悬浮颗粒物TSP和大气降尘的采样及测量方法》[S].
    [64]沙尘暴天气监测规范,中华人民共和国国家标准GB/T20479-2006[S].
    [65]王锡稳.河西走廊盛夏一次强沙尘暴天气综合分析[J].干旱气象,2006,7(7):102-109.
    [66]中国气象局编.地面气象观测规范[M].北京:气象出版社,2003:151.
    [67]何赛P佩索托,阿伯拉罕H奥特.气候物理学[M].气象出版社,1995年:75.
    [68]陆龙骅,周国贤,张正秋.1992年夏季珠穆朗玛峰地区的太阳直接辐射和总辐射[J].太阳能学报,1995,16(3):230-233.
    [69]陆龙骅,戴加洗.唐古拉地区的总相射和净辐射[J].科学通报,1979,9(24):400-404.
    [70]姚兰昌,袁福茂,陈有虞,等.1986年和1987年秋季西太平赤道附近海域的辐射状况[J].高原气象,1989,8(4):331-344.
    [71]沈志宝,邹基玲.黑河地区沙漠和绿洲的地面辐射能收支[J].高原气象,1994,13(3):315-322.
    [72]邹基玲,候旭宏,季国良,等.黑河地区夏末太阳辐射特征的初步分析[J].高原气象,1992,11(4):381-388.
    [73]江灏,季国良,吕兰芝,等.HEIFE绿洲区的太阳紫外辐射[J].高原气象,1994.9:346-352.
    [74]环境空气质量标准(GB3095-1996)[S].
    [75]田英姿,陈克复,张恒,等.Malvern MS2000粒度仪的使用和测试分析[J].中国造纸,2003,12:33-35.
    [76]杨初平,习岗,杨冠玲,等.颗粒粒度测试技术[J].工科物理,1999,9:1-4.
    [77]刘桂华,张玉敏.激光粒度分析中粉体分散方法的研究[J].兵器材料科学与工程.2002,9.55-57
    [78] Scott A,Hindle,Malcolm J. W. Povey, Kevin W. Smith.Characterizing cocoa butter seed crystals by the oil-in-water emulsion crystallization method[J]. Journal of the American Oil Chemists' Society.2006,11:1-4.
    [79]刘幼萍,童娟,李小妮,等.应用马尔文MS2000激光粒度分析仪分析河流泥沙颗粒[J].水利科技与经济,2005,6:229-331.
    [80]雷国良,张虎才,张文翔,等.Mastersize 2000型激光粒度仪分析数据可靠性检验及意义—以洛川剖面S4层古土壤为例[J].沉积学报,2006,8:531-539.
    [81]吕方.国内外激光粒度仪性能特点对比[J].中国非金属矿工业导刊,2005,3:35-36.
    [82]张福根.粉体粒度测试技术[J].办公设备技术与信息,2005.4:28-31.
    [83] Weiner B.B.Particle and spray sizing using laser diffraction[J].Society Photo-Optical Instrumentation engineers.1979:53-56.
    [84]杨道媛,马成良,孙宏魏,等.马尔文激光粒度分析仪粒度检测方法及其优化研究[J].中国粉体技术,2002,10:27-30.
    [85]申洪源,贾玉连,张红梅,等.内蒙古黄旗海湖沉积物粒度指示的湖面变化过程[J].干旱区地理,2006.8(4):457-462.
    [86]任明达,王乃梁.现代沉积环境概论[M].科学出版社,1981,9:8-26.
    [87]李志忠,关有志.塔克拉玛干沙漠腹地纵向沙垄的粒度分布特征[J].干旱区研究,1996.13(2):37-43.
    [88]钱亦兵,张希明.塔克拉玛干沙漠南缘绿洲沙物质粒度特征[J].中国沙漠,1995,(02):131-135.
    [89]刘东生.黄土与环境[M].北京:科学出版社,1985.197:309-320.
    [90] Folk R L,Ward W C.Brazos river bar:a study in the significance of grain size parameters[J], J. Sediment Petrol,1957,(27):3-26.
    [91]成都地质学院陕北队.沉积岩(物)粒度分析及其应用[M].北京:地质出版社,1978.3:31-143.
    [92]吴正.风沙地貌学[M].科学出版社,1987:25-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700