蛋白质模拟的分子力学力场优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质是生物功能的执行者。蛋白质的功能跟它的三维结构及动力学密切相关。大多数蛋白质都能够形成独特空间结构。探测和解析蛋白质三维结构的实验工具主要有X射线晶体衍射方法和核磁共振波谱学方法。但实验不能提供蛋白质结构的时空分布,不能在微观尺度刻划蛋白质功能运动的细节。分子动力学模拟方法是一种在原子水平上研究蛋白质结构与功能之间关系的重要工具,在原子水平刻划构象的空间分布和动力学,为实验提供重要补充。经过进一步发展,还可能成为三维结构从头预测的工具。分子动力学模拟通过求解牛顿运动方程追踪体系随时间变化的构象变化过程,获得任意微观量的时空分布。其出发点是依赖于原子坐标的经验能量函数,即分子力学“力场”。蛋白质模拟结果的准确性以及可靠性主要依赖于经验力场的正确性。分子模拟应用和发展存在两大困难,一是用于模拟分子内或分子间相互作用的能量函数的正确性是有限的,另一个就是在高维构象空间的采样是不充分的,现在已经开展了很多研究用于解决这两个问题。
     传统的力场优化主要基于拟合小分子体系的结构与能量性质。GROMOS力场主要通过拟合小分子体系在凝聚态下的一系列热力学特性,如密度、蒸发热、超额自由能、溶剂化自由能等来确定力场中的范德华相互作用、静电相互作用等非键相互作用参数。对决定多肽构象平衡的二面角项等未充分优化。并且,由于力场参数空间维数很高,力场拟合过程使用的参考数据不可能唯一确定最优参数组合。
     力场对多肽构象平衡的刻划精度对分子模拟非常重要。如何优化分子力场,使其不但能够再现各类凝聚态热力学数据,而且更好刻划构象平衡,是本论文工作的重点。
     本论文的主要内容包括两个方面,一是优化GROMOS 53A6力场中关于主链构象的描述用于改善蛋白质模拟的结果,另一个是利用自由能微扰方法预测力场参数的改变对小肽构象平衡模拟实验的影响。
     第2章中,我们认为优化GROMOS 53A6力场中关于主链构象的描述能改善蛋白质模拟的结果。许多研究表明,这些广泛使用的分子力学力场在描述蛋白质的局部构象时存在系统偏差,包括分子力场里对主链二面角的描述。分子模拟所得到的二肽主链二面角的自由能面同量子力学计算所得到的势能面和数据库统计得到的主链二面角的自由能面之间的比较表明:重新优化分子力场里关于主链二面角项的描述是必要的。分子模拟结果和量子力学计算结果的高精确性使得我们可以作两种类型的修正,一种是数字格点修正,这种修正能准确的得到量子力学的势能面,另一种是采用数量很少的解析项修正,这种修正使得分子模拟所得到的自由能面能近似的描述量子力学势能面所包含的一些主要特征。另外,为了改善主链-主链之间氢键的方向性,我们对主链羰基上的氧原子采用偏离中心的电荷模型,并对这个模型里的参数进行优化并测试。我们对五个蛋白质和两个小肽在水溶液中进行大量分子动力学模拟,结果表明:对主链二面角项的优化能明显的改善蛋白质模拟的结果。对比较简单的解析修正和严格的数字格点修正进行比较,对蛋白质而言,前者能得到一样好甚至更好的模拟结果。尽管采用偏离中心的电荷模型能稍微改进蛋白质模拟结果,但对氢键方向性的改进并不显著。
     第3章中,我们提出一种方法,它结合了自由能微扰理论和增强采样方法,能将小肽体系在不同构象态之间的平衡数据用于力场发展阶段的参数校正过程中。为了验证这个方法,我们把前面在GROMOS 43A1力场中参数化的广义玻恩/溶剂可接触表面积模型作为参考模型,并把这个模型应用到四个具有不同二级结构的小肽中,包含两个α-螺旋和两个β-折叠片。利用温度副本交换分子动力学模拟方法采样小肽的构象空间。我们可以预测需要扰动力场中的那些参数才能对不同体系的天然构象态与其它构象态之间的计算平衡产生影响。我们考虑两种不同的方法描述这四个小肽的构象态,一种是基于反应坐标和两维自由能面;另一种是基于对采样的构象进行聚类分析。我们考虑扰动不同力场参数对天然态和其它构象态之间平衡的影响。对不同的小肽,某一类型的扰动能产生一致的预测结果,我们利用在扰动参数的力场下的真实的模拟来验证这个方法做出的预测是否正确有效。
Proteins carry out biological functions. The function of protein is dependent on its three-dimensional structure and dynamics. Most proteins exist in unique conformations exquisitely suited to their function. Experimentally, the three-dimensional protein structure can be analyzed by x-ray diffraction of protein crystals or nuclear magnetic resonance spectroscopy. Currently, the miscorscopic distributions of protein conformations in time and space are not accessible by experiments. Experiments also can not provide detailed dynamics of proteins when they carry out their functions. Molecular dynamic (MD) simulation can provide such complementary information. Under further developments, simulation may also become an important tool for ab initio structure prediction. In MD simulations, the evolution of molecular structures in space and time are traced by solving Newton's equations of motion. MD is based on representing the energy of the protein as a function of its atomic coordinates by an empirical function, which is also known as molecular mechanics "force field". The quality of molecular dynamic simulations for protein depends greatly on the accuracy of empirical force fields. There are two well-known difficulties in molecular simulations, one is the limited accuracy of the energy functions modeling intra- and inter-molecular interactions and another is limited sampling in the higher dimensional conformational space, many efforts have been made to solve these questions.
     Traditional force field refinements are based on the structural and energy properties of small molecule systems. In GROMOS force field, parameters for non-bonded interaction are obtained by fitting thermodynamic quantities such as density, heats of vaporization, excess free energy and free energy of solvation to experimental data for small molecule systems. The torsional angle terms which affect the peptide conformational equilibriums arc usually not fully refined in force field. In addition, because of the high dimensionality of the force field parameters, we cannot confirm the best parameters just relying on the reference data used in force field developments.
     The precision of the description of the conformational equilibriums of force field is very important for molecular simulation. The emphases of this paper are how to refine the force field and ensure that it not only reproduces the condensed phase thermodynamics data, but also describes the conformational equilibriums accurately.
     There are mainly two works described in this paper, one is refining the description of peptide backbone conformations improves protein simulations using the GROMOS 53A6 force field, the other is using free energy perturbation to predict effects of changing force field parameters on computed conformational equilibriums of peptides.
     In chapter 2, we show that refining the descriptions of peptide backbone conformations can improve protein simulations using the GROMOS 53A6 force field. Many research indicated that there existed systematic biases in the description of protein local conformations involving the backbone Ramachandran dihedral angles by widely-used molecular mechanics force fields. Comparisons of molecular mechanics free energy surfaces of dipeptide system with quantum mechanical ones and conformation distributions in protein crystal structures indicated that refined treatments of backbone torsional angle terms are necessary. The high accuracy of the computed free energy surfaces allowed us to consider two types of corrections, one numerically and exactly reproducing the quantum mechanical results, and the other using small analytical terms to correct major deficiencies for the dipeptide systems. In addition, aiming at improving the directionality of backbone-backbone hydrogen bonds, we optimized and tested an off-center charge model for the peptide backbone carbonyl oxygen. Extensive molecular dynamics simulations of five proteins and two peptides in solution indicated that refined treatments of backbone dihedral angles lead to substantial improvements of the simulations. Being much simpler, the analytical terms perform as good as or even slightly better than the exact numerical corrections. While using off-center charges brought some improvements, the directionality of hydrogen bonds have not been significantly improved.
     In chapter 3, we have proposed an approach combines free energy perturbation with improved sampling techniques which may allow data about the conformational equilibriums of peptides to enter the parameter calibration phase in force field developments. To demonstrate the method, we consider a previously parameterized generalized born/solvent accessible surface area model for the GROMOS 43a1 force field. The model is applied to four peptides, including twoα-helices and twoβ-hairpins. Based on conformations sampled using temperature replica exchange molecular dynamics simulations, we predict how perturbations of various force field parameters would shift the computed equilibriums between the native conformational states and other conformational states of different systems. We considered two different approaches to define conformational states of four peptides. One is based on reaction coordinates and two-dimensional free energy surfaces. The other is based on clustering analysis of sampled conformations. Effects of perturbing various model parameters on the equilibriums between native-like states with other conformational states were considered. For one type of perturbation predicted to have consistent effects on different peptides, the predictions have been verified by actual simulations using a perturbed model.
引文
Affentranger, R., et al., 2006. A novel Hamiltonian replica exchange MD protocol to enhance protein conformational space sampling. J Chem Theory Comput. 2,217-228.
    Alves, P. B. G., Stassen, H., 2002. New Approach to Free Energy of Solvation Applying Continuum Models to Molecular Dynamics Simulation. J Comput Chem. 23, 706-714.
    Banavali, N. K., et al., 2002. Electrostatic free energy calculations using the generalized solvent boundary potential method. J Chem Phys. 117, 7381-7388.
    Beachy, M. D., et al., 1997. Accurate ab Initio Quantum Chemical Determination of the Relative Energetics of Peptide Conformations and Assessment of Empirical Force Fields. J Am Chem Soc. 119,5908-5920.
    Beeman, D., 1976. Some multistep methods for use in molecular dynamics calculations. J Comput Phys. 20,130-139.
    Bennett-Lovsey, R. M., et al., 2008. Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins. 70,611-625.
    Berendsen, H. J. C., et al., 1987. The missing term in the effective polar potentials. J Phys Chem. 91,6269-6271.
    Berendsen, H. J. C., et al., 1981. Interaction models for water in relation to protein hydration. Intermolecular Forces (Ed.: B. Pullman). 331-342.
    
    Berman, H. M., et al., 2000. The Protein Data Bank. Nucleic Acids Res. 28,235-242.
    Berne, B. J., Straub, J. E., 1997. Novel methods of sampling phase space in the simulation of biological systems. Curr Opin Struct Biol. 7,181-189.
    Bucber, M., Porter, T. L., 1986. Analysis of the Born Model for Hydration of Ions. J Phys Chem. 90,3411-3414.
    Chandrasekhar, I., et al., 2003. A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field. Eur Biophys J. 32, 67-77.
    Chandrasekhar, I., van Gunsteren, W. F., 2002. A comparison of the potential energy parameters of aliphatic alkanes: molecular dynamics simulations of triacylglycerols in the alpha phase. Eur Biophys J. 31,89-101.
    Chen, C., et al., 2005a. A directed essential dynamics simulation of peptide folding. Biophys J. 88, 3276-3285.
    Chen, J., et al., 2005b. Application of torsion angle molecular dynamics for efficient sampling of protein conformations. J Comput Chem. 26,1565-1578.
    Cheng, X., et al., 2005. Modified replica exchange simulation methods for local structure refinement. J Phys Chem B. 109, 8220-8230.
    Chou, K. C, Carlacci, L., 1991. Simulated annealing approach to the study of protein structures. Protein Eng. 4,661-667.
    Christen, M., et al., 2005. The GROMOS software for biomolecular simulation: GROMOS05. J Comput Chem. 26, 1719-1751.
    Christen, M., van Gunsteren, W. F., 2008. On searching in, sampling of, and dynamically moving through conformational space of biomolecular systems: A review. J Comput Chem. 29, 157-166.
    Cieplak, P., et al., 2001. Molecular Mechanical Models for Organic and Biological Systems Going Beyond the Atom Centered Two Body Additive Approximation: Aqueous Solution Free Energies of Methanol and N-Methyl Acetamide, Nucleic Acid Base, and Amide Hydrogen Bonding and Chloroform/Water Partition Coefficients of the Nucleic Acid Bases. J Comput Chem. 22,1048-1057.
    Contreras-Moreira, B., et al., 2002. Comparative modelling: an essential methodology for protein structure prediction in the post-genomic era. Appl Bioinformatics. 1, 177-190.
    Cornell, W., et al., 2001. Continuum solvent molecular dynamics study of flexibility in interleukin-8. J Mol Graph Model. 19, 136-145.
    Cornell, W. D., et al., 1995. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 117, 5179-5197.
    Cukier, R., Morillo, M., 2005. A targeted reweighting method for accelerating the exploration of high-dimensional configuration space. J Chem Phys. 123,234908.
    Qiu, D., et al., 1997. The GB/SA Continuum Model for Solvation. A Fast Analytical Method for the Calculation of Approximate Bom Radii. J Phys Chem. A. 101, 3005-3014.
    Daggett, V., 2000. Long timescale simulations. Curr Opin Struct Biol. 10, 160-164.
    Daura, X., et al., 1998. Parametrization of aliphatic CHn united atoms of GROMOS96 force field. J Comput Chem. 19, 535-547.
    David, L., et al., 2000. Comparison of Generalized Born and Poisson Models: Energetics and Dynamics of HIV Protease. J Comput Chem. 21, 295-309.
    Dixon, R. W., Kollman, P. A., 1997. advancing beyond the atom-centered model in additive and nonadditive molecular mechanics. J Comput Chem. 18,1632-1646.
    Duan, Y., Kollman, P. A., 1998. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science. 282, 740-744.
    Duan, Y., et al., 2003. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem. 24, 1999-2012.
    Eisenberg, D., McLachlan, A., 1986. Solvation energy in protein folding and binding. Nature. 319, 199-203.
    Exarchos, T. P., et al., 2008. Mining sequential patterns for protein fold recognition. J Biomed Inform. 41,165-179.
    Fan, H., et al., 2005. Comparative study of generalized Born models: Protein dynamics. Proc Natl Acad Sci U S A. 102, 6760-6764.
    Foloppe, N., MacKerell Jr, A. D., 2000. All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J Comput Chem. 21, 86-104.
    
    Frisch, M. J., et al., 2003. Gaussian 03, Gaussian, Inc.:Wallingford CT.
    Gallicchio, E., Levy, R. M., 2004. AGBNP: An Analytic Implicit Solvent Model Suitable for Molecular Dynamics Simulations and High-Resolution Modeling. J Comput Chem. 25, 479-499.
    Gallicchio, E., et al., 2002. The SGB/NP Hydration Free Energy Model Based on the Surface Generalized Born Solvent Reaction Field and Novel Nonpolar Hydration Free Energy Estimators. J Comput Chem. 23, 517-529.
    Garc(?)a, A. E., 1992. Large-amplitude non-linear motions in proteins. Phys Rev Lett. 68, 2696-2699.
    Garcia, A. E., Sanbonmatsu, K. Y., 2001. Exploring the energy landscape of a beta hairpin in explicit solvent. Proteins. 42,345-354.
    Geerke, D. P., van Gunsteren, W. F., 2006. Force field evaluation for biomolecular simulation: free enthalpies of solvation of polar and apolar compounds in various solvents. Chemphyschem. 7, 671-678.
    Ghosh, A., et al., 1998. Generalized Born Model Based on a Surface Integral Formulation. J Phys Chem B. 102, 10983-10990.
    Ginalski, K., 2006. Comparative modeling for protein structure prediction. Curr Opin Struct Biol. 16, 172-177.
    
    Godzik, A., 2003. Fold recognition methods. Methods Biochem Anal. 44, 525-546.
    Grant, A., et al., 2001. A Smooth Permittivity Function for Poisson-Boltzmann Solvation Methods. J Comput Chem. 22, 608-640.
    Greer, J., 1991. Comparative modeling of homologous proteins. Meth Enzymol. 202,239-252.
    Grubmuller, H., 1995. Predicting slow structural transitions in macromolecular systems: conformational flooding. Phys Rev E. 52,2893-2906.
    Guvench, O., MacKerell Jr, A. D., 2008. Comparison of protein force fields for molecular dynamics simulations. Methods Mol Biol. 443,63-88.
    
    Halgren, T. A., Damm, W., 2001. Polarizable force fields. Curr Opin Struct Biol. 11,236-242.
    Hamelberg, D., et al., 2004. Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules.. J Chem Phys. 120, 11919-11929.
    
    Hansson, T., et al., 2002. Molecular dynamics simulations. Curr Opin Struct Biol. 12, 190-196.
    Hardin, C., et al., 2002. Ab initio protein structure prediction. Curr Opin Struct Biol. 12, 176-181.
    Helles, G., 2008. A comparative study of the reported performance of ab initio protein structure prediction algorithms. J R Soc Interface. 5, 387-396.
    Hermans, J., et al., 1984. A consistent empirical potential for water-protein interactions. Biopolymers. 23,1513-1518.
    Higo, J., et al., 2001. Energy landscape of a peptide consisting of α -helix, 3_(10)helix, β-turn, β-hairpin and other disordered conformations. Protein Sci.. 10, 1160-1171.
    Hockney, R. W., 1970. The potential calculations and some applications. Methods in comput phys. 9, 136-211.
    Hooft, R. W. W., et al., 1992. An adaptive umbrella sampling procedure in conformational analysis using molecular dynamics and its application to glycol. J Chem Phys. 97,6690-6694.
    Hornak, V., et al., 2006. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins. 65,712-725.
    Hu, H., et al., 2003. Comparison of a QM/MM force field and molecular mechanics force fields in simulations of alanine and glycine "dipeptides" (Ace-Ala-Nme and Ace-Gly-Nme) in water in relation to the problem of modeling the unfolded peptide backbone in solution. Proteins. 50, 451-463.
    Jorgenscn, W. 1,., et al., 1983. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 79, 926-935.
    Jorgensen, W. L., et al., 1996. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J Am Chem Soc. 118, 11225-11236.
    Jorgensen, W. L., Tirado-Rives, J., 1988. The OPLS Potential Functions for Proteins. Energy Minimization for Crystals of Cyclic Peptides and Crambin. J Am Chem Soc. 110, 1657-1666.
    Kang, Y. K., et al., 1987a. Free energies of hydration of solute molecules. 1. Improvement of the hydration shell model by exact computations of overlapping volumes. J Phys Chem. 91, 4105-4109.
    Kang, Y. K., et al., 1987b. Free energies of hydration of solute molecules. 2. Application of the hydration shell model to nonionic organic molecules. J Phys Chem. 91,4109-4117.
    Karplus, M., 2003. Molecular dynamics of biological macromolecules: a brief history and perspective. Biopolymers. 68,350-358.
    Karplus, M., McCammon, J. A., 2002. Molecular dynamics simulations of biomolecules. Nat Struct Biol. 9,646-652.
    Karplus, M., Petsko, G A., 1990. Molecular dynamics simulations in biology. Nature. 347, 631-639.
    Kollman, P. A., et al., 1997. The development/application of a 'minimalist' organic/biochemical molecular mechanic force field using a combination of ab initio calculations and experimental data[M]. In: Computer Simulation of Biomolecular Systems. 3, 83-96.
    Koretke, K. K., et al., 2001. Fold recognition from sequence comparisons. Proteins. 5, 68-75.
    Kortemme, T., et al., 2003. An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J Mol Biol. 326, 1239-1259.
    Leach, A. R., 1996. Molecular modeling: principles and applications, 2nd version. Addison wesley Longman.
    Lee, M. C, Duan., Y., 2004. Distinguish protein decoys by using a scoring function based on a new Amber force field, short molecular dynamics simulations, and the generalized Born solvent model. Proteins. 55,620-634.
    
    Lee, M. S., et al., 2002. Novel generalized Born methods. J Chem Phys. 116, 10606-10614.
    Lei, H., Duan, Y., 2007. Improved sampling methods for molecular simulation. Curr Opin Struct Biol. 17, 187-191.
    Lei, M., et al., 2004. Sampling Protein Conformations and Pathways. J Comput Chem. 25, 1133-1148.
    Levy, Y, Becker, O. M., 2001. Energy landscapes of conformationally constrained peptides. J Chem Phys. 114,993-1009.
    Levy, Y, Becker, O. M., 2002. Conformational polymorphism of wild-type and mutant prion proteins: energy landscape analysis. Proteins. 47,458-468.
    Lii, J.-H., Allinger, N. L., 1991. The MM3 Force Field for Amides, Polypeptides and Proteins. J Comput Chem. 12,186-199.
    Lindahl, E. R., 2008. Molecular dynamics simulations. Methods Mol Biol. 443,3-23.
    Liu, P., et al., 2005. Replica exchange with solute tempering: A method for sampling biological
    systems in explicit water. Proc Natl Acad Sci U S A. 102, 13749-13754.
    Lopez-Garcia, J. J., et al., 2002. Numerical solution of the poisson-boltzmann equation for a
    spherical cavity. J Colloid Interface Sci. 251, 85-93.
    Lu, B., et al., 2005. Computation of electrostatic forces between solvated molecules determined by
    the Poisson-Boltzmann equation using a boundary element method. J Chem Phys. 122,
    214102.
    
    Lushington, G. H., 2008. Comparative modeling of proteins. Methods Mol Biol. 443, 199-212.
    Mackerell Jr, A. D., 2004. Empirical force fields for biological macromolecules: overview and
    issues. J Comput Chem. 25,1584-604.
    MacKerell Jr, A. D., et al., 2000. Development and current status of the CHARMM force field for
    nucleic acids. Biopolymers. 56,257-265.
    MacKerell Jr, A. D., et al., 1998. All-atom empirical potential for molecular modeling and
    dynamics studies of proteins. J Phys Chem. B. 102, 3586-3616.
    Mackerell Jr, A. D., et al., 2004. Extending the treatment of backbone energetics in protein force
    fields: limitations of gas-phase quantum mechanics in reproducing protein conformational
    distributions in molecular dynamics simulations. J Comput Chem. 25, 1400-1415.
    MacKerell Jr, A. D., et al., 1995. An all-atom empirical energy function for the simulation of
    nucleic acids. J Am Chem Soc. 117,11946-11975.
    Mahoney, M. W., Jorgensen, W. L., 2000. A five-site model for liquid water and the reproduction
    of the density anomaly by rigid, nonpolarizable potential functions. J Chem Phys. 112,
    8910-8922.
    
    Martin, A. C., et al., 1997. Assessment of comparative modeling in CASP2. Proteins. 1, 14-28.
    McCammon, J. A., et al., 1977. Dynamics of folded proteins. Nature. 267, 585-590.
    Mezei, M., 1987. Adaptive umbrella sampling: Self-consistent determination of the
    non-Boltzmann bias. J Comput Phys. 68,237-248.
    Morozov, A. V., et al., 2004. Close agreement between the orientation dependence of hydrogen
    bonds observed in protein structures and quantum mechanical calculations. Proc Natl
    Acad Sci U S A. 101, 6946-6951.
    Neet, K. E., Lee, J. C, 2002. Biophysical characterization of proteins in the post-genomic era of
    proteomics. Mol Cell Proteomics. 1,415-20.
    Neria, E., et al., 1996. Simulation of Activation Free Energies in Molecular Systems. J Chem Phys.
    105,1902-1921.
    Nguyen, P. H., et al., 2005. Free energy landscape and folding mechanism of a beta-hairpin in explicit water: a replica exchange molecular dynamics study. Proteins. 61,795-808.
    Okur, A., et al., 2006. Improved efficiency of replica exchange simulations through use of a hybrid explicit/implicit solvation model. J Chem Theory Comput. 2,420-433.
    Onufriev, A., et al., 2000. Modification of the Generalized Born Model Suitable for Macromolecules. J Phys Chem B. 104, 3712-3720.
    Onufriev, A., et al., 2002. Effective Born Radii in the Generalized Born Approximation: The Importance of Being Perfect. J Comput Chem. 23,1297-1304.
    Ooi, T., et al., 1987. Accessible Surface Areas as a Measure of the Thermodynamic Parameters of Hydration of Peptides. Proc Natl Acad Sci U S A. 84,3086-3090.
    Oostenbrink, C., et al., 2005. Validation of the 53A6 GROMOS force field. Eur Biophys J. 34, 273-284.
    Oostenbrink, C., et al., 2004. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem. 25,1656-1676.
    Periole, X., Mark, A. E., 2007. Convergence and sampling efficiency in replica exchange simulations of peptide folding in explicit solvent. J Chem Phys. 126,014903.
    Ponder, J. W., Case, D. A., 2003. Force fields for protein simulations. Adv Protein Chem. 66, 27-85.
    Qiu, D., et al., 1997. The GB/SA Continuum Model for Solvation. A Fast Analytical Method for the Calculation of Approximate Born Radii. J Phys Chem A. 101, 3005-3014.
    Rashin, A. A., Honig, B., 1985. Reevaluation of the Born Model of Ion Hydration. J Phys Chem 89, 5588-5593.
    Reiher WE, I., 1985. Theoretical Studies of Hydrogen Bonding. Ph.D. thesis Harvard University, Cambridge, MA, USA.
    Rick, S. W., et al., 1995. Fluctuating Charge Force Fields for Aqueous Solutions. J Mol Liq. 65, 31-40.
    
    Roux, B., Simonson, T., 1999. Implicit solvent models. Biophysical Chemistry. 78, 1-20.
    Rueda, M., et al., 2007. A consensus view of protein dynamics. Proc Natl Acad Sci U S A. 104, 796-801.
    Ryckaert, J.-P., et al., 1977. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 23, 327-341.
    Sanbonmatsu, K., Garc(?)a, A., 2002. Structure of met-enkephalin in explicit aqueous solution using replica exchange molecular dynamics. Proteins. 46,225-234.
    Sayyed-Ahmad, A., et al., 2004. Efficient solution technique for solving the Poisson-Boltzmann equation. J Comput Chem. 25,1068-1074.
    Schuler, L. D., et al., 2001. An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem. 22,1205-1218.
    Simonson, T., 2001. Macromolecular electrostatics: continuum models and their growing pains. Curr Opin Struct Biol. 11, 243-252.
    Smith, L. J., et al., 1995. Comparison of MD simulations and NMR experiments for hen lysozyme. Analysis of local fluctuations, cooperative motions, and global changes. Biochemistry. 34, 10918-10931.
    Steinbach, P. J., 2004. Exploring Peptide Energy Landscapes: A Test of Force Fields and Implicit Solvent Models. proteins. 57,665-677.
    Stern, H. A., et al., 1999. Fluctuating Charge, Polarizable Dipole, and Combined Models: Parameterization from ab Initio Quantum Chemistry. J Phys Chem. B. 103,4730-4737.
    Stern, H. A., et al., 2001. Combined fluctuating charge and polarizable dipole models: Application to a five-site water potential function. J Chem Phys. 115,2237-2251.
    Still, W. C., et al., 1990. Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. J Am Chem Soc. 112, 6127-6129.
    Stillinger, F. H., Rahman, A., 1974. Improved simulation of liquid water by molecular dynamics. J Chem Phys. 60, 1545-1567.
    Stocker, U., van Gunsteren, W. F., 2000. Molecular dynamics simulation of hen egg white lysozyme: a test of the GROMOS96 force field against nuclear magnetic resonance data. Proteins. 40, 145-153.
    Thomas, G., et al., 2005. Density guided importance sampling: application to a reduced model of protein folding. Bioinformatics. 21,2839-2843.
    Tirion, M. M., 1996. Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett. 77, 1905-1908.
    Torrie, G., Valleau, J., 1977. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J Comput Phys. 23, 187-199.
    van Gunsteren, W. F., et al., 2006. Biomolecular modeling: Goals, problems, perspectives. Angew Chem Int Ed Engl. 45,4064-4092.
    van Gunsteren, W. F., Berendsen, H. J., 1977. Algorithms for macromolecular dynamics and constraint dynamics. Mol. Phys. 34,1311-1327.
    
    van Gunsteren, W. F., Berendsen, H. J. C, 1987. Groningen Molecular Simulation (GROMOS) Library Manual; Biomos: Groningen.
    van Gunsteren, W. F., et al., 1996. Biomolecular Simulation: The GROMOS96 Manual and User Guide[M]. (Vdf Hochschulverlag AG an der ETH Zurich,1996), ISBN 3 7281 2422 2.
    van Gunsteren, W. F., Dolenc, J., 2008. Biomolecular simulation: historical picture and future perspectives. Biochem Soc Trans. 36,11-15.
    van Gunsteren, W. F., Karplus, M., 1981. Effect of constraints, solvent and crystal environment on protein dynamics. Nature. 293,677-678.
    Venclovas, C., et al., 1997. Criteria for evaluating protein structures derived from comparative modeling. Proteins. 1,7-13.
    Verlet, L., 1967. Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev. 159,98-103.
    Villa, A., et al., 2007. How Sensitive Are Nanosecond Molecular Dynamics Simulations of Proteins to Changes in the Force Field. J Phys Chem B. 111,6015-6025.
    Wang, G., et al., 2005. Assessment of fold recognition predictions in CASP6. Proteins. 7,46-66.
    Wang, J., et al., 2000. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules. J Comput Chem. 21, 1049-1074.
    Wang, L., et al., 1999. Study of the stability and unfolding mechanism of BBA1 by molecular dynamics simulations at different temperatures. Protein Sci. 8,1292-1304.
    Wang, Z. X., et al., 2006. Strike a balance: optimization of backbone torsion parameters of AMBER polarizable force field for simulations of proteins and peptides. J Comput Chem. 27,781-790.
    Weiner, S. J., et al., 1984. A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc. 106,765-784.
    Weiner, S. J., et al., 1986. An all-atom force field for simulations of proteins and nucleic acids. J Comput Chem. 7,230-252.
    van Gunsteren, W. F., D. B., Riccardo Baron, Indira Chandrasekhar,, et al., 2006. Biomolecular Modeling: Goals, Problems, Perspectives. Angew Chem Int Ed. 45,4064-4092.
    Sugita, Y., Okamoto, Y., 1999. Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett. 314, 141-151.
    Yang, L., et al., 2006. New-generation amber united-atom force field. J Phys Chem B. 110, 13166-13176.
    
    Yon, J. M., 2002. Protein folding in the post-genomic era. J Cell Mol Med. 6, 307-327.
    Yu, H. B., van Gunsteren, W. F., 2005. Accounting for polarization in molecular simulation. Comput Phys Comm. 172,69-85.
    Zhang, Y., et al., 2003. TOUCHSTONE II: a new approach to ab initio protein structure prediction. Biophys J. 85,1145-1164.
    Zhou, H., Skolnick, J., 2007. Ab initio protein structure prediction using chunk-TASSER. Biophys J. 93, 1510-1518.
    Zhou, R., Berne, B. J., 2002. Can a continuum solvent model reproduce the free energy landscape of a beta -hairpin folding in water. Proc Natl Acad Sci U S A. 99,12777-12782.
    Zhou, R., et al., 2001. The free energy landscape for beta hairpin folding in explicit water. Proc Natl Acad Sci U S A. 98, 14931-14936.
    Zhu, J., et al., 2005. Comparative Study of Generalized Born Models: Born Radii and Peptide Folding. J Phys Chem B. 109, 3008-3022.
    Akima, H., 1996. Algorithm 760; rectangular-grid-data surface fitting that has the accuracy of a bicubic polynomial. ACM Transactions on Mathematical Software (TOMS). 22, 357-361.
    Andersen, N. H., et al., 2006. Minimization and Optimization of Designed p-Hairpin Folds. J Am Chem Soc. 128,6101-6110.
    Andzelm, J., et al., 1995. Incorporation of solvent effects into density functional calculations of molecular energies and geometries. J Chem Phys. 103,9312-9320.
    Bartels, C., Karplus, M., 1997. Multidimensional adaptive umbrella sampling: Applications to main chain and side chain peptide conformations. J Comput Chem. 18,1450-1462.
    Beachy, M. D., et al., 1997. Accurate ab Initio Quantum Chemical Determination of the Relative Energetics of Peptide Conformations and Assessment of Empirical Force Fields. J Am Chem Soc. 119,5908-5920.
    Berendsen, H. J. C., et al., 1984. Molecular dynamics with coupling to an external bath. J Chem Phys. 81,3684-3690.
    Berendsen, H. J. C., et al., 1981. Interaction models for water in relation to protein hydration. Intermolecular Forces (Ed.: B. Pullman). 331-342.
    
    Berman, H. M., et al., 2000. The Protein Data Bank. Nucleic Acids Res. 28, 235-242.
    Beveridge, D. L., DiCapua, F. M., 1989. Free energy via molecular simulation: applications to chemical and biomolecular systems. Annu Rev Biophys Biophys Chem. 18,431 -492.
    Cammi, R., et al., 2000. Fast Evaluation of Geometries and Properties of Excited Molecules in Solution: A Tamm-Dancoff Model with Application to 4-Dimethylaminobenzonitrile. J Phys Chem A 104, 5631 -5637.
    Christen, M., et al., 2005. The GROMOS software for biomolecular simulation: GROMOS05. J Comput Chem. 26, 1719-1751.
    Cieplak, P., et ai., 2001. Molecular Mechanical Models for Organic and Biological Systems Going Beyond the Atom Centered Two Body Additive Approximation: Aqueous Solution Free Energies of Methanol and N-Methyl Acetamide, Nucleic Acid Base, and Amide Hydrogen Bonding and Chloroform/Water Partition Coefficients of the Nucleic Acid Bases. J Comput Chem. 22, 1048-1057.
    Cornell, W. D., et al., 1995. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 117,5179-5197.
    Cossi, M., et al., 2001. Polarizable dielectric model of solvation with inclusion of charge penetration effects. J Chem Phys 114, 5691-5701.
    
    Daggett, V., 2000. Long timescale simulations. Curr Opin Struct Biol. 10, 160-164.
    Dean, J. A., Lanshi chemistry manual[M]. Lanshi chemistry manual.
    Dixon, R. W., Kollman, P. A., 1997. advancing beyond the atom-centered model in additive and nonadditive molecular mechanics. J Comput Chem. 18,1632-1646.
    Duan, Y., et al., 2003. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem. 24, 1999-2012.
    Fan, H., et al., 2005. Comparative study of generalized Born models: protein dynamics. Proc Natl Acad Sci U S A. 102,6760-6764.
    
    Frisch, M. J., et al., 2003. Gaussian 03, Gaussian, Inc.:Wallingford CT.
    Gallagher, T., et al., 1994. Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. Biochemistry. 33,4721-4729.
    Hansson, T., et al., 2002. Molecular dynamics simulations. Curr Opin Struct Biol. 12,190-196.
    Hooft, R. W. W., et al., 1992. An adaptive umbrella sampling procedure in conformational analysis using molecular dynamics and its application to glycol. J Chem Phys. 97,6690-6694.
    Hornak, V., et al., 2006. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins. 65,712-725.
    Hu, H., et al., 2003. Comparison of a QM/MM force field and molecular mechanics force fields in simulations of alanine and glycine "dipeptides" (Ace-Ala-Nme and Ace-Gly-Nme) in water in relation to the problem of modeling the unfolded peptide backbone in solution. Proteins. 50,451-463.
    Jorgensen, W. L., et al., 1996. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J Am Chem Soc. 118, 11225-11236.
    Kaminski, G. A., et al., 2001. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides. J Phys Chem. B. 105, 6474-6487.
    Karplus, M., McCammon, J. A., 2002. Molecular dynamics simulations of biomolecules. Nat Struct Biol. 9, 646-652.
    Karplus, M., Petsko, G. A., 1990. Molecular dynamics simulations in biology. Nature. 347, 631-639.
    Klamt, A., Jonas, V., 1996. Treatment of the Outlying Charge in Continuum Solvation Models. J Chem Phys. 105,9972-9981.
    Kortemme, T., et al., 2003. An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J Mol Biol. 326,1239-1259.
    Kumar, S., et al., 1992. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem. 13,1011-1021.
    Leijonmarck, M., Liljas, A., 1987. Structure of the C-terminal domain of the ribosomal protein L7/L12 from Escherichia coli at 1.7 A. J Mol Biol. 195, 555-579.
    Liu, H., et al., 2001. Quantum mechanics simulation of protein dynamics on long timescale. Proteins. 44,484-489.
    Lovell, S. C., et al., 2003. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins. 50,437-450.
    Mackerell Jr, A. D., 2004. Empirical force fields for biological macromolecules: overview and issues. J Comput Chem. 25, 1584-1604.
    Mackerell Jr, A. D., et al., 2004. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem. 25,1400-1415.
    Mezei, M., 1987. Adaptive umbrella sampling: Self-consistent determination of the non-Boltzmann bias. J Comput Phys. 68,237-248.
    Mitchinson, C., Baldwin, R. L., 1986. The design and production of semisynthetic ribonucleases with increased thermostability by incorporation of S-peptide analogues with enhanced helical stability. Proteins. 1,23-33.
    Mondragon, A., et al., 1989. Structure of the amino-terminal domain of phage 434 repressor at 2.0 A resolution. J Mol Biol. 205, 189-200.
    Morozov, A. V., et al., 2004. Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations. Proc Natl Acad Sci U S A. 101, 6946-6951.
    Oostenbrink, C., et al., 2005. Validation of the 53A6 GROMOS force field. Eur Biophys J. 34, 273-284.
    Oostenbrink, C., et al., 2004. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem. 25, 1656-1676.
    Ponder, J. W., Case, D. A., 2003. Force fields for protein simulations. Adv Protein Chem. 66, 27-85.
    Rueda, M., et al., 2007. A consensus view of protein dynamics. Proc Natl Acad Sci U S A. 104, 796-801.
    Ryckaert, J.-R, et al., 1977. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 23,327-341.
    Schindelin, H., et al., 1994. Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proc Natl Acad Sci U S A. 91, 5119-5123.
    Steele, R. A., Opella, S. J., 1997. Structures of the reduced and mercury-bound forms of MerP, the periplasmic protein from the bacterial mercury detoxification system. Biochemistry. 36, 6885-6895.
    Stocker, U., van Gunsteren, W. F., 2000. Molecular dynamics simulation of hen egg white lysozyme: a test of the GROMOS96 force field against nuclear magnetic resonance data. Proteins. 40,145-153.
    Tirado-Rives, J., Jorgensen, W. L., 1991. Molecular Dynamics Simulations of the Unfolding of an a-Helical Analogue of Ribonuclease A S-Peptide in Water. Biochemistry. 30,3864-3871.
    Tironi, I. G., et al., 1995. A generalized reaction field method for molecular dynamics simulations. J Chem Phys. 102, 5451-5459.
    Torrie, G. M., Valleau, J. P., 1977. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J Comput Phys. 23,187-199.
    Udier-Blagovic, M., et al., 2004. Accuracy of free energies of hydration using CM1 and CM3 atomic charges. J Comput Chem. 25,1322-1332.
    van Gunsteren, W. F., et al., 2006. Biomolecular modeling: Goals, problems, perspectives. Angew Chem Int Ed Engl. 45,4064-4092.
    van Gunsteren, W. F., et al., 1996. Biomolecular Simulation: The GROMOS96 Manual and User Guide[M]. (Vdf Hochschulverlag AG an der ETH Zurich,1996), ISBN 3 7281 2422 2.
    Villa, A., et al., 2007. How Sensitive Are Nanosecond Molecular Dynamics Simulations of Proteins to Changes in the Force Field? J Phys Chem B. 111,6015-6025.
    Wan, S., et al., 2004. Calculation of the aqueous solvation energy and entropy, as well as free energy, of simple polar solutes. J Chem Phys. 121, 9539-9548.
    Wang, J., et al., 2000. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem. 21, 1049-1074.
    Wang, J., et al., 2006. Determination of conformational free energies of peptides by multidimensional adaptive umbrella sampling. J Chem Phys. 125,094907.
    Wang, Z. X., Duan, Y., 2004. Solvation effects on alanine dipeptide: A MP2/cc-pVTZ//MP2/6-31G~(**) study of (Phi, Psi) energy maps and conformers in the gas phase, ether, and water. J Comput Chem. 25, 1699-1716.
    Beveridge, D. L., DiCapua, F. M., 1989. Free energy via molecular simulation:Applications to chemical and biomolecular systems . Annu Rev Biophys Biophys Chem. 18,431 -492.
    Cochran, A. G., et al., 2001. Tryptophan zippers: stable, monomeric beta -hairpins . Proc Natl Acad Sci U S A. 98,5578-5583.
    Cui, B., et al., 2003. Folding and misfolding of the papillomavirus E6 interacting peptide E6ap. Proc Natl Acad Sci U S A. 100,7087-7092.
    Gallicchio, E., et al., 2005. Temperature weighted histogram analysis method,replica exchange,and transition. J Phys Chem. B. 109,6722-6731.
    Lyubartsev, A. P., et al., 1992. New approach to Monte Carlo calculation of the free energy:Method of expanded ensembles. J Chem Phys. 96, 1776-1783.
    Mackerell Jr, A. D., 2004. Empirical force fields for biological macromolecules: overview and issues. J Comput Chem. 25,1584-1604.
    Marinari, E., Parisi, G, 1992. Simulated Tempering: a New Monte Carlo Scheme. Europhys Lett. 19,451-458.
    Munoz, V., et al., 1997. Folding dynamics and mechanism of beta-hairpin formation. Nature. 390, 196-199.
    Qiu, D., et al., 1997. The GB/SA Continuum Model for Solvation. A Fast Analytical Method for the Calculation of Approximate Born Radii. J Phys Chem. A. 101, 3005-3014.
    Ryckaert, J. P., et al., 1977. Numerical integration of the Cartesian equations of dynamics of n-alkanes. J Comput Phys. 23, 327-341.
    Sugita, Y., Okamoto, Y., 1999. Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett. 314, 141-151.
    Tirado-Rives, J., Jorgensen, W. L., 1991. Molecular dynamics simulations of the unfolding of an alpha-helical analogue of ribonuclease A S-peptide in water. Biochemistry. 30, 3864-3871.
    van Gunsteren, W. F., et al., 1981. Stochastic dynamics for molecules with constraints. Mol Phys. 44,69-95.
    van Gunsteren, W. F., et al., 1996. Biomolecular Simulation: The GROMOS96 Manual and User Guide[M]. (Vdf Hochschulverlag AG an der ETH Zurich, 1996), ISBN 3 7281 2422 2.
    van Gunsteren, W. F., et al., 2006. Biomolecular modeling: Goals, problems, perspectives. Angew Chem Int Ed Engl. 45,4064-4092.
    Yang,W.Y.,et al.,2004.Heterogeneous folding of the trpzip hairpin:full atom simulation and experiment.J Mol Biol.336,241-251.
    Zhou,R.,Berne,B.J.,2002.Can a continuum solvent model reproduce the free energy landscape of a beta -hairpin folding in water.Proc Natl Acad Sci U S A.99,12777-12782.
    Zhu,J.,et al.,2002.Parameterization of a generalized born/solvent accessible surface area model and applications to the simulation of protein dynamics.J Phys Chem.B.106,4844-4853.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700