电磁场与生物体相互作用及安全性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子科技的迅速发展,电磁场与电磁波在医学和生物学领域的应用越来越广泛,从而极大地提高了人类的生活质量和健康水平,与此同时,伴随应用而产生的电磁波辐射是一种新的污染环境的因素,从而有可能危及人体健康。无论是对其正面应用的进一步开发和利用,还是对负面效应的评价与防护,均以三方面的基础研究作为支撑的:一是电磁波生物学效应的实验研究,以回答应用什么的问题;二是机理研究,以回答应用的理论依据是什么的问题;三是生物电磁剂量学研究,以回答在什么样的电磁作用量下可应用的问题。本文在上述三方面的特色是:实验研究中以时-频域内的特征量为指标,开展生物学窗效应研究;机理研究中利用膜离子通道的几何结构参数和电荷分布参数计算通道内沿轴向的电位分布和电场分布,其结果中表明的周期性势垒分布为窗效应的存在奠定了物理基础,周期性的电场分布及由细胞膜电位所引起的非线性极化特征所引起电磁波能量的汇聚从而为离子提供了足以跨越势垒的能量基础;生物电磁剂量学研究中,将通常的吸收功率研究扩展到电场应力和温度升高研究,以便从听觉效应和温度变化效应角度对剂量作评价。
     一.极低频电磁波生物学窗效应研究
     以窗效应实验中常用的Ca ~(2+)为实验对象,在给出细胞内Ca ~(2+)浓度测量方法和为该课题所设计并制作的电磁波生物学实验照射系统的基础上,分别以鸡脑组织和人体肝癌细胞(7721)为生物学研究对象,以同位素示踪法和荧光标记法为实验方法,用不同频率和强度的极低频电磁波为作用因子,以液体闪烁计数器和激光共聚焦扫描显微镜为检测仪器,以放射性强度和荧光强度作为Ca ~(2+)数量的基本数据,进行电磁波生物学非热效应的典型代表—电磁波生物学窗效应的实验研究。其中着重研究了细胞胞浆内Ca ~(2+)浓度在时(间)–频(率)域内对电磁波的响应规律,从而将人们习惯于在时域内对电磁波生物效应的传统研究扩展到时–频域的研究,这样可获得生物系统对照射电磁波响应更深层次的信息。实验结果表明,无论是在时域内还是在时–频域内均存在着电磁波的频率窗效应和强度窗效应,同时表明,只有在特定的电磁波强度条件下才会产生频率窗效应,只有在特定的电磁波频率条件下才会产生强度窗效应,亦即,只有频率和强度的恰当组合的电磁波才会产生生物学窗效应。时–频分析结果表明:一定频率和强度的极低频电磁波可在细胞胞浆Ca ~(2+)浓度的时–频域内产生生物学效应,具体表现为,连续谱的宽度发生了变化,离散谱的个数发生了变化,离散谱的中心频率发生了变化。将产生和不产生生物学效应的一系列电磁波参数进行综合分析,结果表明,在时–频域内也会有生物学窗效应产生。另外,为了探索电磁波作用的物理基础,对无电磁波作用的生理条件下的7种细胞胞浆内Ca ~(2+)浓度的时–频特性作了研究,结果表明,不同细胞间既存在共性又存在差异,其共性表现为在时–频域内既有连续谱又有离散谱,某一参数的电磁波是否产生了生物学效应则正好体现在是否使这两种谱的特征发生变化;其差异表现为连续谱的带宽和离散谱的中心频率的不同,这些差异可为癌细胞的鉴别和对正常细胞健康状况的评价提供一种新的思路。
     二.窗效应机理分析
     基于Ca ~(2+)浓度变化与Ca ~(2+)穿过细胞膜上的由α-螺旋蛋白质分子构成的离子通道的量密切相关的思路,由α-螺旋蛋白质分子的几何结构参数和主链上的电荷分布参数计算了沿通道轴线的电位分布和电场分布,从而得出了沿轴线有周期性的势垒分布和周期性的电位分布的结果。势垒的高度便是离子在通道内运动时所需能量的基本单元,若要使离子一次跨越n个势垒( n = 1,2,......),则电磁波提供给离子的能量必须是这一基本能量单元的n倍,这意味着,能够使离子在通道内运动的电磁波的强度是一系列的离散值,这便是强度窗效应机理的基础。同时,离子跨越一个势垒是需要一定时间的,这个时间便是离子在通道内运动时耗费时间的基本单元,若要使离子一次性跨越n个势垒,则耗费的时间必然是这一基本时间单元的n倍,这意味着能够使离子在通道内沿正向运动,则电磁波电场的正方向所维持的时间应该是基本时间单元的n倍,即要求电磁波的半个周期等于基本时间单元的n倍,从而可知,要想与通道内的离子沿正向运动在时间上谐调一致,则要求电磁波的周期为一系列的离散值。由于周期与频率间有确定性的关系,故要求电磁波的频率是一系列的离散值,这便是频率窗效应机理的基础。事实上,只有提供给离子的能量为基本能量单元的n倍,同时其电场正向维持的时间也正好是基本时间单元的n倍的电磁波才能使离子沿正向跨越n个势垒而运动,所以,只有强度和频率恰当组合的电磁波才能产生窗效应。另外,量值估算表明,照射电磁波自身所具有的能量是不可能使离子跨越势垒的,为此,提出了电磁波能量局域汇聚的观点,其基本思想是:由于细胞膜存在10~(-2)V静息电位,故膜内有10~7V/m的电场,在如此强电场下,介质的极化表现出明显的非线性特征,加之离子通道内沿轴向有周期性的电场分布,故对通道内每一个横截面而言,两侧的介电常数是不相同的,两侧介电常数的不同便会使电磁波在该面上发生反射,反射的结果便形成了驻波,驻波的存在则表明在其波腹附近的一个区域内有电磁波能量的汇聚,从而使处于该区域的离子可获得远大于照射波自身的,足以使离子跨越势垒的能量。综上所述,本文的机理分析中,既给出了强度窗、频率窗效应的物理基础,又给出了二者的关联,同时,基于能量汇聚结论可给予低强度电磁波何以能够引起生物学效应的合理解释。
     三.手机辐射在人体头颅内产生的电场应力、温度升高及安全性评价
     出于电磁波会在不连续媒质中产生电场应力的考虑,分析计算了手机辐射在人体头颅内产生的电场应力分布,并以产生的电场应力是否达到人的听觉阀值从而产生听觉效应的角度对手机辐射的安全性进行了评价。出于电磁辐射可引起生物组织的温度升高而大脑又是对温升最为敏感的组织之一的考虑,基于手机辐射在人体头颅内的功率分布及生物组织的热传导特性,分析计算了头颅内的温度分布,给出了温度升高的区域和在目前的手机辐射功率下的温度升高值。出于手机设计中应考虑人体头颅会对手机天线的辐射特性产生影响的考虑,分析计算了人体头颅对手机天线辐射特性的影响,其中,关于天线方向图的影响研究中,不仅给出了人们习惯采用的二维方向图,还给出了一些典型数据,同时增加了对手机输入阻抗影响的研究内容,该内容可用于对影响手机天线辐射效率影响的评价。另外通过分析计算给出了减少人体头颅吸收手机辐射功率的建议。
The application of electromagnetic field and electromagnetic wave in medicine and biology become more and more extensive with the quick development of electronics technology, which greatly improve the quality of life and health, at the same time, the electromagnetic radiation has become a new environment pollution source which maybe endanger human health. The three areas of basic research as support to whether the further development and use of electromagnetic wave or the assessment and protection of it’s negative effects: the first is the experiment study on the biological effects of electromagnetic waves which answer the question of what application, the second is mechanism which answer the question of what is the theoretical basis for the application; the third is biological electromagnetic dosimetry study, which answer the application could be used under what kind of the electromagnetic action. The features of the three areas in this paper is the characteristic quality in time-frequency domain as indicators which be used in the study on biological window effects; the geometry parameters and charge distribution parameters of membrane ion channels be used to calculate the potential distribution and the electric field distribution along with axial in ion channels in mechanism study, the results show that the physical basis of the window effects is periodic distribution of potential barrier, the periodic electric field distribution and the convergence of electromagnetic energy caused by nonlinear polarization characteristics in membrane, which give the enough energy basis for ion to cross the barrier; The evaluation of electromagnetic dosimetry from the point of view of the auditory effects and the effects of temperature rise is performed by the extension from the study of absorbed power to the study of electric field stress and temperature rise in biological electromagnetic dosimetry study.
     Ⅰ. The study on biological window effects of ELF electromagnetic wave
     The Ca ~(2+) is study object which is usually used in window effect, based on the measurement method of calcium ion concentration in cell and the system of biological experimental irradiation on ELF electromagnetic wave, the system was designed and manufactured by ourselves. The brain issue of chicken and the liver cancer cells of human being (7721) were investigated respectively with the method of isotope tracing and fluorescent mark. the ELF electromagnetic wave with different properties as a factor, the radioactivity intensity and fluorescence intensity, which express the concentrations of Ca ~(2+) ,were measured with the liquid scintillation counter and laser scanning confocal microscope, a typical case of the athermal bio-effects of electromagnetic wave,that is,the window bio-effects of ELF electromagnetic wave,was studied. In the study we focus on the response of the concentrations of Ca ~(2+) in cell to electromagnetic wave in time-frequency domain which extend the traditional study that biological effect of electromagnetic wave in time domain to time-frequency domain, which can obtain further information. The results of experiment show that there exist frequency-window and intensity-window effects of electromagnetic wave whether in time domain or in time-frequency domain, and also show that the window bio-effects would be occurred under the condition of the right combination of frequency and intensity of electromagnetic wave, the results of time-frequency analysis show that the bio-effects of the concentrations of Ca ~(2+) in cell would be occurred under the action of certain frequency and intensity of ELF electromagnetic wave which shows the width of continuous spectrum, the number of discrete spectrum and the center frequency of discrete spectrum are changed. The comprehensive analysis of a series of electromagnetic parameters which can produce or not produce bio-effects was performed that show there also exists window bio-effects in time-frequency domain. In addition, in order to explore the physical basis of electromagnetic waves action, the characteristics of the Ca ~(2+) concentration of 7 kinds of cell was studied in time-frequency domain on physiological conditions that there is not electromagnetic wave action, the results show that there exist similarities and difference among the different cells, the similarities are that there exist both discrete spectrum and continuous spectrum, the biological effect is or is not produced is exactly reflected in whether the characteristics of the two spectral change, the differences are that the bandwidth of continuous spectrum and the center frequency of discrete spectrum are different. Those differences can give a new kind of idea for cancer cell detection and the evaluation of health status of normal cells.
     Ⅱ. Mechanism analysis of the window effect
     Based on the closely relationship between the Ca ~(2+) concentration change and the volume of Ca ~(2+) through the ion channels which constructed byα–helix protein molecules in cell membrane, we calculated the potential distribution and the electric field distribution along with channel axis through the geometry parameters and charge distribution parameters ofα–helix protein molecules, the results show that there exist the periodic potential barrier distribution and the periodic potential distribution along channel axis. The height of the barrier is basic energy unit that is required for ion movement in the channel, if making the ion across n-barrier, then the energy provided to the ion by electromagnetic wave must be n-times of the basic unit, which means that the intensity of electromagnetic wave is a series of discrete values for the ion movement in channel, which is basic of mechanism of intensity window effects. At the same time, the ion cross a barrier need some time, which is basic time unit, if making the ion across n-barrier, the time spent by the ion must be n-times of the basic time unit, which means that if the ion moves along forward in channel, then the time maintained by the positive direction electromagnetic field should be n-times of the basic time, then the half cycle of electromagnetic wave is required to be n-times of the basic time. So we can see that the cycle of electromagnetic wave is required to be a series of discrete values if the ion movement forward in channel in accord with the cycle. Because of the certain relationship between frequency and cycle, so the frequency of electromagnetic wave is required to be a series of discrete value which is basic of mechanism of frequency window effects. In fact, only the energy provided to the ion is n-times of the basic energy unit and the time maintained by positive electric wave is also happens to n-times of the basic time unit that can make the ion across n-barrier. In addition, the estimated value suggest that the energy of the radiation electromagnetic wave can not make the ion across the barrier, so we put forward the views of local convergence of electromagnetic wave energy, the basic idea is the polarization of the medium exhibit obvious nonlinear polarization characteristics for there is 10~7V/m electric field in membrane and there also exist the periodic electric field distribution along with channel axis, therefore the dielectric constant of the two sides of the channel cross-section is not the same which make electromagnetic wave reflected on the interface, the results of reflection form a standing wave which means there exist the energy convergence of electromagnetic wave near wave loop, the ions in this region would be obtain larger energy than irradiation wave that can make ion across the barrier. In summary, we not only gave the physical basis of intensity window effects and frequency window effects but also showed the correlation between them. The results of energy convergence can give a reasonable explanation on the biological effects of low-intensity electromagnetic wave.
     Ⅲ.The electric field stress, temperature rise in human head caused by mobile phone radiation and safety evaluation
     For the consideration of electromagnetic wave will generate electric field stress in discontinuous medium, we calculated the electric field stress distribution in human head caused by mobile phone radiation and the safety evaluation of mobile phone radiation was performed from the angle that the electric field stress whether reach to the threshold of auditory effects and produce auditory effects further. For the consideration of the temperature rise of biological tissues caused by electromagnetic irradiation and the brain is most sensitive to temperature rise, based on the power distribution in human head caused by mobile phone and heat transfer characteristics of biological tissues,we analyzed and calculated the temperature distribution inside the skull, gave the temperature area and temperature value under the radiation power of current mobile phone. For the consideration of the impact of human head on mobile phone antenna radiation when handsets are designed, we calculated the effect of human head on mobile antenna radiation characteristics, we not only gave the two-dimensional pattern but also some typical data, in addition, the effect of human head on mobile phone input impedance was also studied which can be used to evaluate the impact of human head on the antenna radiation efficiency. Measures which can reduce radiation power absorbed by human head were also put forward.
引文
[1]H.Frohlich, Coherent Electric Vibrations in Biological Systems and the Cancer Problem [J], IEEE Trans., Vol.MTT-26, NO.8, P613~617, 1978.
    [2]Frohlich H. What are non-thermal electric biological effects [J] Bioelectromagnetics, 1982. 3(1):45~46.
    [3]李缉熙,牛中奇.生物电磁学概论[M],西安电子科技大学出版社.1990, p221~276.
    [4]S.J.Webb and A.D.Booth, Absorption of Microwave by Microorganisms [J], Nature, vol.222, p1199~1200, 1969.
    [5]Blackman CF, et al. Influence of electromagnetic fields on the efflux of calcium ions from brain tissue in vitro [J]. Bioelectromagnetics, 1988, 9(3):215~227.
    [6]Blackman CF, et al. Multiple power-density window and their possible origin [J]. Bioelectromagnetics, 1989, 10(2):115~128.
    [7]ICNIRP.1998.Guidelines for limiting exposure to time varying electric, magnetic and electromagnetic field (up to 300GHz)[R]. Health physics, 74:494~522.
    [8]A.R.Liboff and B.R.Meleod, Kinetics of Channelized Membrane lons in Magnetic Fields [J], Bioelectromagnetics, Vol.9, p39~51, 1988.
    [9]刘文魁,庞东.电磁辐射的污染及防护与治理[M].北京,科学出版社,2003,295~296.
    [10]陈慧晓,陈国章.关于电磁场的非热生物学效应问题[C],第六届全国生物电磁学即第二届全国微波生物医学学术论文集,1997,10: 20~25.
    [11]高攸纲,刁庆安.再谈工频电磁场对人体健康的危害[C],全国第二届毫米波医学应用及第一届电磁辐射生物学学术研讨会论文汇编,成都,2001,4~6.
    [12]刘亚宁主编。电磁生物效应[M].北京,北京邮电大学出版社. 2002.
    [13]Blackman CF. Benance SG, Elliott DJ, et al. Influence from brain tissue in Vitro: a three-model analysis consistent with the frequency response up to 510Hz [J]. Bioelectromagnetics, 1998, 9(3):215~227.
    [14]Blackman CF, Elder JA, House DE, Lampe JA, Faulk JM. Induction of Calcium-ion efflux from brain tissue by radio-frequency radiation: effect of modulation frequency and field strength [J]. Radio Sci.1979, 14(6s):93~98.
    [15]Blackman CF, Benane SG, Kinney LS, et al. Effects of ELF field on Calcium–ion efflux from brain tissue in vitro [J]. Radiat-Res, 1982, 92(3):510~520.
    [16]许正平.中国电磁场生物学效应的体外系统研究现状[C],第三届电磁辐射与健康国际研讨会述学会议论文集.2003.30-35.
    [17]陈树德等.ELF磁场对3T3细胞生长的影响及其机理的探讨[J],生物物理学报,1993,9:488-492。
    [18]丁翠兰等.50Hz正弦交变磁场对K562和WZDs细胞生长的影响[J],中国医学物理学杂志.1966,13:223-225.
    [19]黄春明等.极低频弱磁场对瘤细胞胞内游离钙离子浓度的影响[J],生物医学工程杂志.2000,17:63-65.
    [20]陈树德等.极低频(ELF)磁场对细胞生长周期分布谱的影响及其机理的计算机模拟分析[J],生物物理学报.1994,10:681-684.
    [21]范纯武,赵锐,唐风强等.工频电磁场对人体T淋巴细胞核仁区酸性非组蛋白活性表达影响的研究[J],工业卫生与职业病,2000,26:261-263.
    [22]黄卡玛,李颖,刘宁等.近年来弱电磁场生物效应机理研究的进展[J],中国医学物理学杂志.2000, 17(1):36~40.
    [23]黄卡玛等,试论非热电磁生物效应实验的重复性[J],四川大学学报,1997,34(3):315~318.
    [1]陈慧晓,陈国章.关于电磁场的非热生物学效应问题[C],第六届全国生物电磁学即第二届全国微波生物医学学术论文集.1997, 10: 20~25.
    [2]吴瑞英,姜槐.生物电磁学的热点问题研究[J],基础医学与临床.2000,(1):12-15.
    [3]曹兆进,王强.电磁辐射对健康影响的国内流行病学调查综述[C],第三届电磁辐射与健康国际研讨会述学会议论文集.2003,10-13.
    [4]许正平.中国电磁场生物学效应的体外系统研究现状[C],第三届电磁辐射与健康国际研讨会述学会议论文集.2003.30-35.
    [5]Blackman CF, et al. Influence of electromagnetic fields on the efflux of calcium ions from brain tissue in vitro [J]. Bioelectromagnetics, 1988, 9(3):215~227.
    [6]Blackman CF, et al. Multiple power-density window and their possible origin [J]. Bioelectromagnetics, 1989, 10(2):115~128.
    [7]Schwartz JL, et al. Exposure of frog hearts to CW or amplitude-modulated VHF fields: Selective efflux of calcium ions at 16Hz [J]. Bioelectromagnetics, 1990, 11(4):349~358.
    [8]Blackman CF, Elder JA, House DE, et al. Induction of calcium-ion efflux from brain tissue by radio-frequency radiation: effect of modulation frequency and field strength. Radio Sci [J].1979, 14(supplement):93~98.
    [9]周永军,牛中奇,张辉等.体外ELF电磁场对干细胞Ca 2+生理浓度的影响[J],中山大学学报, 2007, 46(S2): 236-239.
    [10]杨文修,陈振辉.生物膜电压门控离子通道的结构和功能性构象[J],生物物理学报, 1991, 7(1):47-52.
    [11]郑永芳.钙通道与钙释放通道[J],生物物理学报, 1992,(4) :735~744.
    [12]崔婕,薛绍白.胞内钙的稳定调节[J],细胞生物学杂志.1995, 17(3):97~102.
    [13] Eichwald C, Kaiser F. Model for receptor-controlled cytosolic calcium oscillations and for external influences on the signal pathway [J], Biophys. J, 1993, 6(4): 2047-2058.
    [14]王春梅,黄晓峰,臧益民等.激光共聚焦扫描显微镜的原理及其在医学研究中的应用[J]。第四军医大学学报,1997,18(专刊)40~42.
    [15]Fewtrell, C. Ca 2+ oscillations in.non-excitable cells [J]. Annu. Rev. Physiol. 1993, 55:427-454.
    [16]张业荣,聂在平,阮颍铮.电磁逆散射问题中的泛函方法[J],电子科技大学学报.1996, 25(6):589~594.
    [17]陈星,黄卡玛,赵翔.遗传算法应用于二维微波成像研究[J],四川大学学报(自然科学版), 2002, 39(2):261~263.
    [18]孙大业,郭艳林,马力耕.细胞信号传导(第三版)[M].北京:科学出版社,2001.
    [19]王晓峰,王春梅,章翔等.大鼠脑弥漫性轴索损伤后细胞内钙变化的实验研究[J]。第四军医大学学报,1997,18(专刊)40~42.
    [20]夏锋,何振平,李昆等.肝细胞内游离钙振荡分布及钙振荡的亚细胞特征[J],中华肝脏病杂志, 2003,11(2):119.
    [21]龙开平,王春梅,陈丽敏等.用激光扫描共聚焦显微镜测量大鼠DRC细胞内游离Ca 2+的变化[J],第四军医大学学报.1997,18(专刊)82~83.
    [22]牛中奇,侯建强,王海彬等.电磁波的生物学窗效应[J].中国生物医学工程学报, 2003, 22(2):126-132.
    [23]L.科恩著.白居宪译.时频分析理论与应用[M].西安:西安交通大学出版社, 1998.1-75.
    [24]Margenau H, Hillr N. Correlation between measurements in quantum theory [J]. Prog Oret Phys, 1961, 26(3): 772-738.
    [25]张辉,许家栋,牛中奇等.极低频磁场对胞内钙振荡影响的机理分析[J].中国医学物理学杂志.2007, 24(3):189~192.
    [1]Mcleod R, Liboff R. Dynamic characteristics of membrance ions in multifield configurations of low-frequency electromagnetic rediaton [J]. Bioelectromagnetics, 1986, 7: 177~189.
    [2]Liboff R, Mcleod R. Kinetics of channel membrane ions in magnetic fields [J]. Bio-electromagnetics, 1998, 9:215~227.
    [3]Blackman CF, et al. Influence of electromagnetic fields on the efflux of calcium Ions from brain tissue in vitro [J]. Bioelectromagnetics, 1988, 9 (3):215~227.
    [4]Blackman CF, et al. Multiple power-density window and their possible origin [J]. Bioelectromagnetics, 1989, 10 (2):115~128.
    [5]French A S.Mechanotransduction [J].Ann Rev Physiol.1992,54:135—152.
    [6]Weinreb GE. Effects of ion-conformational interaction in biomembrane channels [J]. Physics of the Alive.1994, 2(1):26~34.
    [7]Komura Shigeyuki, yang Zhongcan. High-and low -pitch helical structures of tilted chiral lipid bilayers [J]. Physical Review Letters 1998, 81 (2): 473-476.
    [8]张绘蓝,全息空间光孤子的理论研究,2007,3~10.
    [1]Yee K S.,“Numerical solution of Initial Boundary Value Problems Involving Maxwell’s Equation in Isotropic Media”[J]. IEEE Trans. On AP, 1966, 14(5):302~307.
    [2]E L.Lindman,“Free-space”boundary conditions for the time dependent wave equation,”[J]. Comput. Phys, vol.18, pp66-78, 1975.
    [3]G Mur,“Absorbing boundary condition for the finite-difference approximation of the time-domain electromagnetic-field equations,”[J]. IEEE Trans. Electromagn. Compat, vol. EMC-23, pp. 377~382, Nov.1981.
    [4]R. G. Keys,“Absorbing boundary condition for acoustic media”[J]. Geophysics, vol.50, no. 6, pp. 892~902, 1985
    [5]金亚秋等.复杂系统中的电磁波[M].复旦大学出版社,1994
    [6]Taylor C D, Lam D H. Electromagnetic pulse scattering in time-varying inhomogeneous media [J]. IEEE Trans. Antennas Propagation. 1989, 3(1):30~33
    [7]Taflove A, Brodwin M E. Numerical solution of steady-state electromagnetic scattering problems using the Time-Dependent Maxwell’s equations [J]. IEEE Trans. Microwave Theory. 1975,(MTT-23):623~630.
    [8]Taflove A. Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic penetration problems [J]. IEEE Trans. Electromagnetic Compatibility. 1980, EMC-22(3):191~202.
    [9]Engquist B, Majda A. Absorbing boundary condition for the numerical simulation of waves [J]. mathematics of the computation.1977, 31(139):629~651.
    [10] J.P.Berenger. Three dimensional perfectly matched layer for the absorption of electromagnetic waves [J] Compute. Physics, 1996, 27(2):363~379.
    [11]M.S.Stuchly, R.J.Spiegel, S.S. Stuchly et al. Exposure of man in the near-field of a resonant dipole: comparison between theory and measurements [J]. IEEE Trans., 1986, MTT-34(1): 26~31.
    [12]Gandhi, O.P, Lazzi,G., Furse, C.M, Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900MHz[J]. Microwave theory and techniques, IEEE Transactions on, Volume: 44 Issue: 10 part: 2, Oct. 1996:1884~1897.
    [13]N. Kuster. R. Ballisti. MMP method simulationo of antennas with scattering objects in closer near field [J]. IEEE Trans., 1989, MAG-25(4):2881~2883
    [14]牛中奇.脉冲调制微波的听觉效应[J],微波学报.1987,(4):45~52
    [15]冯慈璋.静态电磁场[M].西安:西安交通大学出版社,1988.
    [16]牛中奇.细胞膜上的自电场应力[J].中国生物医学工程学报,1994,13(1):90~95.
    [17] Om. P. Gandhi and Abbas Riazi. Absorption of Millimeter wave by Human Beings and Its Biological Implications [J]. IEEE Trans. Microwave Theory Tech.1986; MTT-34(2):228~235.
    [18]李缉熙,牛中奇.生物电磁学概论[M],第一版,西安:西安电子科技大学出版社,1990.
    [19]王存诚,陈槐唧.生物医学中的热物理探索[M],第一版,北京:科学出版社,85~89.
    [20]王海彬,牛中奇.人体对电磁脉冲吸收剂量的仿真研究[J].电波科学学报, 2006 , 21 (2) : 259~264.
    [21]牛中奇,侯建强,周永军等.生物电磁剂量学及人体吸收电磁剂量的数值分析[J].中国生物医学工程学报, 2006 , 25 (6) : 580~584.
    [22]王补宣,王艳民.生物传热基本方程的研究[J].工程热物理学报,1993,14(2):166~170.
    [23] Jianqing Wang, Osamu Fujiwara: FDTD computation of temperature rise in the human head for portable telephones [J], IEEE Volume 47, issue 8, Aug. 1999 Page(s):1528– 1534.
    [24] Paolo Bernardi, Marta Cavagnaro, Stefano Pisa, and Emanuele Piuzzi, Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10-900MHz rang[J], IEEE transaction on biomedical engineering, vol. 50, NO.3, March 2003.
    [25]ICNIRP.1998.Guidelines for limiting exposure to time varying electric, magnetic and electromagnetic field (up to 300GHz)[R]. Health physics, 74:494~522
    [26]刘文魁,庞东。电磁辐射的污染及防护与治理[M].北京,科学出版社,2003,295~296.
    [27]国家环保总局.GB8702-88修订方案《电磁辐射防护规定》[S].北京:国家环境保护总局,2001.
    [28]魏文元,宫德明,陈必森等.天线原理[M].西安:西安电子科技大学出版社,2005:20-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700