燃料电池混合动力机车建模及能量管理策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池混合动力机车采用燃料电池和辅助能源(蓄电池或超级电容)构成的动力系统,因其高效、环保等特点而被认为是一种潜力巨大的新型轨道交通工具,受到世界范围内的广泛关注和深入研究。
     能量管理策略是燃料电池混合动力机车的关键技术之一,其核心在于通过合理分配燃料电池和辅助能源的功率输出,在保证机车功率需求的同时优化各能量单元的工作性能,提高整车燃料经济性。
     本文主要研究燃料电池混合动力机车的建模及能量管理策略的优化设计问题,主要研究成果如下:
     (1)基于MATLAB/SIMULINK仿真环境,建立了燃料电池—蓄电池混合动力机车系统仿真模型,主要包括燃料电池模型、蓄电池模型、机车负载模型和DC/DC变换器模型,从而为研究能量管理策略的正确性和有效性提供了仿真平台。基于燃料电池混合动力机车的假设行驶工况,仿真分析了机车各部件在功率跟随式能量管理策略下的工作性能,将主要技术参数作为比较基准。
     (2)根据模糊逻辑控制理论,设计了以机车需求牵引功率和蓄电池荷电状态为输入、以DC/DC变换器参考功率信号为输出的模糊逻辑能量管理策略。基于系统仿真模型对所设计的模糊逻辑能量管理策略进行了仿真验证。仿真结果表明:与功率跟随式能量管理策略相比,所设计的模糊逻辑能量管理策略能够有效减少燃料电池的动态负荷,维持蓄电池的荷电状态在期望范围内,同时提高了整车的燃料经济性。
     (3)引入蓄电池等效氢耗量的概念,以机车总氢耗量最小为目标函数,采用粒子群优化算法对所设计的模糊逻辑能量管理策略的隶属度函数参数进行优化。基于系统仿真模型对优化后的模糊逻辑能量管理策略进行仿真验证。仿真结果表明:优化后的模糊逻辑能量管理策略能够在有效减少燃料电池动态负荷、维持蓄电池荷电状态在期望范围内的同时,进一步提高整车的燃料经济性。
The power system of the fuel cell hybrid locomotive consists of fuel cell stack and auxiliary energy unit, such as battery or super capacitor. For the features of high efficiency and environmental protection, the fuel cell hybrid locomotive is considered as a new rail transit tool with tremendous potential, receiving extensive attention and in-depth research in the world.
     Energy management strategy is one of the key technologies for the fuel cell hybrid locomotive, and its core is optimizing the performance of each energy unit and improving the vehicle fuel economy at the same time ensuring the locomotive power demand, which is achieved through the reasonable allocation of the output power for the fuel cell stack and auxiliary energy unit.
     The fuel cell hybrid locomotive modeling and the optimal design of the energy management are researched in this paper, and the main achievements are summarized as follows:
     (1) The fuel cell hybrid locomotive system model is established based on MATLAB/SIMULINK simulation environment, including the fuel cell model, the battery model, the locomotive load model and the DC/DC converter model, so as to provide a simulation platform for studying the correctness and validity of the energy management strategy. Based on a assumed driving cycle of the fuel cell hybrid locomotive, the simulation analysis of the various components'performance is implemented under the power following energy management strategy, and the main technical parameters are taken as the baseline for comparison.
     (2) The fuzzy logic energy management strategy is designed according to the fuzzy logic control theory, with the locomotive power demand and the state of charge of the battery as the input and the DC/DC converter reference power as the output. The designed fuzzy logic energy management strategy is verified based on the system model. The simulation results show that compared with the power following energy management strategy, the designed fuzzy logic energy management strategy is able to reduce the dynamic load of the fuel cell stack effectively, maintain the state of charge (SOC) of the battery within the desired range, and improve the vehicle fuel economy,.
     (3) Through introducing the concept of the equivalent hydrogen consumption of the battery and regarding the minimum of the total hydrogen consumption of the locomotive as the objective function, the membership function parameters of the designed fuzzy logic energy management strategy is optimized base on the Particle Swarm Optimization algorithm. The optimized fuzzy logic energy management is verified based on the system model. The simulation results show that the optimized fuzzy logic energy management strategy is able to further improve the vehicle fuel economy while reducing the dynamic load of the fuel cell stack effectively and maintaining the state of charge (SOC) of the battery within the desired range.
引文
[1]黄素逸,杜一庆,明延臻.新能源技术[M].北京:中国电力出版社,2011.
    [2]申泮文.21世纪的动力氢与氢能[M].天津:南开大学出版社,2000.
    [3]衣宝廉.燃料电池—原理技术应用[M].北京:化学工业出版社,2003.
    [4]曹殿学,王贵领.燃料电池系统[M].北京:北京航空航天大学出版社,2009.
    [5]陈维荣,钱清泉,李奇.燃料电池混合动力列车的研究现状与发展趋势[J].西南交通大学学报,2009,44(1):1-6.
    [6]A.R.Miller, D.L.Barnes, O.Velev, L.Sheppard, P.Chintawar, A.Delfrate, M.Golben, T.Vencil. Fuel cell locomotive for commercial and military railways[C]. Proceeding of the 2004 Fuel Cell Seminar, an Antonio, USA, 2004.
    [7]Oosawa, Mitsuyuki Fujii, Takehito. Development of a New Energy (NE) Train [J]. Japanese Railway Engineering, 2006, 156(4):62-70.
    [8]A.R. Miller, K.S. Hess, et al. System design of a large fuel cell hybrid locomotive [J]. Power Sources, 2007,173 (1):935-942.
    [9]Jennifer Bauman, Mehrdad Kazerani. A Comparative Study of Fuel-Cell-Battery, Fuel-Cell-Ultra capacitor, and Fuel-Cell-Battery-Ultracapacitor Vehicles. IEEE Transactions on Vehicular Technology, 2008,57(2):760-769.
    [10]Di Wu, Sheldon S. Williamson, "Status review of power control strategies for fuel cell based hybrid electric vehicle," Electrical Power Conference, 2007.. IEEE Canada, pp.218-223,2007,10.
    [11]贾迎春. 燃料电池混合动力电动车仿真分析与控制策略研究[D].吉林大学硕士学位论文,2005,5:66-70。
    [12]H.Y. Cho, W. Gao, and H. Ginn, "A new power control strategy for hybrid fuel cell vehicles," in Proc. IEEE Workshop on Power Electronics in Transportation, Detroit, MI, pp.159-166,2004,10.
    [13]曾卫.燃料电池电动汽车能量管理策略优化控制与动态仿真研究[D].武汉理工大学硕士学位论文,2007,5:21-25.
    [14]朱元,田光宇,陈全世,吴昊.混合动力汽车能量管理策略的四步骤设计法[J].机械工程学报,2004,40(8):127-133.
    [15]Bernard J, Delprat S, Buechi F, Guerra T.M. Global optimization in the power management of a fuel cell hybrid vehicle (FCHV). IEEE Vehicle Power and Propulsion Conference, 2006. VPPC'06. pp.1-6, 2007,5.
    [16]金振华,欧阳明高,卢青春,高大威.燃料电池混合动力系统优化控制策略[J].清华大学学报(自然科学版),2009,49(2):273-276.
    [17]G.Paganelli, Y.Guezennec, G.Rizzoni. Optimizing control strategy for hybrid fuel cell vehicles. in Proc. SAE International Congress, Detroit, MI, March 2002,Paper NO.2002-01-0102.
    [18]P.Rodaz, GPaganelli, A.Sciarretta, L.Guzzella. Optimal power management of an experimental fuel cell/super capacitor powered hybrid vehicle. Control Engineering Practice, vol.13, pp.41-53.2005.
    [19]石英乔,何彬,曹桂军,李建秋,欧阳明高.燃料电池混合动力系统瞬时优化能量管理策略研究[J].汽车工程,2008,30(1):30-35.
    [20]Kwi Seong, Won-Yong Lee, and Chang Soo Kim, Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics. Journal of Power Source, Vol.145, pp.319-326, 2005.
    [21]Xiangjun Li.Liangfei Xu, Jianfeng Hua,Xinfan Lin, et al. Power management strategy for vehicular-applied hybrid fuel cell/battery power system [J]. Journal of Power Sources, 2009, 191:542-549.
    [22]魏学哲,孙泽昌,安浩.基于模糊决策的燃料电池汽车动力总成功率平衡控制策略研究[J].电气自动化,2004,26(2):24-26.
    [23]Mahshid Amirabadi, Shahrokh Farhangi. Fuzzy control of hybrid fuel cell/battery power source in electric vehicle. IEEE Conference on Industrial Electronics and Applications, 2006 1ST. pp.1-3,2006.
    [24]Chunyan Li, Guoping Liu. Optimal fuzzy power control and management of fuel cell/battery hybrid vehicles. Journal of Power Sources, Vol.192, pp.525-533,2009.
    [25]Andre Augusto Ferreira, Jose Antenor Pomillio, Giorgio Spiazzi, Leonardo de Araujo Sliva. Energy management fuzzy logic supervisory for electric vehicle power supplies system. IEEE Transactions on Power Electronics.pp.107-115,2008.
    [26]Dawei Gao, Zhenhua Jin, Qingchun Lu. Energy management strategy based on fuzzy logic for a fuel cell hybrid bus. Journal of Power Source, Vol.185, pp.311-317,2008.
    [27]Xi Zhang, Chris Chunting Mi,Abul Masrur,David Daniszewski. Wavelet-transform-based power management of hybrid vehicles with multiple on-board energy sources including fuel cell; battery and ultra capacitor. Journal of Power Sources, Vol.185, pp.1533-1543,2008.
    [28]张炳力,赵韩,吴迪,祝毅,张平平.基于小波变换的燃料电池混合动力系统多能源管理策略研究[J].汽车工程,2008,30(10):914-916.
    [29]O.Eedinc, B.Vural. M.Uzunoglu. A walvelet-fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid vehicular power system. Journal of Power Sources, Vol.194, pp.369-380,2008.
    [30]高大威,金振华,卢青春.基于Matlab的燃料电池汽车动力系统仿真[J].系统仿真学报,2005,17(8):1899-1901.
    [31]雒焕骥,李伟宏,李向庆.XQG45-600P新能源燃料电池轻轨车[J].铁道机车车辆,2011,31(3):53-54.
    [32]Souleman N.M., Tremblay O., Dessaint L.-A. A generic fuel cell model for the simulation of fuel cell power system. Power & Energy Society General Meeting, PES'09, pp.1-8, 2009.
    [33]Tremblay O., Dessaint L.-A., Dekkiche A.-I. A generic battery model for the dynamic simulation of hybrid electric vehicles. Vehicle Power and Propulsion Conference, 2007, pp.284-289, 2007.
    [34]M.Thorne, M.Kazerani. A Regenerative Controllable DC Load for an Electric Vehicle Test Station, Industrial Electronics, 2009, IECON '09,35th Annual Conference of IEEE, pp.3773-3778,2009.
    [35]D.Halliday, R.Resnick, J.Walke "Fundaments of Physics", 7th Edition,2005, John Wiley and Sons,Inc,pp.11O-112.
    [36]Jung Goo Cho,Juan A.Sabatk, Guichao Hua, Fred C.Lee. Zero voltage and zero Current switching fuel bridge PWM Converter for high power applications. IEEE Trans on Power Electronics,1996,11(4):622-628.
    [37]Phatiphat T., Stephane R., Bernard D. Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle application. Journal of Power Sources, Vol.193, pp.376-385,2009.
    [38]A. J. Forsyth and S. V. Mollov, "Modelling and control of DC-DC converters," Power Engineering Journal, vol.12, issue 5, pp.229-236, 1998.
    [39]张卫平.开关变换器的建模与控制[M].北京:中国电力出版社,2005.
    [40]徐德鸿.电力电子系统建模与控制[M].北京:机械工业出版社,2005.
    [4l]Chrin P., Bunlaksananusorn C. Large-signal average modeling and simulation of DC-DC converters with SIMULINK. Power Conversion Conference, 2007.PCC'07. pp.27-32.5,2007.
    [42]王旭峰,彭飞,冒波波,陈维荣.基于模糊优化的功率跟随式能量管理策略研究.第30届中国控制会议,2011.7,pp.5037-5077.
    [43]李奇.质子交换膜燃料电池建模及其控制方法研究[C].西南交通大学博士学位论文,2011.
    [44]石辛民,郝整清.模糊控制器及其MATLAB仿真[M].北京:清华大学出版社:北京交通大学出版社,2008.
    [45]Niels J.Schouten, Mutasim A.Salman, Naim A.Kheir. Energy management strategies for parrallel hybrid vehicles using fuzzy logic [J]. Control Engineering Practice, 2003,11(2):171-177.
    [46]张邦基,于德介,邓元望.基于模糊逻辑的并联式混合动力电动汽车能量控制系统[J].汽车工程,2009,31(6):496-502.
    [47]Ferreira A.A, Pomilio J.A, Spiazzi G. Energy management fuzzy logic supervisory for electric vehicle power supplies system. IEEE Transactions on Power Electronics, vol.23,pp.107-115,2008.
    [48]Chunyan Li, Guoping Liu. Optimal fuzzy power control and management of fuel cell-battery hybrid vehicles. Journal of Power Sources, Vol.192, pp.525-533,2009.
    [49]高翔,唐普英.设立禁区的多粒子群优化算法[J].计算机工程与应用,2010,46(10):38-40.
    [50]梁艳春,吴春国,时小虎,葛宏伟.群智能优化算法理论与应用[M].北京:科学出版社,2009.
    [51]Y. Shi, R. Eberhart. A modified particle swarm optimizer. Evolutionary computation proceedings, pp.69-72,5.1998.
    [52]G. Paganelli, Y. Guezennec, G. Rizzoni, Optimizing control strategy for hybrid fuel cell vehicle. SAE Special Publication 1691, Fuel Cell Power for Transportation, 2002.
    [53]Zhang Hua, Zhu Yan, Tian Guangyu, Chen Quanshi, Chen Yaobin. Optimal energy management strategy for hybrid electrical vehicle. SAE International, 2003.
    [54]陈健,李彦,吴亚祥,寥荣福.混合动力电动汽车模糊逻辑控制策略的仿真与分析[J].汽车工程,2006,28(4):322-326.
    [55]Hannoun H, Diallo D, Marchand C. Energy management strategy for a parallel hybrid electric vehicle using fuzzy logic. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. pp.229-234.5,2006.
    [56]Kisacikoglu M.C., Uzunoglu M., Alam M.S. Fuzzy logic control of a fuel cell/battery/ultra-capacitor hybrid vehicular power system. Vehicle Power and Propulsion Conference, 2007. pp.591-596. 9,2007.
    [57]Zandi M, Payman A, Martin J.P., Pierfederici S, Davat B, Meibody-Tabar F. Energy management of a fuel cell/supercapacitor/battery power source for electric vehicular applications. IEEE Transactions on Vehicular Technology, 2011,60(2):433-443.
    [58]林潇,张君鸿.基于粒子群算法的Plug-in混合动力汽车能量管理策略优化研究[J].上海汽车,2011,05:11-18.
    [59]吴剑,张承慧,崔纳新.基于粒子群优化的并联式混合动力汽车模糊能量管理策略研究[J].控制与决策,2008,23(1):46-50.
    [60]Qian Ning, Dongji Xuan, Yanghai Nan, Youngbae Kim. Modeling and simulation for fuel cell-battery hybrid electric vehicle. International conference on Computer Modeling and Simulation, 2009. pp.53-57.2,2009.
    [61]Hearn C.S., Lewis M.C., Thompson R.C., Longoria R.G.. Modeling and evaluation of a plug-in hybrid fuel cell shuttle bus. Vehicle Power and Propulsion Conference, 2009. pp.221-228.9,2009.
    [62]高大威,金振华,卢青春.基于MATLAB的燃料电池汽车动力系统仿真[J].系统仿真学报,2005,17(8):1899-1908.
    [63]牟海涛,万钢,孙泽昌.燃料电池汽车动力总成结构配置及参数优化匹配[J].汽车工程,2006,28(8):729-733.
    [64]Gao Y, Ehsani M. Systematic design of fuel cell powered hybrid vehicle drive train. Electric Machines and Drives Conference, 2001. pp.604-611.6,2001.
    [65]杨少勇.混合型燃料电池汽车电力系统的设计与仿真[J].电网技术,2008,32(1):82-87.
    [66]Niasar A.H., Moghbelli H., Vahedi A., Design methodology of drive train for a series parallel hybrid electric vehicle and its power flow control strategy. IEEE International Conference on Electric Machines and Drives, 2005. pp.1549-1554.5,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700