钢—混凝土组合箱梁及其框架结构的静动力性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢-混凝土组合箱梁在桥梁工程和高层建筑中已经得到了广泛的应用,目前国内外关于钢-混凝土组合箱梁的静动力性能研究存在的问题有:考虑剪力滞效应的钢-混凝土组合箱梁解析方法及梁段有限元法研究主要集中于工字形组合梁、关于组合箱梁畸变屈曲临界弯矩的计算方法过于复杂、考虑剪力滞效应的动力响应计算方法尚未见报道、弯矩-曲率恢复力模型大都基于构件、弹塑性地震响应时程分析大多基于层模型等,理论研究严重滞后于工程实践,开展考虑剪力滞效应的钢-混凝土组合箱梁的静动力性能试验研究和理论分析,可推广钢-混凝土组合箱梁在桥梁工程和超高层建筑中的应用。本文针对目前研究现状开展的主要研究工作如下:
     (1)在考虑混凝土板和钢梁底板因剪力滞效应引起的纵向翘曲、钢梁剪切变形及钢梁与混凝土板间界面滑移的基础上,应用能量变分原理导出钢-混凝土简支组合箱梁受横向荷载作用下的剪力滞控制微分方程和边界条件,获得横向荷载作用下的箱梁应力、挠度和滑移解析解。根据虚功原理,提出同时考虑滑移效应、剪力滞及剪切变形效应的组合梁单元及等效节点力向量,编制组合梁梁段有限元程序。应用本文解析解分别对集中荷载和均布荷载作用下的组合箱梁应力、挠度和滑移进行计算,并同现有试验结果进行比较,验证本文解析解及梁段有限元法的正确性。利用本文计算方法对混凝土顶板及钢梁底板剪力滞系数进行参数分析,并在大量计算数据基础上提出较为准确的混凝土顶板及钢梁底板剪力滞系数经验计算公式。
     (2)考虑钢-混凝土组合箱梁负弯矩区钢梁侧向弯曲屈曲及侧向弯扭屈曲两种重要屈曲模式,在建立钢梁腹板对钢梁底板的转动约束刚度及侧向约束刚度的计算方法的基础上,结合薄壁杆件的屈曲理论提出钢-混凝土组合箱梁负弯矩区的侧向弯曲屈曲弯矩及侧向弯扭屈曲弯矩计算方法。通过实例分析现有计算方法存在的理论缺陷,验证本文计算方法的实用性和适用性。
     (3)综合考虑组合箱梁剪力滞、滑移、剪切变形和转动惯量等多重因素的影响,推导组合箱梁的控制微分方程及自然边界条件,获得儿种常用边界条件的组合箱梁固有频率方程,提出一种能对工程中常用组合箱梁自振特性进行分析的方法,通过算例验证该方法的有效性;利用中心差分法对振动微分方程进行求解,获得组合梁在任意荷载作用下的动力响应,通过算例将差分数值计算结果与ANSYS有限元计算结果进行比较,证明该方法的正确性。
     (4)进行4根不同剪力连结度及腹板高厚比钢-混凝土简支组合箱梁低周反复荷载试验研究,对钢-混凝土组合箱梁的破坏形态、滞回规律、骨架曲线、延性、耗能能力、刚度退化规律等抗震性能进行深入的分析,重点考察剪力连结度及腹板高厚比对钢-混凝土组合箱梁抗震性能的影响;考虑剪力连接度和界面滑移的影响,提出组合箱梁正向、负向截面弯矩-曲率弹性刚度及截面屈服弯矩计算方法,建立简单适用的组合箱梁截面弯矩-曲率骨架曲线的三折线模型,在试验数据与理论分析的基础上,获得了组合箱梁正向及负向刚度退化规律表达式,并进一步提出简单明了的钢-混凝土组合箱梁截面弯矩-曲率顶点指向型滞回模型。
     (5)将本文提出的弯矩-曲率恢复力模型程序化,建立适合钢-混凝土组合箱梁的弹塑性地震分析的多段变刚度杆单元刚度矩阵和适用于组合结构数值计算的弯矩-曲率滞回模型转化关系,结合本文提出的多段变刚度杆单元刚度矩阵及弯矩-曲率滞回模型转化关系编制组合结构弹塑性地震响应时程分析计算程序。利用本文计算程序对不同设计参数的钢-混凝土全组合框架结构进行弹塑性地震动力响应计算,提出组合框架合理的抗震设计建议。
Steel-concrete composite box-beams have been widely used in bridge engineering and high rise buildings. At present, there were many open questions on the dynamic and static performance considering the shear lag effect of steel-concrete composite box girder, such as the experimental study and theoretical analysis on the dynamic and static performance considering the shear lag effect of steel-concrete composite box girder concentrated on I-type steel-concrete composite girder, the computing method about distortional buckling critical bending moment of the steel-concrete composite box girder was too complex, dynamic response analysis methods considering the shear lag effect of steel-concrete composite box girder had not been reported, bending moment-curvature restoring force calculation models were mostly based on component, and the elastoplastic seismic response time history analysis program of composite structures were mostly based on layer model, and so on. The theoretical research laged behind the engineering practice seriously. By developing the experimental study and theoretical analysis on the dynamic and static performance considering the shear lag effect of composite box-girders, the composite box-girders can be used popularization and application in bridge engineering and super high rise building. The main research works completed in this paper are as follows:
     (1) Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams, shear deformation of steel beams and interface slip between steel beams and concrete slabs, the governing differential equations and boundary conditions of the steel-concrete composite box beams under lateral loading was derived using energy-variational method. According to the virtual work principle, the unit stiffness matrix and equivalent nodal force vector of the composite beam were established in consideration of the slip effect, shear lag effect and shear deformation. The closed-form solutions and beam finite element method calculate results of stress, deflection and slip of box beams under lateral loading were obtained, and the comparison of the analytical results and the experimental results for steel-concrete composite box beams under concentrated loading or uniform loading verifies the validity of the closed-form solution. The parameter analysis of shear lag coefficient of concrete roof and steel baseplate had been proceeded using calculation method of this paper. The relatively accurate shear lag coefficient of concrete roof and steel baseplate was put forward.
     (2) Lateral bending buckling and lateral flexural-torsional buckling are both important buckling modes for steel-concrete composite beams in the negative moment region, and only the lateral bending buckling is considered in the existing computing method, so there is some limitations. Based on the rotational restraint stiffness and lateral restraint stiffness calculation formulas provided by the steel beam web plate to the lower cloud point flange and the thin-walled bar buckling theory, the calculation formulas of the lateral bending and lateral flexural-torsional buckling moment of the steel-concrete composite beams in the negative moment are derived. The example analysis shows that the existing computing methods all have some theory shortcomings, and the computing method of this paper is more reasonable. At the same time, the calculation results of this paper is more concise than the calculation formulas of the same type, easy to be applied, so it is suitable for engineering application.
     (3) Based on Hamilton principle, the governing differential equations and the corresponding boundary conditions of steel-concrete composite box girder with consideration for the shear lag effect meeting self equilibrated stress, shear deformation, slip, as well as rotational inertia were induced. Therefore, natural frequency equations were obtained for the boundary types, such as simple support, cantilever, continuous girder and fixed support at two ends. The ANSYS finite element solutions were compared with the analytical solutions by calculation examples and the validity of the proposed approach was verified, which also shows that the correctness of longitudinal warping displacement functions is reasonable. The proposed approach provided theoretical basis for further research of free vibration characteristics of steel-concrete composite box-girder. The vibration differential equations were solved using central difference method, and the dynamic response of steel-concrete composite box girder under arbitrary loading was obtained. The finite element computed results was compared with the difference computed results and the validity of the difference method was verified.
     (4) Four specimens of steel-concrete composite box-girders with different shear connection degree and height-width ratio of web plate under cyclic points concentrated loads were experimentally studied. The failure mode, load-deflection hysteretic curves, ductility, energy-dissipating capacity, rigidity degeneration etc were deeply studied. The shear connection degree and height-width ratio are considered as the experimenters parameters of the seismic performance. The influence of shear connection degree on bending rigidity of steel-concrete composite box-girders was considered by power function interpolation method. The positive and reverse elastic stiffness of bending moment-curvature considering the interface slip was put forward, and also the section yield moment. The trilinear skeleton model of bending moment-curvature was proposed, and the computing method of the model is very simple, which is convenient to be used in engineering. Best on the test data and theoretical analysis, The positive and reverse stiffness degradation rule was obtained, the trilinear bending moment-curvature restoring force calculation model was further proposed, and the computing method of the model is also very simple, which is convenient to hand computation.
     (5) The trilinear bending moment-curvature restoring force calculation model proposed in the text was programmed, the variable stiffness rod element stiffness matrix suiting elastoplastic seismic analysis on steel-concrete composite box-girders was proposed. The conversion diagram suit on numerical calculation of composite structures was programmed. Based on the conversion diagram and the variable stiffness rod element stiffness matrix, the elastoplastic seismic response time history analysis program of composite structures was programmed using Wilson-θ incremental numerical calculation method. Some steel-concrete composite frame structure specimens with different design parameter were calculated using the elastoplastic seismic response time history analysis program. The reasonable anti-seismicdesign suggestions were proposed.
引文
[1]聂建国.钢-混凝土组合梁结构—试验、理论与应用[M].北京:科学出版社2005:1-36.
    [2]聂建国.钢-混凝土组合结构原理与实例[M].北京:科学出版社,2009:
    [3]韩林海.钢管混凝土结构-理论与实践(第二版).北京:科学出版社,2007:
    [4]韩林海,陶忠,王文达.现代组合结构和混合结构—试验、理论和方法[M].北京:科学出版社,2009:
    [5]张耀春,张文元.超高层巨型钢结构体系的研究与应用[J].建筑钢结构进展,2005,7(2):19-26.
    [6]聂建国,田春雨.简支梁板体系有效宽度研究[J].土木工程学报,2005,38(2):8-12.
    [7]李君,张耀春.超高层结构的新体系-巨型结构[J].哈尔滨建筑大学学报,1997,30(06):21-27.
    [8]Marsh J W. Earthquakes, steel structures performance and design code developments [J]. Engineering Journal,1993,30(20):56-65.
    [9]沈祖炎,陈荣毅.巨型结构的应用与发展[J].同济大学学报,2001,29(03):258-262.
    [10]惠卓,秦卫红,吕志涛.巨型建筑结构体系的研究与展望[J].东南人学学报,2000,30(4):1—8.
    [11]Galambos, T. V. Recent research and design developments in steel and composite steel-concrete structures in USA[J]. Journal of Constructional steel research,2000, 55(1):289-303.
    [12]Johnson, R. P. Composite structures of steel and concrete, vol 1:Beams, columns, frames and applications in building.2nd Ed. Oxford:Blackwell Scientific,1994.
    [13]李方方.钢-混凝土简支组合箱梁抗震性能试验研究及理论分析[D].长沙:中南大学,2012.
    [14]戚菁菁.钢-混凝土组合框架抗震性能及地震弹塑性反应研究[D].长沙:中南大学,2010.
    [15]钟善桐.高层钢管混凝土结构[M].哈尔滨:黑龙江科学技术出版社,1999.
    [16]蔡绍怀.我国钢管混凝土结构技术的最新进展[J].土木工程学报,1999,32(4):16—26.
    [17]Newmark N M, Seiss C P, Viest I M. Test and analysis of composite beams with incomplete interaction [J]. Proc Society for Experimental Stress Analysis, New York,1951,9(1):75-92.
    [18]Barnard P. R., Johnson R. P. Ultimate strength of composite beams [J]. Proc. Instn. Civ..Part 2,1965,32(10):161-179.
    [19]Adekola A. O. Effective widths of composite beams of steel and concrete [J]. The Structural Engineer,1968,46(9):285-289.
    [20]Johnson R. P., Willmington R. t. Vertical shear strength of compact composite beams [J]. Proc. Instn. Civ. Eng. Suppl.1972(1):1-16.
    [21]Johnson R. P. May I. M. Partial-interaction design of composite beams [J]. The Structural Engineer,1975,53(8).
    [22]Moffatt K. R., Lim P. T. K. Finite element analysis of Composite box girder bridges having complete or incomplete interaction [J]. Proc. Instn. Civ. Engrs. Part2,1976, 64:1-22.
    [23]Song Q, Scordelis A C. Shear-lag analysis of T-, I-and box beams [J]. J. Structural Engineer, ASCE,1990,116(5):1290-1305.
    [24]Gjelsvik A. Analog-beam method for determining shear-lag effects [J]. J. Structural Engineer, ASCE,1991,113(3):557-574.
    [25]聂建国,沈聚敏,袁彦声.钢-混凝土简支梁变形计算的一般公式[J].工程力学,1994,11(1):21-27.
    [26]Nie Jianguo, Cai Shaohuai. Steel-concrete composite beams considering shear slip effects. J. Structural Engineering-ASCE,2003:495-506.
    [27]周凌宇.钢-混凝土组合连续箱梁受力性能及空间非线性分析[D].长沙:中南大学,2004.
    [28]CHENG Haigen, QIANG Shizhong. A shear lag analysis for a simply supported steel-concrete composite box girder [J]. J Southwest Jiaotong Univ,2002,37 (4): 362366.
    [29]聂建国,李法雄,樊健生.钢-混凝土组合梁考虑剪力滞效应实用设计方法[J].工程力学,2011,28(11):45-51.
    [30]田春雨,聂建国.简支组合梁混凝土翼缘剪力滞后效应分析[J].清华大学学报(自然科学版),2005,45(9):1166-1169.
    [31]LUO Qi-zhi. Geometric nonlinear analysis of curved box continuous girders considering shear lag effect [J]. Advanced Materials Research,2011,243-249:1811- 1816.
    [32]孙飞飞,李国强.考虑滑移、剪力滞后和剪切变形的组合梁单元[J].同济大学学报,2004,32(4):436-440.
    [33]罗旗帜.基于能量原理的薄壁箱梁剪力滞理论与试验研究[D].博士论文,湖南大学,2005.
    [34]张彦玲,李运生,季文玉.简支组合连续箱梁在横向对称荷载作用下的解析解及剪力滞研究[J].石家庄铁道学院学报,2009,22(1):5-14.
    [35]Gara.Fabrizio, Leoni.Graziano, Dezi.Luigino. A beam finite element including shear lag effect for the time-dependent analysis of steel-concrete composite decks [J]. Engineering Structures,2009,31 (8):1888-1902
    [36]Gara.Fabrizio, Ranzi.Gianluca, Leoni.Graziano. Partial interaction analysis with shear-lag effects of composite bridges:A finite element implementation for design applications [J]. Advanced Steel Construction,2011,7(1):1-16.
    [37]Gara.F, Ranzi.G, Leoni.G. Simplified method of analysis accounting for shear-lag effects in composite bridge decks [J]. Journal of Constructional Steel Research.2011, 67(10):1684-1697.
    [38]Visnjic.G, Nozak.D, Kosel.F, Kosel.T. Shear-lag influence on maximum specific bending stiffness and strength of composite I-beam wing spar [J]. Journal of Aerospace Engineering,2011,225(5):501-511.
    [39]Yamaguchf.Eiki, Chaisomphob.Taweep. Stress concentration and deflection of simply supported box girder including shear lag effect [J]. Structural Engineering and Mechanics,2008,28(2):207-220.
    [40]钢结构设计规范.GB 50017—2003.中华人民共和国国家标准.北京:中国计划出版社,2003.
    [41]王连广.钢与混凝土组合结构理论与计算[M].北京:科学出版社,2005:1-413.
    [42]刘维亚,钟善桐,姜维山等.钢与混凝土结构理论与实践[M].北京:中国建筑工业出版社,2008:1-551.
    [43]LawsonRM, Raekham J W. Design of haunehed composite beams in buildings[S]. Steel Construction Institution,1989.
    [44]蒋丽忠,李兴.钢-混凝土组合梁侧向稳定承载力[J].铁道科学与工程学报,2006,3(6):14-18.
    [45]蒋丽忠,李兴.等弯矩作用下钢-混凝土组合梁侧向稳定失稳的弹性解[J].工业建筑,2007,37(增刊):490-493.
    [46]蒋丽忠,孙林林.钢-混凝土组合箱梁的侧向屈曲[J].华中科技大学学报(城市科学版),2008,25(3):5-9.
    [47]吴金秋,童根树.不同斜卷边檩条的局部屈曲和畸变屈曲[J].钢结构,2006,21(5):69-73.
    [48]朱聘儒.钢-混凝土组合梁设计原理[M].北京:中国建筑工业出版社,1989:1-136.
    [49]何保康,蒋路.高强冷弯薄壁型钢卷边槽形截面轴压柱畸变屈曲试验研究[J].建筑结构学报,2006,27(3):10-17.
    [50]B W Schafer. Local distortional and Euler buckling of thin-walled columns [J]. Journal of Structural Engineering,2002,128 (3):289-299.
    [51]童根树,夏竣.工字形截面钢连续梁负弯矩区的稳定性[J].建筑钢 结构进展,2007,9(1):46-50.
    [52]陈绍潘.卷边槽钢的局部相关屈曲和畸变屈曲[J].建筑结构学报,2002,23(1):27-31.
    [53]郭彦林,张婀娜.卷边翼缘工形截面构件在轴心压力作用下的稳定承载力研究[J].工业建筑,2009,39(9):7-14.
    [54]王春刚,张耀春.冷弯薄壁斜卷边槽钢轴压构件的稳定性分析[J].哈尔滨工业大学学报,2009,41(12):14-19.
    [55]陈伯真,胡毓仁.薄壁结构力学[M].上海:上海交通大学出版社,1998,1-198.
    [56]姚谏,滕锦光.冷弯薄壁卷边槽钢弹性畸变屈曲分析中的转动约束刚度[J].工程力学,2008,25(4):65-69.
    [57]包世华,周坚.薄壁杆件结构力学[M].北京:中国建筑工业出版社,2006,1-643.
    [58]老大中.变分法基础[M].北京:国防工业出版社,2007,1-400.
    [59]Ma M, Hughes O. Lateral distortional buckling of monosymmetric I-beams under distributed vertical load [J]. Thin-Walled Structures,1996,26 (2):123-145.
    [60]Bradford M A. Lateral-distortional buckling of continuously restrained columns [J]. Journal of Constructional Steel Research,1997,42 (2):121-139.
    [61]Ng M L H, Ronagh H R. An analytical solution for the elastic lateral-distortional buckling of I-section beams [J]. Advances in Structural Engineering,2004,7 (2):189-200.
    [62]Svensson S E. Lateral buckling of beams analysed as elastically supported columns subject to a varying axial force [J]. Journal of Constructional Steel Research,1985, 5(3):179-193.
    [63]Williams F W, Jemah A K. Buckling curves for elastically supported columns with varying axial force to predict lateral buckling of beams [J]. Journal of Constructional Steel Research,1987,7(2):133-147.
    [64]Goltermann P, Svensson S E. Lateral distortional buckling:predicting elastic critical stress [J]. Journal of Structural Engineering,1988,114 (7):1606-1625.
    [65]Ronagh H R. Progress in the methods of analysis of restricted distortional buckling of composite bridge girders [J]. Progress in Structural Engineering and Materials, 2001,3(2):141-148.
    [66]赵滇生,余孝敏.冷弯薄壁型钢-混凝土组合梁局部屈曲性能研究[J].工业建筑,2008,38(sup)539-542.
    [67]蒋丽忠,曾丽娟,孙林林.钢-混凝土连续组合梁腹板局部屈曲分析[J].建筑科学与工程学报,2009,26(3):27-31.
    [68]叶继红,陈伟.工字钢-混凝土组合梁弹性约束畸变屈曲研究[J].建筑结构学报,2011,32(6):82-91.
    [69]薛建阳,赵鸿铁.型钢混凝土框架模型的弹塑性地震反应分析[J].建筑结构学报,2000,21(4):28-33.
    [70]周起敬.钢与混凝土结构设计施工于册[M].北京:中国建筑工业出版社,1991.
    [71]Daniels J.H., Kroll G.D., Fisher J.W. Behavior of composite-beam to column joints [J]. Journal of the structural division,1970,96(3):671-685.
    [72]Humar, Jagmohan L. COMPOSITE BEAMS UNDER CYCLIC LOADING[J]. ASCE J Struct Div,1979,105(10):1949-1965.
    [73]Gowda S S, Hassinen P. Behavior of steel-concrete composite members for arctic offshore structures [J]. Proceedings of the First International Offshore and Polar Engineering Conference,1991.548-555.
    [74]Taplin, Geoff, Grundy, Paul. Steel-concrete composite beams under repeated load[A]. Proceedings of the Conference:Composite Construction in Steel and Concrete IV[C], 2000.37-50.
    [75]Gattesco, Giuriani. Experiment study on stud shear connectors subjected to cyclic loading [J]. Journal of Constructional Steel Research,1996,38(1):1-21.
    [76]Gattesco, Giuriani, Gubana. Low-cycle fatigue test on stud shear connectors[J]. Journal of structural Engineering,1997,123(2):145-150.
    [77]Taplin, Grundy. Incremental slip of stud shear connectors under repeated loading[J]. Composite Construction Conventional and Innovative, Conference Report, International Conference, Innsbruckm, Austria,1997,16(18):145-150.
    [78]Ashraf. A, Associate. M, et al. Mixed formulation of nonlinear steel-concrete composite beam element [J]. Journal of Structural engineering,2000, 126(3):371-381.
    [79]聂建国,余洲亮,叶清华.钢-混凝土叠合板组合梁抗震性能的试验研究[J].清华大学学报(自然科学版),1998,38(10):35-37.
    [80]聂建国,余洲亮,袁彦声等.钢-混凝土组合梁恢复力模型的研究[J].清华大学学报(自然科学版),1999,39(6):121-123.
    [81]聂建国,黄远.钢-混凝土组合梁非线性地震反应分析模型[J].清华大学报(自然科学版),2009,49(3):329-332.
    [82]辛学忠,蒋丽忠,曹华.钢-混凝土连续组合梁的恢复力模型[J].建筑结构学报,2006,27(1):83~89.
    [83]薛伟辰,李昆,李杰.钢混凝土组合梁低周反复荷载试验研究[J].地震工程与工程震动,2002,22(6):65-70.
    [84]薛伟辰,李杰,李昆.预应力钢-混凝土组合梁抗震性能试验研究[J].哈尔滨工业大学学报,2007,39(40):656-660.
    [85]蒋丽忠,邹飞,余志武等.低周反复荷载作用下钢-混凝土组合梁的延性[J].铁道科学与工程学报,2005,10(5):23-27.
    [86]蒋丽忠,余志武,曹华等.剪力连接度对钢-混凝土组合梁抗震性能的影响[J].建筑结构,2008,38(3):52-54.
    [87]蒋丽忠,余志武,曹华.钢-混凝土简支组合梁的恢复力模型[J].工业建筑,2007,37(11):85-88.
    [88]刘仲武.钢-混凝土简支组合梁抗震性能试验及理论研究[D].长沙:中南大学,2004.
    [89]程鹏.组合梁截面弯矩-曲率滞回性能分析[J].河北工业大学学报,2009,38(、3):111~113.
    [90]赵欣,吴迈.组合梁抗震性能试验研究[J].工业建筑,2004,增刊:1009-1014.
    [91]吴迈,赵欣.钢-混凝土组合梁滞回关系参数分析[J].工业建筑,2007,增刊,1720-1724.
    [92]吴迈,赵欣.钢-混凝土组合梁滞回模型的建立[J].工业建筑,2007,增刊,1725-1729.
    [93]计静,郑文忠,张文福,贾永英.预应力钢骨混凝土梁动力性能参数[J].哈尔滨工业大学学报,2009,41(8):24-29.
    [94]计静,郑文忠,张文福.预应力H型钢混凝土组合梁动力性能参数分析[J].建筑科学与工程学报,2011,28(1):33-41.
    [95]Gianni B, Antonino,M. Vibration of steel-concrete composite beams [J]. Journal of vibration and control,2000,6:691-714.
    [96]Michele D, Antonino M. A damage analysis of steel-concrete composite beams Via dynamic methods:Part Ⅱ.Analytical models and damage detection [J]. Journal of vibration and control,2003,9:529-565.
    [97]Stefan B, Tomasz W. Vibration of steel-concrete composite beams using the Timoshenko beam model [J]. Journal of vibration and control,2005,11:829-848.
    [98]甘亚南,周广春.基于能量变分原理的薄壁箱梁自振特性分析[J].中国公路学报,2007,20(1):73-78.
    [99]张永健,黄平明.一种计入剪力滞及剪切变形效应的箱梁自振频率计算方法[J].郑州大学学报,2007,28(1):51-55.
    [100]LI Chang-feng, DU Wen-xue. Effect of curvature radius and transverse distribution of load on shear lag for curved box girders [J]. Advanced Materials Research,2011, 163-167:1555-1560.
    [101]戚菁菁,蒋丽忠,张传增.界面滑移、竖向掀起及剪切变形对钢-混凝土组合连续梁动力性能的影响[J].中南大学学报(自然科学版),2010,41(6):2334-2343.
    [102]C.Adam, R.Heuer, A.Jeschko. Flexural vibrations of elastic composite beams with interlayer slip [J]. Acta Mechanica,1997,125:17-30.
    [103]刘键新,马麟,胡庆安.簿壁箱梁振动时的剪力滞效应[J].郑州大学学报,2008,29(3):122-125.
    [104]康琦,马麟,徐岳.剪力滞后剪切变形对薄壁箱梁的振动影响[J].江南大学学报(自然科学版),2009,8(1):94-97.
    [105]胡大柱,李国强,孙飞飞.半刚性连接多层组合框架自振周期实用计算方法[J].世界地震工程,2008,24(2):68-73.
    [106]QI Jing-jing, JIANG Li-zhong. Effects of interface slip and semi-rigid joint on elastic seismic response of steel-concrete composite frames [J]. Journal of Central South University of Technology,2010,17(6):1327-1335.
    [107]Sawyer H A. Design of concrete frames for two failure states. Proceedings of the international symposium on the flexural mechanical of reinforced concrete [C]. ASCE-ACI, Miami, November,1964:405-531.
    [108]Corley W G. Rotational capacity of reinforced concrete beams [J]. Journal of structural division, ASCE,1966,92(st5):121-146.
    [109]Mattock A H. Discussion of "Rotational capacity of reinforced concrete beams" by W. G. Corley [J]. Journal of structural division, ASCE,1967,93(st2):519-522.
    [110]B.M.Broderick, A.S.Elnashai. Seismic response of composite frames-Ⅰ.Response criteria and input motion. Engineering Structure,1996,18(9):696-706.
    [111]A.S.Elnashai, B.M.Broderick. Seismic response of composite frames-Ⅱ.Calculation of behavior factors. Engineering Structure,1996,18(9):707-723.
    [112]Oreste S. Bursi, Fei-Fei Sun, Stefano Postal. Non-linear analysis of steel-concrete composite frames with full and partial shear connection subjected to seismic loads. Journal of Constructional Steel Research,2005,61(1):67-92.
    [113]C.Faella, E.Martinelli, E.Nigro. Analysis of steel-concrete composite PR-frames in partial shear interaction:A numerical model and some applications. Engineering Structures,2008,30(4):1178-1186.
    [114]A.Y.Elahazouli, J.M.Castro, B.A.Izzuddin. Seismic performance of composite moment-resisting frames. Engineering Structures,2008,30(7):1802-1819.
    [115]刘南科,周基岳,肖允微.钢筋混凝土框架的非线性全过程分析[J].土木工程学报,1990,23(4):2-14.
    [116]吕西林.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1997:140-160.
    [117]顾祥林,孙飞飞.混凝土结构的计算机仿真[M].上海:同济大学出版社,2002:85-101.
    [118]张新培.钢筋混凝土抗震结构非线性分析[M].北京:科学技术出版社,2003:70-72.
    [119]徐赵东,郭迎庆.MATLAB语言在建筑抗震工程中的应用.北京:科学出版社,2004.168-170
    [120]白国良,乌灵军,朱佳宁.钢梁-角钢混凝土柱组合框架地震反应分析[J].西安建筑科技大学学报,2002,34(2):116-121.
    [121]宗周红,林东欣,房贞政.两层钢管混凝土组合框架结构抗震性能试验研究[J].2002,23(2):27-35.
    [122]蒋丽忠,曹华,余志武.钢-混凝土组合框架地震弹塑性时程分析[J].铁道科学与工程学报,2005,2(3):1-8.
    [123]张彦玲,李运生,季文玉.简支组合箱梁在横向对称荷载作用下的解析解及剪力滞 研究[J].石家庄铁道学院学报,2009,22(1):5-14.
    [124]聂建国,田春雨.钢-混凝土简支组合梁塑性阶段有效宽度分析[J].铁道科学与工程学报,2004,1(1):39-43.
    [125]SUN Fei-Fei, Oreste S. Bursi, A.M.ASCE. Displacement-Based and Two-Field Mixed Variational Formulations for Composite Beams with Shear Lag[J]. JOURNAL OF ENGINEERING MECHANICS,2005,131(2):199-210.
    [126]DL/T 5085-1999钢-混凝土组合结构设计规程[S].
    [127]LamDennis, Ei-lobody Ehab. Behavior of headed stud shear connectors in composite beam [J]. Journal of Structural Engineering:ASCE,2005,131(1):96-107.
    [128]M. Reza Salari, Enrico Spacone, Associate Member, ASCE. Analysis of steel-concrete composite frames with bond-slip. Journal of Structural Engineering,2001, 127(11):1243-1250.
    [129]Ayoub A. A force-based model for composite steel-concrete beams with partial interaction [J]. Journal of Constructional Steel Research,2005,61(3):387-414.
    [130]Ranzi G, Zona A. A steel-concrete composite beam model with partial interaction including the shear deformability of the steel component [J]. Engineering Structures, 2007,29(11):3026-3041.
    [131]吴鸿庆,任侠.结构有限元[M].北京:中国铁道出版社,2000.
    [132]ZHOU Wang-bao, JIANG Lizhong, YU Zhiwu. Closed-Form Solution for Shear Lag Effects of Steel-Concrete Composite Box Beams Considering Shear Deformation and Slip [J].Journal of Central South University,2012,19(10):2976-2982.
    [133]ZHOU Wang-bao, JIANG Lizhong, YU Zhiwu. Closed-form Solution to Thin-Walled Box Girders Considering the Effects of Shear Deformation and Shear Lag[J].Journal of Central South University,2012,19(9):2650-2655.
    [134]周旺保,蒋丽忠,余志武.钢-混凝土组合梁负弯矩区弹性畸变屈曲分析[J].中南大学学报(自然科学版),2012,43(6):2316-2323.
    [135]周旺保,蒋丽忠,余志武.钢-混凝土组合梁负弯矩区畸变屈曲弯矩计算公式[J].计算力学学报,2012,29(3):446-451.
    [136]GJ101-96建筑抗震试验方法规程[S].
    [137]聂建国,余志武.钢-混凝土组合梁在我国的研究及应用[J].土木工程学报,1999,32(2):3-8.
    [138]江见鲸,徐志胜.防灾减灾工程学[M].北京:机械工业出版社,2005.
    [139]李杰,李国强.地震工程学导论[M].北京,地震出版社,1992.
    [140]王文达,韩林海,游经团.方钢管混凝土柱-钢梁外加强环节点滞回性能的实验研究[J].土木工程学报,2006,39(9):17-25.
    [141]王文达,韩林海.钢管混凝土框架实用荷载-位移恢复力模型研究[J].工程力学,2008,25(11):62-68.
    [142]石文龙.平端板连接半刚性梁柱组合节点的试验与理论研究[D].上海:同济大学,2006.
    [143]李国强,崔大光.钢骨混凝土梁柱框支剪力墙试验与恢复力模型研究[J].建筑结构学报,2008,29(4):73-80.
    [144]Rchard Liew J Y, Hong Chen, Shanmugam N E. Inelastic analysis of steel frames with composite beams [J]. Journal of Structural Engineering,2001,127 (2):194-204.
    [145]聂建国,谭英,王洪全.钢-高强混凝土组合梁栓钉剪力连接件的设计计算[J].清华大学学报(自然科学版),1999,39(12):94-97.
    [146]聂建国,崔玉萍,石中柱,刘冲,郭邵斌.部分剪力连接钢-混凝土组合梁受弯极限承载力的计算[J].工程力学,2000,17(3):37-42.
    [147]樊健生.钢—混凝土连续组合梁的试验及理论研究[D].北京:清华大学,2003.
    [148]樊健生,聂建国.负弯矩作用下考虑滑移效应的组合梁承载力分析[J].工程力学,2005,22(3):177-182.
    [149]刘晶波,杜修力.结构动力学[M].北京:机械工业出版社,2006:235-249.
    [150]左占宣.基于力的梁-柱单元一直质量矩阵和集中质量矩阵[D].哈尔滨:哈尔滨工业大学,2010.
    [151]European Prestandard, Eurocode 8. CEN, ENV,1998.
    [152]卢明奇.含钢率对方钢管混凝土框架延性影响的有限元分析[J].三峡大学学报(自然科学版),2006,28(6):504-508.
    [153]田雁新,孟焕陵,陈伯望.基于优化原理框架结构梁柱合理线刚度比研究[J].铁道科学与工程学报:2006,3(3)57-60.
    [154]陆铁坚,肖林红.剪力连接度对组合梁-钢筋混凝土柱节点抗震性能的影响[J].工业建筑,2007,37(12):67-70.
    [155]周旺保,蒋丽忠,余志武.钢-混凝土组合箱梁梁段有限元法研究[J].计算力学学报,2013,30(2):255-260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700