刚—柔耦合系统动力学建模理论与仿真技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对刚柔耦合系统动力学建模理论与仿真技术进行研究。
     柔性多体系统的传统混合坐标方法直接采用了结构动力学中的小变形假设,忽略柔性体变形场中的高阶耦合变形项,故本质上是一种零次近似意义上的刚-柔耦合建模方法(MZOA)。1987年,Kane研究发现柔性悬臂梁高速转动时,采用零次近似建模方法将导致错误发散的结果。洪嘉振课题组从连续介质力学和分析动力学出发,考虑柔性梁变形位移的二阶耦合项,首先提出一种基于轴线积分的刚-柔耦合动力学建模方法(MBAI),它是一次近似意义上的建模方法,并且通过全物理仿真实验验证了这种耦合动力学模型的正确性。然而,由于MBAI采用沿整个轴线积分得到二次耦合项的思想,限制了其通用性。其后,课题组提出基于共旋坐标系的建模方法(MBCR),对柔性体的非线性变形场进行描述,虽然能解决上述问题,但是计算效率较低。
     显然,评价一个柔性多体系统动力学模型的优劣的重要标准首先是它的可靠性,要能正确的反映刚柔耦合动力学的本质。其次是它应该具有良好的数值性态和计算效率,便于计算机数值仿真的实现。为此,从工程需要出发,建立一个更加通用高效的刚-柔耦合动力学模型也就成为本文的研究目标。
     本文提出了一种基于单元耦合变形的刚-柔耦合系统动力学建模方法(MBECD),采用三类参考坐标系:惯性坐标系、浮动坐标系和单元平移坐标系对柔性体上任意一点的位形进行描述。通过浮动坐标系实现对大范围刚性运动和弹性变形的分离,通过单元平移坐标系来描述柔性体的耦合变形。首先根据连续介质力学的基本原理,推导出单元平移坐标系上笛卡尔变形坐标和非笛卡尔变形之间的关系;单元上任意一点的变形可以通过有限元形函数对非笛卡尔变形节点坐标插值得到;然后把非笛卡尔变形节点坐标转化为笛卡尔变形节点坐标表示,最后转化到浮动坐标系上组集,从而实现了对柔性体非线性耦合变形场的描述。由于本文方法中的耦合变形项只和其所在单元的节点坐标相关,摆脱了MBAI中任意一点的耦合变形项与该点到边界之间所有单元相关的局限性,为应用于一般形状柔性体的刚-柔耦合动力学分析提供了可能。
     利用本文提出的建模方法,对柔性体的刚-柔耦合动力学进行研究。基于Hamiltion原理和Jourdan速度变分原理,建立了做大范围运动的柔性梁和薄板的刚-柔耦合动力学方程。通过对大范围运动已知和大范围运动自由的柔性梁和薄板的数值仿真算例,验证了本文提出的方法能够很好的应用于柔性体刚-柔耦合动力学分析,不仅不会出现零次近似模型数值发散的问题,而且具有良好的单元收敛性和较高的计算效率。本文还通过对做大范围运动的平面曲梁和不规则形状薄板的动力学仿真,说明本文建模方法具有通用性,为复杂柔性体刚柔耦合动力学程式化的研究打下基础。
     为了进一步提高计算效率,便于工程应用,本文还研究了柔性体的刚-柔耦合动力学模型简化问题。分别讨论了耦合变形项对惯性力与弹性力的贡献,分析了它们对刚-柔耦合动力学行为的影响。通过研究指出当采用笛卡尔变形坐标描述时,如果在计算弹性力的时候考虑了耦合变形影响,无论在计算惯性力时是否考虑耦合变形影响,都可以得到稳定收敛的结果。反之,如果在计算弹性力时忽略了耦合变形影响,无论在计算惯性力时是否考虑耦合变形影响,当大范围运动的速度较高时,将会得到错误的发散的结果。因此,通过忽略耦合变形对质量分布的影响,只保留耦合变形对弹性力的影响,可实现对动力学方程的简化。
In this dissertation, the modeling theory and simulation technique of rigid-flexible coupling systems dynamics are investigated.
     The traditional hybrid-coordinate method of flexible multi-body systems is essentially a coupling modeling method of zero order approximation(MZOA), in which small elastic deformation assumption in structure dynamics is adopted and the high-order coupling terms of flexible body deformation are ignored. In 1987, Kane et al studied the dynamic performance of a flexible beam with rotation motion and the results indicate that the MZOA fails to describe dynamics of the system when the system is in high rotating velocity. Recently, a modeling method of rigid-flexible dynamics based on axial integral (MBAI) was developed by the group of professor Hong Jia-zhen based on the theory of continuum medium mechanics and the theory of analysis dynamics, which was a first-order approximation coupling model method, and second-order coupling term of deformation of flexible body were taken into count. The validity of the MBAI was verified by physical experiments. However, for the coupling deformation term of an arbitrary point in flexible beam is in integral from the bottom point when using the MBAI, which is a limitation for MBAI to investigate the rigid-flexible coupling dynamics of general flexible bodies. Later, the group proposed a modeling method base on Co-rotational coordinates (MBCR) to describe the non-linear deformation field of flexible bodied, which could break the limitation of MBAI. However, the computational efficiency of MBCR is poor.
     The first standard to evaluate a dynamical model is whether it could satisfy the request of reliability to reflect the essence the rigid-flexible coupling dynamics exactly. Moreover, it should have good numerical character and computational efficiency, which makes it easy to realize numerical simulation in computer. Therefore, it become the object of this dissertation to established a more general and efficient dynamic model of rigid-flexible coupling systems for the requirement of the engineering.
     In this dissertation, the dynamic modeling method of rigid-flexible coupling system based on element coupling deformation (MBECD) is proposed, in which three reference frames (global frame, floating frame, and element translate frame) are used to describe the configuration of arbitrary point in the flexible body. The floating frame is used to realizes the separation of the rigid motion and elastic deformation, and element translate frame is used to describe nonlinear coupling deformation. Firstly, the relationship of Cartesian deformation coordinate and non-Cartesian deformation coordinate is derived based on principle of continuum mechanics; the deformation of a arbitrary point in the element can be interpolated with non-Cartesian nodal deformation coordinates through element shape functions; non-Cartesian nodal deformation coordinates are transferred into Cartesian nodal deformation coordinates and allocated in floating frame, then the nonlinear coupling deformation field is obtained. In MBAI method, the coupling deformation terms of an arbitrary point are related with all the elements between the local element and the bottom. However, in MBECD prospected in this dissertation, the coupling deformation terms only relate with the located element nodal coordinates, which makes it possible for MBECD to investigate general shape flexible bodies.
     The rigid-flexible coupling dynamics of flexible bodies are studied by using MBECD prospected in this dissertation. The dynamic equations of flexible beam and thin plate undergoing overall large motions are derived based on Hamiltion principle and Jourdan velocity variation principle respectively. The simulation examples of flexible beam and thin plate undergoing prescribed motions and free motions are investigated to verify the validity of the MBECD to be applied in rigid-flexible coupling dynamic analysis of flexible bodies, which will not suffer the numerical divergence as ZOAC does. Simulation results also show the MBECD has good element convergence and relative high computational efficiency. Moreover, the simulation examples of curve beam and irregular plate are given to verify that the MBECD can be used to study the rigid-flexible coupling dynamics of complex shape flexible bodies.
     To improve the computational efficiency, and be applied in engineering conveniently, the simplification of rigid-flexible coupling dynamic equations of flexible bodies undergoing overall large motions are studied. The effects of coupling deformation term on the dynamic behavior of rigid-flexible systems are investigated. Research results indicate that stable solution can be obtained with Cartesian deformation coordinates when the effect of coupling deformation on calculating elastic forces is considered, regardless of the effect of coupling deformation on calculating inertia forces is ignored or not. On other hand, unstable solution can be obtained with high speed motion when the effect of coupling deformation on calculating elastic forces is ignored, regardless of the effect of coupling deformation on calculating inertia forces is ignored or not. It is possible to reduce the dynamic model of rigid-flexible systems through ignoring the effects of coupling deformation on calculating inertia forces and considering the effects of coupling deformation on calculating elastic forces when the Cartesian deformation coordinates are used.
引文
[1]洪嘉振.计算多体动力学.北京:高等教育出版社,1999.
    [2] Huston. Multibody dynamics: Modeling and analysis methods. Appl Mech.Rev,1991 44(3): 109–117.
    [3] Shabana A A. Flexible Multibody Dynamics: Review of Past and Recent Developments. Multibody System Dynamics 1: 189–222, 1997.
    [4]洪嘉振,蒋丽忠.柔性多体系统刚-柔耦合动力学.力学进展, 2000, 30(1):15-20.
    [5] Schiehlen W. Multibody system dynamics: Roots and perspectives. Multibody System Dynamics,1997, 1: 149–188.
    [6] Wasfy T M, Noor A K. Computational Strategies for Flexible Multibody Systems. Appl Mech Rev, 2003, 56(6): 553-613.
    [7] Meirovitch L, Nelson D A. On the High-Speed Motion of Satellite Containing Elastic Parts. AIAA Journal of Spacecraft and Rockets, 1966, 3(11): 1597-1602.
    [8] Likins P W. Finite Element Appendage Equations for Hybrid Coordinate Dynamic Analysis. Journal of Solids & Structures, 1972, 8, 790-831.
    [9] Argyris J H, Kelsey S, and Kaneel H. Matrix Methods for Structural Analysis: A Precis of Recent Developments. New York : MacMillan, 1964.
    [10] Shabana A A, Chang C W. Connection Forces in Deformable Multibody Dynamics. Computer and Structures, 1989, 33(1): 307-318.
    [11] Chang B, Shabana A A. Total Lagrangian Formulation for the Large Displacement Analysis of Rectangular Plates. International Journal for Numerical Methods in Engineering, 1990, 29: 73-103.
    [12] Bauchau O A, Rodriguez J. Modeling of Joints with Clearance in Flexible Multibody Systems. International Journal of Solids and Structure, 2002, 39: 41–63.
    [13] McPhee J J, Dubey R N. Dynamic Analysis and Computer Simulation of Variable-Mass Multi-Rigid-Body Systems. Int. J. Numer .Methods Eng, 1991, 32: 1711–1725.
    [14] Zhong Z H and Mackerle J. Contact-Impact Problems: a review with bibliography. Appl. Mech. Rev., 1994,47(2): 55–76.
    [15]赵振,刘才山,陈滨.步进冲量法.北京大学学报(自然科学版) , 2006, 42 (1): 41-46
    [16] Muthukumar S., DesRoches R. A Hertz contact model with non-linear damping for pounding simulation. Earthquake Engineering and Structural Dynamics, 2006, 35:811–828
    [17] Guo Anping, Hong Jiazhen, Yang Hui . A dynamic model with substructures for contact-impact analysis of flexible multibody systems. Science in China (Series E), 2003, 46 (1 ): 33-40
    [18] Schiehlen W, Seifried R, Eberhard P. Elastoplastic phenomena in multibody impact dynamics. Comput. Methods Appl. Mech. Engrg. 2006, 195: 6874–6890
    [19]张军,刘迎曦。基于有限元法的轮轨蠕滑特性研究。力学学报,2003, 35(6): 707-710
    [20]于清,洪嘉振.柔性多体系统动力学的若干热点问题.力学进展,1999, 29(2): 145-154
    [21] Blajer W, Schirm W.A Projective Criterion for Variable Portioning in Analyses of Constrained Mechanical Systems. Mechanics Research Communication,1994,21(3): 215~222.
    [22] Bayo E, Garcia Dejalon J, Serna M A. A modified lagrangian formulation for the dynamic analysis of constrained mechanical systems. Computer Methods in Applied Mechanics and Engineering, 1988, 71: 183~195
    [23]于清,洪嘉振.受约束多体系统一种新的违约校正方法.力学学报,1998,30(3): 300~306
    [24] Krishma R, Bainum P M. Dynamics and Control of Orbiting Flexible Structures Exposed to Solar Radiation, J of Guidance, 1985 8(5): 591–596.
    [25]李智勇,刘锦阳,洪嘉振.作平面运动的二维平面板的热耦合动力学问题.动力学与控制学报, 2006, 4(2): 114-121
    [26] Done G. Past and Future Progress in Fixed and Rotary Wing Aeroelasticity, Aeronaut. J.1996, 100: 269–279.
    [27]樊勇,李俊峰。挠性充液卫星姿态动力学建模研究。清华大学学报(自然科学版), 2002, 42(2): 194-197
    [28] Book W J.Controlled Motion in an Elastic World, ASME J. Dyn. Syst., Meas. Control, 1993, 115: 252–261.
    [29] Ghanekar M, Wang D W, and Heppler G R. Scaling Laws for Linear Controllers of Flexible Link Manipulators Aracterized by Nondimensional Groups. IEEE Trans. Rob. Autom. 1997,13(1): 117–127
    [30]张利婷.刚-柔耦合系统控制理论研究.上海交通大学硕士学位论文, 2002
    [31] Cai G P, Hong J Z, Yang S X. Modal Study and Active Control of a rotating Flexible Cantilever Beam. International Journal of Mechanical Science, 2004, 46:871–889
    [32] Hardell C. An Integrated Dystem for Computer Aided Design and Analysis of Multibody Systems. Eng. Comput. 1996, 12: 23–33
    [33]常中正.多体系统动力学并行计算的研究.上海交通大学硕士学位论文, 2005
    [34] Alexander R M, Lawerence K L. An Exeperimental Investigation of the Dynamic response of an Elastic Mechanics. ASME Journal of Engineering for Industy, 1974, 96(1): 268-274
    [35] Hastings G G, Book W J. A Linear Dynamic Model for Flexible Robotic Manipulators. IEEE Control Systems Magzine, 1987, 7(1): 61-64
    [36]杨辉,洪嘉振,余征跃.刚柔耦合建模理论的实验研究.力学学报, 2003, 35(2):253-256.
    [37] Kane T R, Ryan R R, Banerjee A K. Dynamics of a Cantilever Beam Attached to a Moving Base. Journal of Guidance, Control and Dynamics, 1987,10(2): 139-151
    [38] Sunada W, Dubowsky S. The Application of Finite Element Method to the Dynamic Analysis of Flexible Spatial and Co-Planar Linkage Systems, ASME Journal of Mechanical Design, 1971, 103: 643-651
    [39] Winfry R C. Elastic Link Mechanism Dynamics, ASME Journal of Engineering for Industry, 1971, 93: 268-272
    [40] Winfry R C. Dynamics Analysis of Elastic Link Mechanisms by Reduction of Coordinates, ASME Journal of Engineering for Industry, 1972, 94: 577-582
    [41] Meirovitch L, Nelson D A. On the High-Speed Motion of Satellite Containing Elastic Parts, AIAA Journal of Spacecraft and Rockets, 1966, 3(11): 1597-1602
    [42] Likins P W. Finite Element Appendage Equations for Hybrid Coordinate Dynamic Analysis, Journal of Solids and Structures, 1972, 8, 790-831
    [43] Singh R P, Likins P W. Singular Value Decomposition for Constrained Dynamical Systems, ASME Journal of Applied Mechanics, 1985, 52: 943-948
    [44] Singh R P, Vander Voor R J, Likins P W. Dynamics of Flexible Bodies in Tree-Topology: A Computer-Oriented Approach, Journal of Guidance, Control and Dynamics, 1985, 8: 584-590
    [45] Boland P, Samin J C, Willems P Y. Stability Analysis of Interconnected Deformation Bodies with Closed-Loop Configuration, AIAA Journal,1975,13(7):864-867
    [46] Boland P. Stability Analysis of Interconnected Deformation Bodies in Topological Tree. AIAA Journal, 1974,12(8):1025-1032
    [47] Meirovitch L. A New Method of Solution of the Eigenvalue Problem for Gyroscopic System, AIAA Journal, 1974, 14(2): 453-465
    [48] Meirovitch L. Hybrid State Equations of Motion for Flexible Bodies in Terms of Quasi-coordinates, Journal of Guidance, Control and Dynamics, 1990, 14(5): 1374-1383
    [49] Ho J Y L. Direct Path Method for Flexible Multibody Spacecraft Dynamics, AIAA Journal of Spacecraft and Rocket, 1977, 14(2): 102-110
    [50] Hooker W W. Equations of Motion for Interconnected Rigid and Elastic Bodies: A Derivation Independent of Angular Momentum, Celestial Mechanics, 1975, 11: 337-359
    [51] Ho J Y L. Development of Dynamics and Control Simulation of Large Flexible Space Systems, Journal of Guidance, Control and Dynamics, 1985, 8(3): 374-383
    [52] Kane T R, Levinson D A. Formulation of Equation of Motion for Complex Spacecraft, Journal of Guidance, Control and Dynamics, 1980, 3(2): 99-112
    [53] Cavin R K, Dusto A R. Hamilton’s Principle: Finite-Element Methods and Flexible BodyDynamics, AIAA J.,1984,15(12):1684-1690
    [54] Yoo W S, Haug E J. Dynamics of Articulated Structures, Part 1. Theory, J. Struct. Mech., 1986, 14(1): 105-126
    [55] Yoo W S, Haug E J. Dynamics of Articulated Structures, Part 2. Computer Implementation and Applications, J. Struct. Mech., 1986, 14(2): 177-189
    [56] Yoo W S, Haug E J. Dynamics of Flexible Mechanical Systems Using Vibration and Static Correction Modes, Journal of Mechanisms, Transmissions, and Automation in Design, 1986, 108: 315-322
    [57] Kim S S, Haug E J. A Recursive Formulation for Flexible Multibody Dynamics, Part1: Open-Loop Systems, Computer Methods in Applied Mechanics and Engineering, 1988, 71: 293-314
    [58] Kim S S, Haug E J. A Recursive Formulation for Flexible Multibody Dynamics, Part2: Open-Loop Systems, Computer Methods in Applied Mechanics and Engineering, 1989, 74: 251-269
    [59] Simo J C, Quoc L V. On the Dynamics of Flexible Beams Under Large Overall Motions—The Planar Case: Part 1, ASME Journal of Applied Mechanics, 1986, 53: 849-854
    [60] Simo J C, Quoc L V. On the Dynamics of Flexible Beams Under Large Overall Motions—The Planar Case: Part 2, ASME Journal of Applied Mechanics, 1986, 53: 855-863
    [61] Simo J C, Quoc L V. A Three-Dimension Finite-Strain Rod Model Part 1, Computer Methods in Applied Mechanics and Engineering, 1985, 49: 55-70
    [62] Simo J C, Quoc L V. A Three-Dimension Finite-Strain Rod Model Part 2: Computational Aspects, Computer Methods in Applied Mechanics and Engineering, 1986, 58: 79-116
    [63] Boutaghou Z E, Erdman A G, Stolarski H K. Dynamics of Flexible Beams and Plates in Large Overall Motion. ASME J. Applied Mechanics,1992,59:991-999
    [64] Haering W J, Ryan R R. New Formulation for Flexible Beams Undergoing Large Overall Motions. Journal of Guidance, Control and Dynamics, 1994,17(1):76-83
    [65] Hanagud S, Sarkar S. Problem of the Dynamics of a Cantilever Beam Attached to a Moving Base. Journal of Guidance,Control and Dynamics, 1989,12(3):438-431
    [66] Padilla C E, Floton A H. Nonlinear Strain-Displacement Relations and Flexible Multibody Dynamics. Journal of Guidance, Control, and Dynamics, 1992,15:128-136
    [67] Banerjee A K, Kane T R. Dynamics of a Plate in Large Overall Motion. Journal of Applied Mechanics, 1989,56:887-892
    [68] Yoo H H, Chung J. Dynamics of rectangular plates undergoing prescribed overall motion. Journal of Sound and Vibration, 2001;239(1):123-137
    [69] Bakr E M, Shabana A A. Geometrically Nonlinear Analysis of Multibody System, Computer and Structures, 1986, 23(6): 739-751
    [70] Mayo J, Dominguez J, Shabana A A. Geometrically Nonlinear Formulation of Beams in Flexible Multibody Dynamics, Journal of Vibration and Acoustics, 1995, 117: 501-509
    [71] Damaren C, Sharf I. Simulation of Flexible-Link Manipulators with Inertial and Geometric Nonlinearities, Journal of Dynamic Systems, Measurement and Control, 1995, 117: 74-86
    [72] Sharf I. Geometric Stiffening in Multibody Dynamics Formulations, Journal of Guidance, Control and Dynamics, 1995, 18(4): 882-891
    [73] Ider S K, Amirouche F M L. Influence of Geometric Nonlinearities in the Dynamics of Flexible Treelike Structures, Journal of Guidance, Control and Dynamics, 1989, 12(6): 830-837
    [74] Ider S K. Finite Element Based Recursive Formulation for Real Time Dynamic Simulation of Flexible Multibody Systems, Computers and Structures, 1991, 40: 939-945
    [75] Banerjee A K, Dickens J M. Dynamics of an Arbitrary Flexible Body in Large Rotation and Translation. Journal of Guidance, Control and Dynamics, 1990, 13(2): 221-227
    [76] Banerjee A K, Lemak M K. Multi-Flexible Body Dynamics Capturing Motion-Induced Stiffness. Journal of Applied Mechanics, 1991,58:766-775
    [77] Banerjee A K. Block-Diagonal Equations for Multibody Elastodynamics with Geometric Stiffness and Constraints. Journal of Guidance, Control and Dynamics, 1994, 16(6): 1092-1100
    [78] Ryu J, Kim S S, Kim S S. A General Approach to Stress Stiffening Effects on Flexible Multibody Dynamic Systems. Mech. Strut & Mach., 1994, 22(2): 157-180
    [79] Likins P W, Barbera F J, Baddeley V. Mathematical Modeling of Spinning Elastic Bodies for Modal Analysis. AIAA Journal, 1973, 11: 1251-1258
    [80] Craig R R. Rotating Beam with Tip Mass Analyzed by a Variational Method. Journal of the Acoustical Society of America, 1963, 35: 990-993
    [81] Carne T G, Lobitz D W, Nord A R, et al. Finite Element Analysis and Modal Testing of a Rotating Wind Turbine. International Journal of Analytic and Experimental Modal Analysis, 1988, 3:32
    [82] Lobitz D W. A NASTRAN-based Computer Program for Structural Dynamics Analysis of Horizontal Axis Wind Turbines. Proceedings of the Horizontal Axis Wind Turbine Technology Workshop, U. S. Department of Energy and NASA Lewis, Cleveland, May, 1984
    [83] Laurenson R M. Modal Analysis of Rotating Flexible Structures. AIAA Journal. 1976, 14: 1444-1450
    [84] Laurenson R M. Influence of Mass Representation on the Equations of Motion for Rotating Structures. AIAA Journal. 1985, 23: 1995-1998123
    [85] Wallrapp O, Schwertassek R. Representation of Geometric Stiffening in Multibody System Simulation, International Journal for Numerical Methods in Engineering, 1991, 32: 1833-1850
    [86] Wallrapp O. Linearized Flexible Multibody Dynamics Including Geometric Stiffening Effects, Mech. Struct. and Mach. ,1991, 19(3): 385-409
    [87] Wallrapp O. Standardization of Flexible Body Modeling in Multibody System Codes, Part I: Definition of Standard Input Data, Mech. Stru. and Mach. , 1994, 22(3): 283-304
    [88] Zhang D J, Liu C O, Huston R L. On the Dynamics of an Arbitrary Flexible Body with Large Overall Motion, An Integrated Approach, Meth. Struct. and Math., 1995, 23(3): 419-438
    [89] Zhang D J, Huston R L. On Dynamic Stiffening of Flexible Bodies Having High Angular Velocity, Mech. Struct. and Mach. , 1996, 24(3): 313-329
    [90]王建民,计及动力刚化的柔性多体系统动力学理论、方法及实验研究,天津大学博士论文, 1997
    [91]王建明.柔性体刚柔耦合动力学建模理论及动力刚化有限元算法研究.上海交通大学博士后出站研究工作报告,上海:上海交通大学工程力学系, 1999
    [92] Meirovitch L. Computational Methods in Structural Dynamics. The Netherlands: Alphen aan den Rijn: Sijthoff & Noordhoff, 1980
    [93] Yigit A, Scott R. A and Ulsoy A. G. Flexural motion of a radially rotating beam attached to a rigid body. Journal of Sound and Vibration, 1988, 121(2): 201-210
    [94] Al-Bedoor B O, Almusallam A A. Dynamics of flexible-link and flexible-joint manipulator carrying a payload with rotary inertia. Mechanism and Machine Theory, 2000, 35:785-820
    [95] Wu S C, Haug E J. Geometric Non-Linear Substructuring for Dynamics of Flexible Mechanical Systems, International Journal for Numerical Methods in Engineering, 1988, 26: 2211-2226
    [96] Hopkins A S, Likins P W. Analysis of Structures with Rotating Flexible Substructures, Proceeding of AIAA/ASME/ASCE/AHS 28th Structural Dynamics and Materials Conference, AIAA New York, 1987: 944-954
    [97] Liu A Q, Liew K M. Non-linear Substructure Approach for Dynamic Analysis of Rigid-Flexible Multibody System, Computer Methods in Applied Mechanics and Engineering, 1994, 114: 379-396
    [98] Wittenburg J. Dynamics of Systems of Rigid Bodies. B. G. Teubner: Stuttgart, 1977
    [99] Huston R L. Multibody Dynamics Including the Effects of Flexibility and Compliance. Computers & Structures, 1981, 14(5): 443-451
    [100] Huston R L, Kamman J W. Validation of finite segment cable models. Computers & Structures, 1982, 15: 653-660
    [101] Amirouche F M L. Dynamic analysis of tree-like structures undergoing large motions– a finitesegment approach. Engineering Analysis, 1986, 3: 111-117
    [102] Amirouche F M L, Huston R L. Dynamics of Large Constrained Flexible Structures. Journal of Dynamic Systems, Measurement, and Control, 1988, 110(1): 78-83
    [103] Huston R L. Computer Methods in Flexible Multibody Dynamics. International Journal for Numerical Methods in Engineering, 1991, 32: 1675-1688
    [104] Wang Y, Huston R L. A Lumped Parameter Method in the Nonlinear Analysis of Flexible Multibody Systems. Computers & Structures, 1994, 50: 421-432
    [105] Connelly J D, Huston R L. The Dynamics of Flexible Multibody System: A Finite Segment Approach -I Theoretical Aspects. Computers & Structures, 1994, 50: 255-258
    [106] Connelly J D, Huston R L. The Dynamics of Flexible Multibody System: A Finite Segment Approach -ⅡExample Problems. Computers & Structures, 1994, 50: 259-262
    [107] Simo J C, Quoc L V. The Role of Non-linear Theories in Transient Dynamics Analysis of Flexible Structures, Journal of Sound and Vibration, 1987, 119(3): 487-508
    [108] Simo J C, Quoc L V. On the Dynamics in Space of Rods Undergoing Large Motions: A Geometrical Exact Approach, Computer Methods in Applied Mechanics and Engineering, 1988, 66: 125-136
    [109] Hsiao K M, Yang R T, Lee A C. A Consistent Finite Element Formulation for Non-Linear Dynamic Analysis of Planar Beam, International Journal for Numerical Methods in Engineering, 1994, 37: 75-89
    [110] Berzeri M, Shabana A A. Study of the Centrifugal Stiffening Effect Using the Finite Element Absolute Nodal Coordinate Formulation. Multibody System Dynamics, 2002, 7: 357–387.
    [111] Sugiyamaa H, Gerstmayrb J, Shabana A A. Deformation modes in the finite element absolute nodal coordinate formulation[J]. Jounal of Sound and Vibration, 2006, 298: 1129–1149
    [112] Garcia-Vallejo D, Sugiyama H, Shabana A A. Finite element analysis of the geometric stiffening effect. Part 1: a correction in the floating frame of reference of formulation. J. Multi-body Dynamics, 2005, 219(K): 187-202.
    [113] Garcia-Vallejo D, Sugiyama H, Shabana A A. Finite element analysis of the geometric stiffening effect. Part 2: nonlinear elasticity. J. Multi-body Dynamics, 2005, 219(K): 203-211.
    [114] Argyris J H, Kelsey S and Kaneel H. Matrix Methods for Structural Analysis: A Precis of Recent Developments, MacMillan, New York: 1964.
    [115] Madenci E, Barut B. Dynamic Respinse of Thin Composite Shells Experiencing Non-linear Elastic Deformations Coupled with Large and Rapid Overall Motions. International J. for Numerical Methods in Engineering, 1996, 39: 2695-2723.
    [116] Barut B, Madenci E, Tessler A. Non-linear Elastic Deformations of Moderately Thick LaminatedShells subjected to Large and Rapid Rigid-body Motions. Finite Element in Analysis and Desigh 1996, 22: 41-57.
    [117]蒋丽忠.柔性多体系统刚-柔耦合动力学建模理论研究. [博士学位论文],上海交通大学工程力学系,1999
    [118]刘锦阳.刚-柔耦合动力学系统的建模理论研究. [博士学位论文],上海交通大学工程力学系,2000
    [119]杨辉.刚-柔耦合动力学系统的建模理论与实验研究. [博士学位论文],上海交通大学工程力学系,2002
    [120]蒋丽忠,洪嘉振.作大范围运动弹性薄板中的几何非线性与耦合变形.力学学报, 1999, 31(2): 243-249
    [121]蒋丽忠,洪嘉振.作大范围运动弹性梁的动力刚化研究,计算力学学报, 1998, 15(4): 407-413
    [122] Yang H, Hong J Z, Yu Z Y. Dynamics modeling of a flexible hub-beam system with a tip mass. Journal of Sound and Vibration, 2003, 266(4):759-774
    [123] Cai G P, Hong J Z, Yang S X. Dynamic analysis of a flexible hub-beam system with tip mass. Mechanics Research Communications, 2005, 32(2):173-190
    [124] Liu J Y, Hong J Z. Geometric stiffening of flexible link system with large overall motion. Computers and Structures, 2003, 81:2829-2841
    [125] Liu J Y, Hong J Z. Geometric stiffening effect on rigid-flexible coupling dynamics of an elastic beam. Journal of Sound and Vibration, 2004, 278(4,5):1147-1162
    [126] Liu J Y, Hong J Z. Dynamics of three-dimensional beams undergoing large overall motion. European Journal of Mechanics A/Solids, 2004, 23:1051-1068
    [127]刘锦阳,洪嘉振.作大范围运动矩形薄板的建模理论和有限元离散方法.振动工程学报, 2003, 16(2):175-179
    [128] Liu J Y, Hong J Z. Geometric nonlinear formulation and discretization method for a rectangular plate undergoing large overall motions. Mechanics Research Communications, 2005, 32(5):561-571
    [129] Liu J Y, Hong J Z, Cui L. An exact nonlinear hybrid-coordinate formulation for flexible multibody systems. Acta Mechinica Sin 2007 23: 699–706.
    [130]刘锦阳,李彬等.做大范围运动的柔性梁的刚-柔耦合动力学,力学学报,2006,38(2):276-282
    [131]尤超蓝.大变形多体系统刚柔耦合动力学建模理论研究.上海交通大学博士学位论文, 2006.
    [132]蒋丽忠,洪嘉振.大范围运动对弹性梁振动频率及模态的影响.振动与冲击, 1999, 16(1): 12-18
    [133]胡振东.柔性多体系统动力学建模理论基础研究,上海交通大学博士后研究报告, 1997
    [134]胡振东,洪嘉振.刚柔耦合系统动力学建模及分析.应用数学和力学, 1999, 20(10): 1087-1093
    [135]朱国强.刚-柔耦合梁系统动力学建模理论及数值仿真,上海交通大学硕士学位论文, 2000
    [136]刘勇.柔性多体系统耦合动力学研究,上海交通大学硕士学位论文, 2000
    [137]王建明,刘又午,洪嘉振.大范围刚体运动对柔性梁模态形函数的影响分析.中国机械工程, 2000, 11(6): 640-642
    [138]覃晓英.刚-柔耦合系统动力学离散模型的研究.上海交通大学硕士士学位论文, 2006.
    [139]杨辉,洪嘉振,余征跃.一类刚-柔耦合系统的模态特性与实验研究.宇航学报, 2002, 23(2): 67-72
    [140]杨辉,洪嘉振,余征跃.带柔性附件的中心刚体的频率特性及实验研究.空间科学学报, 2002, 22(4):372-379
    [141] Zhang D J, Liu Y W, Yun C, et al. Flexible multibody system dynamics-finite segment method. Chinese Journal of Mechanical Engineering, 1994, 7(2): 156-162
    [142]阎绍泽.计及动力刚化的柔性机械系统动力学理论、仿真及实验研究.天津大学博士学位论文,1996
    [143]王建明.基于几何非线性及小变形条件的柔性多体系统动力学.振动工程学报, 1998, 11(3):340-345
    [144]刘又午,阎绍泽,张大均.计及动力刚化的柔体动力学.中国机械工程. 1997, 8(4): 81-84
    [145]刘又午,王建明,刘才山等.作大范围运动的空间桁架结构动力分析.振动工程学报, 1998,11(1):18-23
    [146]刘才山,陈滨,王示.考虑刚弹耦合作用的柔性多体连续系统动力学建模.力学与实践, 1999, 21(6)
    [147]章定国,朱志远.一类刚柔耦合系统的动力刚化分析.南京理工大学学报, 2006, 2 (30): 21-25, 33.
    [148] Deng F. Y., He X. S., and Li L. el ta. Dynamics modeling for a rigid-flexible coupling system with nonlinear displacement field, Multibody Syst Dyn, 2007, 18:559-578.
    [149]董兴建,孟光,蔡国平等.旋转柔性梁的动力学建模及分析.振动工程学报. 2006, 19(4): 488-493.
    [150]杨建刚,高舆.大型旋转机械叶片-轴弯扭耦合振动问题的研究.动力工程, 2003, 23(4): 2569-2573.
    [151]韩广才,商大中.非惯性参考系下旋转叶片系统的动力响应.哈尔滨工程大学学报, 2002, 23(3): 95-97, 115.
    [152]吴艳红,姜静.非惯性参考系下叶片动力学分析.佳木斯大学学报, 2007, 25(2): 145-148
    [153] Yoo H H, Pierre C. Modal characteristic of a rotating rectangular cantilever plate, Journal of Sound and Vibration, 2003, 259(1):81-96
    [154] Yoo H H, Kim S K. Inman D J. Modal analysis of rotating composite cantilever plates. Journal of Sound and Vibration , 2002, 258 (2): 233–246

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700