用户名: 密码: 验证码:
大跨度连续刚构桥设计若干关键技术问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着交通工程建设的快速发展,能适应较宽桥面要求的单箱单室箱梁在连续梁桥、连续刚构桥建设中被广泛应用。无支架平衡悬臂施工工艺、新型高强材料的使用使其向大跨、薄壁、轻柔方向发展,这样结构的稳定问题、剪力滞问题及温度问题日益突出。因此,对此类桥梁结构的稳定性、剪力滞效应、温度场分布及其温度效应等方面的研究具有实际意义。本文以武汉天兴洲公铁两用长江大桥公路引线部分和平大道段连续刚构桥为背景,对以上相关领域进行了研究,主要工作包括如下内容。
     以稳定性分析为目标,论述了稳定问题的两类数值解法及稳定评价指标与判别准则;在线弹性基础上,推导了高墩大跨连续刚构桥的自体稳定安全系数及悬臂施工阶段稳定安全系数的计算公式,对常截面与变截面墩自体稳定性的有限元解法与能量法进行了对比,并对不同施工阶段的各工况下的第一类稳定性进行了分析;引入初始缺陷,考虑几何非线性与几何、材料双重非线性的影响,采用弧长法对最大悬臂施工阶段的稳定性进行了分析,并对该桥的施工安全性能做出了评价。
     基于最小势能原理的能量变分法,分别假定翼板纵向位移函数为三次抛物线和四次抛物线,得到箱梁剪力滞效应基本微分方程的变分解,在此基础上推导了集中荷载和均布荷载作用下等截面悬臂箱梁剪力滞效应系数的变分解式,并通过对影响截面剪力滞系数诸要素的分析,采用改进当量截面法,得到变截面悬臂箱梁的剪力滞系数理论解;分别分析了变截面箱梁和全桥在多种荷载工况下的剪力滞效应,有限元法与能量变分当量截面法的比较结果证实本文所采用的方法可有效准确地应用于计算变截面箱梁的剪力滞效应;分析了考虑了几何参数跨宽比、翼缘板刚度与截面总刚度对变截面悬臂箱形梁剪力滞效应的影响,翼板纵向位移函数变化规律形式对剪力滞系数计算精度的影响以及纵、横向预应力作用对箱梁剪力滞效应的影响。
     在日照温度场方面,本文将预应力混凝土箱梁温度场归结为无内热源平面瞬态温度场问题,采用平面有限元方法,建立了热传导的有限元方程,推导了无内热源平面温度场有限元公式,以及混合边界单元的计算公式,将第二类边界条件与第三类边界条件统一起来,均以第三类边界条件形式进行边界处理。同时,详细阐述了影响预应力混凝土箱梁温度场分析的边界条件,研究了影响温度分布的各种因素,如桥梁方位、走向、材料特性、截面构造及环境条件等的影响,得到结构最不利温度场。根据得到结构最不利温度场,本文提出了两种适用于本工程的温度梯度分布模式。通过热-瞬态和热-结构耦合求解空间实体连续刚构桥的温度应力分布,求得求截面各点应力分布规律,并与本文提出两种温度梯度分布模式进行了对比。从而为求得适用于本工程的温度梯度模式提供了一种简化的计算公式。
With the rapid development of transportation engineering, the single-chest and single-room box girders which meet the requirements of wide bridge decks have been widely used in continuous girder bridges and continuous rigid-frame bridges. Technologies of balanceable cantilever construction without falsework, with the use of high-strength materials have made large span, thin-wall and light weight a tendency for bridges. Problems of structural stability, distribution of temperature field, thermal effect as well as shear lag effect have thereby become more and more critical. Study on these areas owns large significance for practical engineering. The relevant research has been carried out here on a real case of the large-span continuous rigid frame bridges which is a south approach of Tianxingzhou bridge in Wuhan, includeing the following works.
     On the object of stability analysis, two kinds of numerical methodologies for structural stability as well as the corresponding analyzing criterions are discussed. The linear-elastic formulations for safety coefficients of both self stability and cantilever construction of continuous high-pier rigid-frame bridges are derived. Comparison is made between results of self stability analysis on both constant and varying sections by finite element method and energy method. Meanwhile, the first type stability of bridge in different constructing period under various working cases is also analyzed. In the stability analysis during the critical cantilever constructing period by arc-length method, initial deficiency, geometrical nonlinearity, as well as the dual nonlinearity are considered. On this basis, the constructing safety for the whole bridge is evaluated.
     Based on the theory of minimum potential energy, the variational solution of the basic differential equations for the shear lag effect on the box beam is obtained. The displacement function is assumed as cubical and biquadratic parabolas respectively. Furthermore, the formulation of variational solution for the shear lag effect coefficient of constant-section cantilever box beam under evenly distributed load is derived. Hence, through analyzing the corresponding influencing factors, the theoretical solution of the shear lag coefficient of the box beam with reduced section is obtained with improved equivalent section method. Meanwhile, the shear lag effects of reduced-section box beam as well as the whole bridge under different working cases are also discussed. Comparison between the results from finite element method and energy method identifies that the method presented here can calculate the shear lag effect of the box beam with reduced section accurately. The influence of the width-span ratio, stiffness of flange as well as the stiffness of the section on the shear lag effect of reduced-section cantilever box beam is analyzed. The influence of the form of displacement function on the calculating accuracy of shear lag coefficient, together with the influence of lateral prestress on the shear lag effect of box beam is also discussed.
     On the respect of temperature field of sunlight, the temperature filed in the prestressed concrete box beam is set on the assumption that there is no internal thermal source in planar transient state. Based on the planar finite element equations for thermal conduction being set up, the finite element formulation for the planar temperature field without internal thermal source and that for the mixed-edge element are derived. On this basis, the 2nd edge condition is integrated into the 3rd edge condition. Edge conditions that influence the analysis of temperature field of concrete box beam are represented. The least favorable temperature field of structures is obtained based on analyzing the influence factors on temperature distribution, such as orientation, trend, material properties, cross section, as well as the environment condition of the bridge. Thus, two kinds of gradient temperature distribution forms are proposed for this real case. The principles of stress distribution on sections are got by solving the temperature stress distribution of the spatial continuous rigid-frame bridge through coupling heat-transient state and heat-structure. Its comparison with the two kinds of gradient temperature distribution forms proposed here shows it has offered a simplified formulation for the calculation of gradient temperature distribution form.
引文
[1]李国豪.桥梁结构稳定与振动.北京:中国铁道出版社, 1996
    [2]马保林,李林青.高墩大跨度连续刚构桥.北京:人民交通出版社, 2001
    [3]项海帆.高等桥梁结构理论.北京:人民交通出版社, 2001
    [4] D.R. Popp, E.B. Williamson. Stability analysis of steel trapezoidal box-girder bridges. ASCE Conference Proceedings, 2005, 171 (29): 1061-1070
    [5]赵伟封,马保林,陈偕民.薄壁特高墩预应力混凝土连续刚构桥的空间稳定性.长安大学学报, 2004, 24 (4): 51-54
    [6]范立础.桥梁工程.北京:人民交通出版社, 2004
    [7]罗旗帜,俞建立.钢筋混凝土连续箱梁桥翼板横向裂缝问题.桥梁建设, 1997, (1): 41-45
    [8]刘兴法.预应力混凝土箱梁温度应力计算方法.土木工程学报, 1986, 19 (1): 44-54
    [9]魏光坪.单室预应力混凝土箱梁温度场及温度应力研究.西南交通大学学报, 1989, (4): 90-96
    [10]刘兴法.混凝土结构的温度应力分析.北京:人民交通出版社, 1991
    [11] W.J. Podolny. The cause of cracking in post-tensioned concrete box girder bridges and retrofit procedures. PCI Journal, 1985, 30 (2): 82-139
    [12] M.J.N. Priestley. Design of concrete bridges for temperature gradients. ACI Journal, 1978, 75 (23): 209-217
    [13] F. Kehlbeck.太阳辐射对桥梁结构的影响.北京:中国铁道出版社, 1981
    [14] Q. B. Ressell, D.J. Fraser. Improved G-factor method for evaluating effective lengths of columns. Journal of structural engineering, ASCE, 1987, 113 (6): 1341-1356
    [15] W.F. Chen, L. Duan. Bridge engineering handbook. Boca Raton: CRC Press, 2000
    [16] G.S. Raul. New stability equation for columns in braced frames. Journal of structural engineering, ASCE, 1992, 118 (7): 1853-1870
    [17] J. Lee. Effective width of Tee beams. The structural engineer, 1962, 40 (1): 21-27
    [18] A.G. Smyrell. Approximate formulate for determining the effective length of steel columns to BS5950. Structural engineering, 1993, 71 (5): 79-81
    [19] A.S. Nazmy. Stability and load-carrying capacity of three-dimensional long-span steel arch bridges. Computers & Structure, 1997, 65 (6): 857-868
    [20] F. Bleich. Buckling strength of metal structure. New York: McGraw-Hill, 1952
    [21] H.D. Wright. Buckling of plates in contact with a rigid medium. The Structural Engineer, 1993, 71 (12): 209-215
    [22] U. Brian. Local and postlocal buckling of fabricated steel and composite cross sections. Journal of Structural Engineering, 2001, 127 (6): 666-667
    [23] T. Kitada. Ultimate strength and ductility of state-of-the-art concrte-filled steel bridge piers in Japan. Engineering Structures, 1998, 20 (4): 347-354
    [24] U. Brian. Strength of concrete-filled steel box columns incorporating local buckling. Journal of Structural Engineering, 200, 200 (3): 341-352
    [25] J.R. Casas. Reliability-based partial safety factors in cantilever constuction of concrete bridges. Journal of structural engineering, ASCE, 1997, 123 (3): 305-312
    [26]李开禧,魏明钟.钢构件稳定.四川:四川科学技术出版社, 1988
    [27]钟善桐.钢结构稳定设计.北京:中国建筑工业出版社, 1991
    [28]任伟新,曾庆元.钢压杆稳定极限承载力分析.北京:中国铁道出版社, 1994
    [29]赵灿晖,刘日圣.阶梯形变截面柱式墩的稳定计算.工程力学, 1999, 3 (3): 630-634
    [30]朱敏.变截面高墩在轴向力作用下的第一类稳定计算.江苏交通工程, 2003, (2): 45-47
    [31]潘志炎,史方华.高桥墩稳定性分析.公路, 2004, (9): 60-62
    [32]郭梅.高墩大跨度连续刚构桥稳定性分析.西安公路交通大学学报, 1999, 19 (3): 31-38
    [33]白青侠,郝宪武.考虑重力条件下高薄壁桥墩弹性稳定性分析.西北建筑工程学院学报(自然科学版), 2001, 18 (1): 37-41
    [34]颜全胜,戴公连.南昆线喜旧溪河大桥双肢薄壁高墩非线性分析.长沙铁道学院学报, 1998, 16 (1): 29-32
    [35]王振阳,赵煜,徐兴.高墩大跨径桥梁稳定性.长安大学学报(自然科学版), 2003, 23 (4): 38-40
    [36]白浩,杨昀,赵小星.高墩大跨径弯连续刚构桥梁空间非线性稳定分析.公路交通科技, 2005, 22 (5): 111-113
    [37] Q.G. Song, A.C. Scordelis. Shear lag analysis of T-, I- and box beams. Journal of structural engineering, ASCE, 1990, 116 (5): 1290-1305
    [38] H.R. Evans, M.K.H. Ahmad, V. Kristek. Shear lag in composite box girders of complex cross section. Journal of Constructional Steel Research, 1993, 24 (3): 183-204
    [39] V. Kristek, J. Studnicka. Negative Shear lag in flanges of plated structures. Journal of structural engineering, ASCE, 1991, 117 (12): 3553-3569
    [40] V. Kristek, H.R. Evans, M.K.H. Ahmad. Shear lag analysis for composite box girders. Journal of constructional steel research, 1990, 16 (1): 15-17
    [41] Haji-Kazemi, M. Company. Exact method of analysis of shear lag in framed tube structures. The structural design of tall buildings, 2002, 11 (5): 375-388
    [42] E. Reissner. On the problem of stress distribution in wide flanged box beam. Journal Aero SCI, 1983, (5): 295-299
    [43] P.B. Hildbrand. The exact solution of shear lag problems in flat panels and box beams assumed rigid in the transverse direction. NACA, 1943, (TN894): 90-95
    [44] S.G. Abdel. Effective width of steel deck plate in bridge. Journal of structural division, ASCE, 1969, 95 (7): 1459-1474
    [45] D.J. Malcolm, R.G. Redwood. Shear lag in stiffened box girders. Journal of structural division, ASCE, 1970, 96 (7): 1403-1415
    [46] J.E. Goldberg, H.L. Leve. Theory of prismatic folded plate structures. International aero for bridge and structural engineering publications, 1957, (17): 59-86
    [47] S.A. Defries, A.C. Scrodelis. Direct stiffens solution for folded plates. Journal of structural division, ASCE, 1964, 90 (4): 15-47
    [48] K.H. Chu, S.G. Pjnjarkar. Multiple folded plate structures. Journal of structural division, ASCE, 1966, 92 (2): 15-47
    [49] K.H. Chu, E. Dudnik. Concrete box girder bridges analyzed as folded plates. Concrete bridge designer, ACI, 1969, (23): 221-246
    [50] D.K. Van, S.V. Narasimham. Shear lag in shallow wide-flanged box girders. Journal of structural division, ASCE, 1978, 102 (10): 1969-1979
    [51] J. Yoshimura, N. Nirasawa. On the stress distributions and effective width of curved girder bridge by the folded plate theory. Proceedings of the Japan society of civil engineers. in: Proceedings of the Japan society of civil engineers, Tokyo, 1975, No.233
    [52]蔡松柏,李存权.箱形梁桥剪力滞效应的精确分析.中南公路工程, 1989, (8): 33-41
    [53] K.W. Shushkewich. Negative shear lag explained. Journal of Structural Engineering, ASCE, 1991, 17 (11): 3543-3546
    [54] A. Fafitis, A.Y. Rong. Analysis of thin-walled box girders by parallel processing. Thin-walled structures, 1995, 21 (3): 233-240
    [55] A.R. Taherian, H.R. Evans. The bar simulation method for the calculation of shear lag in multi-cell and continuous box girder. Proceeds of instruction civil engineers, 1977, 2 (63): 881-897
    [56]程翔云,汤康恩.计算箱形梁桥剪力滞效应的比拟杆法.中南公路工程, 1984, (1): 65-73
    [57]张启伟,张士铎.单索面斜拉桥箱梁恒载剪力滞效应分析.中国公路学报, 1997, 10 (1): 39-43
    [58]唐怀平,唐达培.大跨径连续刚构箱梁剪力滞效应分析.西南交通大学学报, 2001, 36 (6): 617-619
    [59]郭健,孙炳楠.斜拉桥主塔在施工过程中的剪力滞效应分析.中国市政工程, 2004, (2): 33-35
    [60] E. Reissner. Analysis of shear lag in box beam by principle of minimum potential energy. Quarterly of applied mathematics, 1946, 5 (3): 268-278
    [61] B.O. Kuzmanovic, H.J. Graham. Shear lag in box girders. Journal of structural division, ASCE, 1981, 107 (9): 1701-1712
    [62]郭金琼,房贞政,罗孝登.箱形梁桥剪滞效应分析.土木工程学报, 1983, 16 (1): 1-18
    [63]倪元增.槽型宽梁的剪力滞问题.土木工程学报, 1986, 19 (4): 32-40
    [64]程翔云,罗旗帜.箱梁在压弯荷载共同作用下的剪力滞.土木工程学报, 1991, 24 (1): 52-64
    [65] S.T. Chang. Prestress influence on shear lag effect in continuous box girder bridge. Journal of structural engineering, ASCE, 1992, 118 (11): 3113-3121
    [66] D.A. Foutch, P.C. Chang. A shear lag anomaly. Journal of Structural Engineering, ASCE, 1982, 107 (7): 1653-1658
    [67] K.W. Sushewich. Negative shear lag explained. Journal of Structural Engineering, ASCE, 1991, 117 (11): 3543-3545
    [68]程翔云.悬臂薄壁箱梁的负剪力滞.上海力学, 1987, (2): 58-62
    [69] S.T. Chang, F.Z. Zheng. Negative shear lag in cantilever box girders with constant depth Journal of Structural Engineering, ASCE, 1987, 118 (1): 20-35
    [70]罗旗帜,俞建立.变截面箱梁的负剪力滞.重庆文通学院学报, 1997, (3): 18-25
    [71]杨允表.曲线箱梁考虑曲率及剪力滞影响的力学分析.土木工程学报, 1999, 32 (1): 43-49
    [72]吴亚平.复合材料薄壁箱梁的剪滞剪切效应分析.土木工程学报, 1996, 29 (4): 31-38
    [73] Y. Singh, A.K. Nagpal. Negative shear lag in framed-tube buildings. Journal of Structural Engineering, ASCE, 1994, 120 (11): 3105-3121
    [74]吴幼明,罗旗帜,岳珠峰.薄壁箱梁剪滞效应的能量变分法.工程力学, 2003, 20 (4): 161-165
    [75]刘世忠,欧阳永金,吴亚平等.变截面薄壁箱梁剪力滞剪切变形效应分析.中国公路学报, 2002, 15 (3): 61-63
    [76]高亮,杨绿峰,赵艳林.一维离散有限元法计算箱形梁剪力滞效应.广西大学学报(自然科学版), 2002, 28 (3): 269-272
    [77]苏强,吴亚平,杨东涛.几何非线性对箱梁剪力滞后效应的影响.兰州交通大学学报(自然科学版), 2005, 24 (3): 17-20
    [78]张元海,张清华,李乔.几何非线性对箱梁剪力滞后效应的影响.工程力学, 2006, 23 (1): 52-56
    [79] K.R. Moffatt, P.J. Dowling. Shear lag in steel box girder bridges. Structural Engineering, 1975, 53 (10): 439-448
    [80] A.K.H Kwan. Shear lag in shear/core walls. Journal of Structural Engineering, ASCE, 1996, 122 (9): 1097-1104
    [81]魏丽娜,方放,余天庆等.变截面箱形梁桥剪滞效应的近似计算方法.土木工程学报, 1997, 18 (4): 120-123
    [82]王小岗,黄义.箱梁剪力滞计算的三维退化梁板单元法.应用力学学报, 2001, 18 (4): 120-123
    [83]蔡华炳,裴若娟.连续刚构宽箱梁剪力滞效应的计算分析.长沙铁道学院学报, 2003, 2003 (21): 3
    [84] H. Nakai, Y. Taido, S. Ohta. Analytical and experimental studies on shear lag in multi-cellular box girders. Memoirs of the Faculty of Engineering, 1983, 24 (11): 235-254
    [85] X. Wang, F.G. Rammerstorfer. Determination of effective breadth and effective width of stiffened plates by finite strip analyses. Thin-walled structures, 1996, 24 (4): 261-286
    [86]罗旗帜.曲线箱梁有限条法计算程序.佛山大学学报, 1993, 11 (4): 33-41
    [87] S.T. Chang, D. Yun. Shear lag effect in box girder with varying depth. Journal of Structural Engineering, ASCE, 1988, 114 (10): 2280-2292
    [88]王修信,黄剑源.变截面多跨梯形箱梁桥剪滞效应差分解.桥梁建设, 1993, (2): 58-64
    [89]程海根,强士中.变截面悬臂箱梁剪滞效应分析.公路, 2003, (3): 54-56
    [90]罗旗帜.薄壁箱形梁剪力滞计算的梁段有限元法.湖南大学学报, 1991, 18 (2): 33-39
    [91] Q.Z. Luo, J. Tang, Q.S. Li. Finite segment method for shear lag analysis of cable-stayed bridges. Journal of Structural Engineering, ASCE, 2002, 128 (2): 1617-1622
    [92]罗旗帜.变截面多跨箱梁桥剪滞效应分析.中国公路学报, 1998, 11 (1): 63-70
    [93] Q.Z. Luo, Q.S. Li, J. Tang. Shear lag in box girder bridges. Journal of Bridge Engineering, ASCE, 2002, 7 (5): 308-313
    [94] Q.Z. Luo, J. Tang, Q.S. Li. Negative shear lag effect in box girders with varying depth. Journal of Structural Engineering, ASCE, 2001, 127 (10): 1237-1239
    [95]韦成龙,曾庆元,刘小燕.薄壁曲线箱梁桥剪滞效应分析的一维有限单元法.中国公路学报, 2000, 13 (1): 65-72
    [96]方志,曹国辉,王济川.钢筋混凝土连续箱梁剪力滞效应试验研究.桥梁建设, 2000, (4): 1-3
    [97]刘山洪,何广汉,杨永贤.部分预应力混凝土箱梁节段模型剪滞效应的试验研究.桥梁建设, 2000, (3): 5-7
    [98]牛斌,杨梦蛟,马林.预应力混凝土宽箱梁剪力滞效应试验研究.中国铁道科学, 2004, 24 (2): 25-30
    [99] I.C. Potgieter, W.L. Gamble. Response of highway bridges to nonlinear temperature distributions. University of Illinois, Structural research series No.505. Illinois, 1983
    [100] K.S. Sivakumaran. Analysis of concrete structure subjected to sustained temperature gradients. Canadian Journal of Civil Engineering, 1984, 11 (3): 404-410
    [101] F. Vecchio. Nonlinear analysis of reinforced concrete frame subjected to thermal and mechanical loads. Journal of ACI Structures, 1987, 84 (6): 492-501
    [102] I.G. Buckle. Seasonal variations in the thermal response of a concrete box girder bridge. University of Auckland, Auckland, 1982
    [103] P. Darley, D.R. Carder, K.J. Barker. Seasonal thermal effects over three years on the shallow abutment of an integral bridge in Glasgow. Transport research laboratory, London, 1998
    [104] P. Darley, D.R. Carder, G.H. Alderman. Seasonal thermal effects on the shallow abutment of an intergral bridge in Glasgow. Transport research laboratory, London, 1996
    [105] S. Arsoy, J.M. Duncan, R.M. Barker. Behavior of a semiintegral bridge abutment under static and temperature-induced cyclic loading. Journal of Bridge Engineering,2004, 9 (2): 193-199
    [106] S. Arsoy, J.M. Duncan, R.M. Barker. Approach to evaluating damage from thermal bridge displacement. Transportation Research Record, 2005, (1936): 124-129
    [107] W. Zuk. Thermal and shrinkage stresses in composite beams. ACI Journal, 1961, 58 (9): 327-339
    [108] D.C. Hoffman, R.M. Meclure, H.H. West. Temperature study of an experimental segmental bridge. PCI Journal, 1983, 28 (2): 78-97
    [109] W. H. Dilger, A. Ghali, M. Chan. Temperature stresses in composite box girder bridges. Journal of Bridge Engineering, 1983, 109 (6): 1460-1478
    [110] M.M. Elbadry, A. Ghalli. Temperature variation in concrete bridges. Journal of Structural Engineering, 1983, 109 (10): 2355-2374
    [111] M. Elbadry, A. Ghali. Thermal stresses and cracking of concrete bridges. ACI Journal, 1986, 83 (6): 1001-1009
    [112] M. Elbadry, A. Ghali. Control of thermal cracking of concrete structures. ACI Journal, 1995, (7): 435-450
    [113] S. Moorty, C.W. Roeder. Temperature dependent bridge movements. Journal of Structural Engineering, 1991, 118 (4): 1090-1105
    [114] F.A. Branco, P.A. Mendes, E. Mirambell. Heat of hydration effects in concrete structures. ACI Materials Journal, 1992, 89 (2): 139-145
    [115] F.A. Branco, P.A. Mendes. Thermal actions for concrete bridge design. Journal of Structural Engineering, 1993, 119 (8): 2313-2331
    [116] E. Mirambell, J. Costa. Thermal stresses in composite bridges according to BS 5400 and EC 1. Proceedings of the Institution of Civil Engineers, Structures & Buildings, 1997, 122 (33): 281-292
    [117] S.P. Chang, C.K. Im. Thermal behaviour of composite box-girder bridges. Proceedings of the Institution of Civil Engineers, Structures & Buildings, 2000, 140 (2): 117-126
    [118]王效通.预应力混凝土箱梁温度场计算的有限元法.西南交通大学学报, 1985, (3): 52-62
    [119]盛洪飞.混凝土箱形截面桥梁日照温度应力简化计算.哈尔滨建筑工程学院学报, 1992, 25 (1): 78-84
    [120]康为江.钢筋混凝土箱梁日照温度效应研究[硕士论文].湖南:湖南大学, 2000
    [121]陈衡治,谢旭,张治成等.预应力混凝土箱梁桥的温度场和应力场.浙江大学学报, 2005, 39 (12): 1885-1890
    [122]中华人民共和国行业标准. JTG D62-2004公路钢筋混凝土及预应力混凝土桥涵设计规范. 2004
    [123]中华人民共和国行业标准. TB 10002.3-99铁路桥涵钢筋混凝土和预应力混凝土结构设计规范. 2000
    [124]刘志宏,黄宏力.大跨径连续刚构桥的温度效应分析.交通科技, 2005, (5): 47-49
    [125]张明远,卢哲安,刘飞鹏.某大跨预应力混凝土连续梁桥的温度效应分析.武汉理工大学学报, 2007, 29 (2): 110-113
    [126]付玉辉,陈彦江,孙鹏.大跨连续刚构桥施工控制中的温度效应分析.哈尔滨商业大学学报(自然科学版), 2006, 22 (3): 62-65
    [127]何畅.薄壁高墩连续刚构桥的空间稳定分析.公路, 2005, (11): 32-35
    [128]廖萍,李黎,彭元诚.薄壁高墩连续刚构桥的线性稳定分析.公路, 2005, (4): 47-49
    [129]杨兴旺,赵雷.大跨度三塔斜拉桥稳定性分析.四川建筑, 2003, 23 (4): 38-40
    [130]冯建军,赵明.大路径斜拉桥施工过程特征值稳定分析.山西建筑, 2006, 32 (19): 279-280
    [131] S. Komatsu, T. Sakimoto. Ultimate load carrying capacity of steel arches. Journal of structural division, 1977, 103 (12): 2323-2326
    [132] Y.L. Pi, N.S. Trahair. In-plane inelastic buckling and strength of steel arches. Journal of structure engineering, ASCE, 1996, 122 (7): 734-747
    [133] Y.L. Pi, N.S. Trahair. In-plane buckling and design of steel arches. Journal of structural engineering, ASCE, 1999, 125 (11): 1291-1298
    [134]何君毅,林祥都.工程结构非线性问题的数值解法.北京:国防工业出版社, 1994
    [135] J. Cheng, R.C. Xiao J.J. J. Ultimate load carrying capcity of the Lu Pu steel arch bridge under static wind loads. Computers & Structures, 2003, 81 (2): 61-73
    [136]中华人民共和国交通部. JTJ 027-96公路斜拉桥设计规范(试行).北京:人民交通出版社, 1997
    [137]中华人民共和国交通部. JTG D62-2004公路钢筋混凝土及预应力混凝土桥涵设计规范.北京:人民交通出版社, 2004
    [138]王林,项贻强,汪劲丰等.各国规范关于混凝土箱梁桥温度应力计算的分析与比较.公路, 2004, (6): 76-79
    [139]程翔云.梁桥理论与计算.北京:人民交通出版社, 1990
    [140]郑振,谷音.大悬臂变截面箱梁剪力滞效应分析.福州大学学报(自然科学版), 2001, 29 (2): 62-65
    [141]杨强,翟明杰,周维垣.三维弹性自适应有限元及其在拱坝分析中的应用.水力发电学报, 2006, 25 (3): 62-66
    [142] L. Roman, H.A. Mang. Adaptivity in computational mechanics of concrete structures. International Journal for Numerical and Analytical Methods in Geo-mechanics, 2001, 25 (7): 711-739
    [143]俞昌铭.热传导及其数值分析.北京:清华大学出版社, 1982
    [144] M.G. Davies. Solutions to Fourier's equation and unsteady heat flow through structures. Building and Environment, 1995, 30 (3): 309-321
    [145]钱壬章,俞昌铭,林文贵.传热分析与计算.北京:高等教育出版社, 1987
    [146] D.C.J. Look. 1-D Fin tip boundary condition corrections. Heat Transfer Engineering, 1997, 18 (22): 46-49
    [147]章熙民.传热学.北京:中国建筑工业出版社, 1997
    [148]孔祥谦.有限单元法在传热学中的应用.北京:科学出版社, 1998
    [149]孔祥谦.热应力有限单元法分析.上海:上海交通大学出版社, 1999
    [150] E.M. Sparrow, R. D. Cess. Radiation heat transfer. New York: McGraw-Hill, 1978
    [151] E. Mirambell, A. Aguado. Distribution of Temperature and Stress in Concrete Box Girder Bridge. Journal of Structural Engineering, 1990, 116 (9): 2388-2409
    [152] A. Saetta, R. Scotta, R. Vitaliani. Stress analysisi of concrete structures subjected to variable thermal loads. Journal of Structural Engineering, 1995, 121 (3): 446-457
    [153] E. Mirambell, A.Aguado. Temperature and stress distributions in concrete box girder bridges. journal of Structural Engineering, 1990, 116 (9): 2388-2409
    [154]戴时云,胡长顺,王秉纲.碾压水泥混凝土与沥青混凝土复合式路面结构温度场分析.北京公路, 1995, (5): 1-5
    [155]姜全德,蒋鸿.钢筋混凝土箱形梁桥日照温度场和温度应力平面有限元数值分析方法.桥梁建设, 1990, (3): 34-48
    [156]张国庆,田泽民,金太学等.混凝土箱梁的温度场.东北公路, 1999, 22 (3): 43-46
    [157] C.W. Roeder, S. Moorty. Thermal movements in bridges. Transportation Research Record, Number 1290. Transportation Research Board. National Research Council. Washington, D.C., 1990
    [158]吴赣昌.层状路面体系温度场分析.中国公路学报, 1992, 5 (4): 17-25
    [159] L. Carin, E. John, J. Cawrse. Measurements of thermal gradients and their effects on segmental concrete bridge. Journal of Bridge Engineering, 2002, 7 (3): 166-174
    [160] W.M. Rohsenow. Handbook of heat transfer applications. New York: McGraw-Hill, 1985
    [161] H. C. Fu, S. F. Ng, M. S. Cheung. Thermal behaviour of composite bridges. Journal of Structural Engineering, 1990, 116 (12): 3302-3323
    [162]经德良.太阳能加热沥青.北京:人民交通出版社, 1990
    [163]邱国全.太阳时的计算.太阳能, 1998, (1): 7-8
    [164]方荣生,项立成,李亭寒等.太阳能应用技术.北京:中国农业机械出版社, 1985
    [165] J.C. Mcveigh. Sun Power: An introduction to the applications of solar energy. Oxford: Pergamon Press, 1977
    [166] J. Fourier. Analytical theory of heat transfer. New York: Dover publishers, 1955
    [167] M. Froli, N. Hariga, G. Nati. Longitudinal thermal behavior of a concrete box girder bridge. Structural Engineering International, 1996, 6 (4): 237-242
    [168]陆耀庆.实用供热空调设计手册.北京:中国建筑工业出版社, 1993
    [169]汪剑,方志,颜江平.混凝土箱梁日照温差的试验研究.第十六届全国桥梁学术会议论文集. in:王永珩,曾宪武.第十六届全国桥梁学术会议论文集,北京,人民交通出版社, 2004, 774-780
    [170]中华人民共和国国家标准. GB 50176-93民用建筑热工设计规范. 1993
    [171]滕家俊.混凝土桥梁温度分析计算方法(上).东北公路, 1983, 17 (3): 25-28
    [172]葛耀君,翟东,张国泉.混凝土斜拉桥温度场的试验研究.中国公路学报, 1996, 9 (2): 76-83
    [173] AASHTO. Interim specifiactions for the guide spcifications of design and construction of segmental concrete bridge, 1st Ed., Washington, D.C., 1994,
    [174] AASHTO. LRFD bridge design specification, 1st Ed., Washington, D.C., 1994,
    [175] N. Cooke, M.J.N. Priestley, S.J. Thurston. Analysis and design of partially prestressed concrete bridges under thermal loading. PCI Journal, 1984, 29 (3): 94-114
    [176]中华人民共和国交通部部标准. JTJ 023-85公路钢筋混凝土及预应力混凝土桥涵设计规范. 1985
    [177]中华人民共和国行业标准. JTG D60-2004公路桥涵设计通用规范. 2004
    [178]王国强.实用工程数值模拟技术及其在ANSYS上的实践.西安:西北工业大学出版社, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700