锰基层状富锂氧化物正极材料的合成、表征及改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足电动汽车续航里程的需求,锂离子电池的能量密度需要进一步提高,而限制其提高的主要因素就是商业化正极材料的比容量较低。锰基层状富锂氧化物在2-4.8V范围内的可逆容量超过200mAh g-1,是最有发展前景的正极材料。但是,锰基层状富锂氧化物还有很多问题需要解决,比如不可逆容量损失大、循环性能差、倍率性能低。针对这些问题,本论文提出了几种新的合成方法,制备出系列锰基层状富锂氧化物材料,用扫描电子显微镜、X-射线衍射、拉曼光谱、交流阻抗、恒电流充放电等方法,详细研究了制备材料组成、结构和电化学性能。
     论文的主要内容包括:(1)利用聚乙烯吡咯烷酮(PVP)和乙二醇(EG)的协同分散机制,合成出尺寸均匀的锰基层状富锂氧化物Li[Li1/3-2x/3Mn2/3-x/3Nix]O2(x=0.3),该氧化物在0.1C的放电容量为205mAh g-1,循环60圈后的容量保持率为87%,容量衰减的主要原因是部分过渡金属离子失去了电化学活性;(2)考察了锂前驱体用量对锰基层状富锂氧化物化学组分、晶体结构及电化学性能的影响,结果表明,适当降低锂用量可以提高材料的可逆容量,但会降低其循环稳定性,过低的锂用量会导致相分离,使材料容量降低;(3)提出了快速蒸发法,合成出具有低结构缺陷的锰基层状富锂氧化物Li[Li1/3-2x/3Mn2/3-x/3Nix]O2(x=0.5),该氧化物在0.05C循环50圈,几乎无容量衰减,在1C循环300圈,容量保持率在80%以上;(4)提出了自导引化学合成法,构筑出具有微-纳结构的锰基层状富锂氧化物Li[Li1/3-2x/3Mn2/3-x/3Nix]O2(x=0.5),该氧化物在0.05C的放电容量为222mAh g-1,循环50圈后的容量保持率为93%,在2C的放电容量达到110mAh g-1;(5)研究了Co3+取代对锰基层状富锂氧化物Li[Li0.2Ni0.2-x/2Mn0.6-x/2Cox]O2电化学性能的影响,结果表明,Co3+取代能够显著提高材料的不可逆失氧和充放电容量,但是会明显降低材料的容量稳定性和电压稳定性;(6)考察了Fe3+取代对锰基层状富锂氧化物Li[Li0.2Ni0.13Mn0.54Co0.13]O2电化学性能的影响,发现Fe3+取代会严重降低材料的可逆容量,但是对Co3+的取代可以抑制材料在循环过程中的电压衰减;(7)研究了化学组分与合成温度对锰基层状富锂氧化物xLi2MnO3-(1-x)LiCoO2首次充放电性能的影响,发现充电容量的最大值出现在x=0.6,而放电容量的最大值出现在x=0.4~0.5;当合成温度为800℃时,材料的首次充电过程是一个两步反应过程,而当合成温度为900~1000℃时,是一个三步反应过程;(8)研究了不同类型阳离子M(M=Co3+, Ni3+, Cr3+, Fe3+,[Ni0.5Mn0.5]3+)在锰基层状富锂氧化物Li[Li0.2Mn0.4M0.4]O2首次充放电过程中的氧化还原行为,以及对材料充放电性能的影响,结果表明,当M=Co3+时,Li[Li0.2Mn0.4Co0.4]O2的不可逆失氧很强,当M=Ni3+,Li[Li0.2Mn0.4Ni0.4]O2的充电斜区容量很高,当M=Cr3+时, Li[Li0.2Mn0.4Cr0.4]O2的失氧量很低,当M=[Ni0.5Mn0.5]3+时,Li[Li0.2Mn0.4(Ni0.5Mn0.5)0.4]O2的充电斜区容量和充电平台容量介于Li[Li0.2Mn0.4Co0.4]O2与Li[Li0.2Mn0.4Ni0.4]O2之间,当M=Fe3+时,通过溶胶凝胶法在900℃煅烧出的Li[Li0.2Mn0.4Fe0.4]O2不具有传统意义上的“锰基层状富锂氧化物”结构,在充电过程中没有表现出失氧平台,而且充放电容量很低,此外,M3+(M=Ni, Cr,[Ni0.5Mn0.5]3+)取代Co3+都可以提高Li[Li0.2Mn0.4Co0.4-xMx]O2的可逆容量。
     上述研究为锰基层状富锂氧化物的优化设计及性能提高提供新的研究思路和理论基础,丰富锂离子电池材料制备方法和构效关系的内容。
To meet the demands of electric vehicles running in long mileage, the energy density oflithium ion batteries should be further improved. The energy density of currently commerciallithium ion battery is mainly limited by the cathode materials of low capacity density. In thisregard, manganese-based layered lithium-rich oxides would be a promising cathode candidateas they offer a high capacity of more than200mAh g-1in the range of2.0-4.8V. However,they still suffer from several problems such as huge irreversible capacity, poor cyclicperformance and low rate capability. With an aim to solve these problems, several newmethods were proposed in this thesis to synthesize manganese-based layered lithium-richoxides, and the composition, structure and electrochemical performances of the resultingproducts were investigated by SEM, XRD, Raman, EIS and charge/discharge test.
     The contents of this thesis include:(1) Synergic dispersion of PVP and EG is proposed tosynthesize Li[Li1/3-2x/3Mn2/3-x/3Nix]O2(x=0.3) with size-uniform particles. It is found that thesynthesized oxide can deliver a capacity of205mAh g-1at0.1C, and retain87%of thecapacity after60cycles. The decayed capacity is attributed to inactivation of partialtransition-metal ions.(2) Influence of Li concentration on chemical composition, crystalstructure and electrochemical performance of manganese-based layered lithium-rich oxides isinvestigated. It is demonstrated that lower Li concentration increases the reversible capacitybut decreases the cyclic performance. Additionally, too low Li concentration would lead tophase separation and reduce the capacity of the material.(3) A fast-evaporation approach isproposed to synthesize manganese-based layered lithium-rich oxide Li[Li1/3-2x/3Mn2/3-x/3Nix]O2(x=0.5) with low structural defects. The synthesized oxide exhibits good cyclic performance.No capacity degradation is found after50cycles at0.05C, and the capacity retention after300cycles at1C is higher than80%.(4) A self-directed chemical method is proposed tofabricate Li[Li1/3-2x/3Mn2/3-x/3Nix]O2(x=0.5) with a micro-nano structure. The synthesizedoxide delivers a capacity of222mAh g-1at0.05C, with a capacity retention of93%after50cycles. Besides, its capacity at2C is up to110mAh g-1.(5) The influence of Co3+substitution on electrochemical properties of Li[Li0.2Ni0.2-x/2Mn0.6-x/2Cox]O2cathodes isconsidered. With increasing the substitution, the oxygen loss and reversible capacity arelargely enhanced, but the capacity stability and voltage stability are severely weakened.(6)The influence of Fe3+substitution on electrochemical properties of high capacityLi[Li0.2Ni0.13Mn0.54Co0.13]O2cathode is investigated. It is found that the substitution would lead to the decrease of the reversible capacity, but the substitution for Co3+is able to suppressthe voltage decay with extended cycling.(7) The influence of chemical composition andsynthesis temperature on electrochemical properties of xLi2MnO3-(1-x)LiCoO2cathodes isconsidered. The results show that the maximum charge capacity appears at x=0.6, but themaximum discharge capacity locates at x=0.4~0.5. The materials synthesized at800℃have a two-step reaction process at the first charge, but those synthesized at900℃~1000℃possess a three-step reaction process.(8) Redox behavior of different cations M (M=Co3+,Ni3+, Cr3+, Fe3+,[Ni0.5Mn0.5]3+) in Li[Li0.2Mn0.4M0.4]O2, and their influences oncharge/discharge performance of Li[Li0.2Mn0.4M0.4]O2cathodes are investigated.Li[Li0.2Mn0.4Co0.4]O2displays a long charge plateau, Li[Li0.2Mn0.4Ni0.4]O2shows a longcharge slope, and Li[Li0.2Mn0.4Cr0.4]O2exhibits a short charge plateau. The slope and plateaulengths of Li[Li0.2Mn0.4(Ni0.5Mn0.5)0.4]O2are located between those of Li[Li0.2Mn0.4Co0.4]O2and Li[Li0.2Mn0.4Ni0.4]O2. The Li[Li0.2Mn0.4Fe0.4]O2synthesized with a sol-gel method at900℃does not show a traditional “manganese-based layered lithium-rich oxide” structure.Additionally, substitution of M (M=Co3+, Ni3+, Cr3+,[Ni0.5Mn0.5]3+) for Co3+is able toimprove the reversible capacity of Li[Li0.2Mn0.4Co0.4-xMx]O2
     These investigations provide new pathways and theoretical fundamentals for optimizingmanganese-based layered lithium-rich oxides or improving their electrochemical performance,and enrich the synthesis approaches and structure-performance relation of materials forlithium ion batteries.
引文
[1] M.M. Thackeray, C. Wolverton, E.D. Isaacs. Electrical energy storage fortransportation-approaching the limits of, and going beyond, lithium-ion batteries [J].Energy. Environ. Sci.,2012,5:7854-7863
    [2] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach. Challenges in the developmentof advanced Li-ion batteries: a review [J]. Energy. Environ Sci.,2011,4:3243-3262
    [3] M.S. Whittingham. Lithium batteries and cathode materials [J]. Chem. Rev.,2004,104:4271-4301
    [4] Y. Wu, A. Manthiram. High capacity, surface-Modified layeredLi[Li(1x)/3Mn(2x)/3Nix/3Cox/3]O2cathodes with low irreversible capacity loss [J].Electrochem. Solid-State Lett.,2006,9: A221-A224
    [5] T. Utsunomiya, O. Hatozaki, N. Yoshimoto, M. Egashira, M. Morita. Influence of particlesize on the self-discharge behavior of graphite electrodes in lithium-ion batteries [J]. J.Power Sources,2011,196:8675-8682
    [6] Y.X Gu, D.R Chen, X. Jiao. Synthesis and electrochemical properties of nanostructuredLiCoO2fibers as cathode materials for lithium-ion batteries [J]. J. Phys. Chem. B2005,109:17901-17906
    [7] F. Jiao, K.M. Shaju, P.G. Bruce. Synthesis of nanowire and mesoporous low-temperatureLiCoO2by a post-templating reaction [J]. Angew Chem. Int. Ed,2005,44:6550-6553
    [8] C. Zhu, C. Yang, W.-D. Yang, M.-S. Wu, H.-M. Ysai, C.-Y. Hsieh, H.-L. Fang.Preparation and electrochemical characterization of LiNi0.8Co0.2O2cathode material by amodified sol–gel method [J]. J. App. Electrochem.,2010,40:1665-1670
    [9] C.-H. Lu, H.-C. Wang. Synthesis of nano-sized LiNi0.8Co0.2O2via areverse-microemulsion route [J]. J. Mate. Chem.,2003,13:428-431
    [10] J.N. Reimers. Synthesis and electrochemical studies of LiMnO2prepared at lowtemperatures [J]. J. Electrochem. Soc.,1993,140:3396-3401
    [11] Y.S Lee, Y.K Sun, M. Yoshio. Synthesis of orthorhombic LiMnO2material and itsoptimization [J]. Chem. Lett.,2001,30:882-883
    [12] S. Yamada, M. Fujiwara, M. Kanda. Synthesis and properties of LiNiO2ascathode material for secondary batteries [J]. J. Power Sources,1995,54:209-213
    [13] K.M. Shaju, P.G. Bruce. A stoichiometric nano-LiMn2O4spinel electrode exhibiting highpower and stable cycling [J]. Chem. Mater.,2008,20:5557-5562
    [14] J.-Y. Luo, H.-M. Xiong, Y.-Y. Xia. LiMn2O4nanorods, nanothorn microspheres, andhollow nanospheres as enhanced cathode materials of lithium ion battery [J]. J. Phys.Chem. C,2008,112:12051-12057
    [15] C.M. Julien, A. Mauger. Review of5-V electrodes for Li-ion batteries: status and trends[J]. Ionics,2013,19:951-988
    [16] R. Santhanam, B. Rambabu. Research progress in high voltage spinel LiNi0.5Mn1.5O4material [J]. J. Power Sources,2010,195:5442-5451
    [17] T.-F. Yi, Y. Xie, M.-F. Ye, L.-J. Jiang, R.-S. Zhu, Y.-R. Zhu. Recent developments inthe doping of LiNi0.5Mn1.5O4cathode material for5V lithium-ion batteries [J]. Ionics,2011,17:383-389
    [18] L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, J.B.Goodenough. Development and challenges of LiFePO4cathode material for lithium-ionbatteries [J]. Energy Environ Sci.,2011,4:269-284
    [19] D.Y.W. Yu, C. Fietzek, W. Weydanz, K. Donoue, T. Inoue, H. Kurokawa, S. Fujitani.Study of LiFePO4by Cyclic Voltammetry [J]. J. Electrochem. Soc.,2007,154:A253-A257
    [20] M.M. Thackeray, S.-H. Kang, C.S. Johnson, J.T. Vaughey, R. Benedek, S.A. Hackney.Li2MnO3-stabilized LiMO2(M=Mn, Ni, Co) electrodes for lithium-ion batteries [J]. JMater. Chem.,2007,17:3112-3125
    [21] P. He, H. Yu, D. Li, H. Zhou. Layered lithium transition metal oxide cathodes towardshigh energy lithium-ion batteries [J]. J. Mater. Chem.,2012,22:3680-3695
    [22] H. Yu, H. Zhou. High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ionbatteries [J]. J. Phys. Chem. Lett.,2013,4:1268-1280
    [23] J.B. Goodenough, Y. Kim. Challenges for rechargeable Li batteries [J]. Chem. Mater.,2010,22:587-603
    [24] S. Valanarasu, R. Chandramohan, J. Thirumalai, T.A. Vijayan. Structural andelectrochemical investigation of Zn-doped LiCoO2powders [J]. Ionics,2011,18:39-45
    [25] S.-T. Myung, N. Kumagai, S. Komaba, H.-T. Chung. Effects of Al doping on themicrostructure of LiCoO2cathode materials [J]. Solid State Ionics,2001,139:47-56
    [26] Y. Oh, D. Ahn, S. Nam, B. Park. The effect of Al2O3-coating coverage on theelectrochemical properties in LiCoO2thin films [J]. J. Solid State Electrochem.,2009,14:1235-1240
    [27] N.V. Kosova, E.T. Devyatkina. Comparative study of LiCoO2surface modified withdifferent oxides [J]. J. Power Sources,2007,174:959-964
    [28] T. Ohzuku, A. Ueda, M. Nagayama. Electrochemistry and structural chemistry of LiNiO2(R3m) for4volt secondary lithium cells [J]. J. Electrochem. Soc.,1993,140:1862-1870
    [29] Z. Lu, D.D. MacNeil, J.R. Dahn. Layered Li[NixCo1-2xMnx]O2cathode materials forlithium-ion batteries [J]. Electrochem. Solid-State Lett.,2001,4: A200-A203
    [30] T. Ohzuku, Y. Makimura. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2forlithium-ion batteries [J]. Chem. Lett.,2001,30:642-643
    [31] D.D. MacNeil, Z. Lu, J.R. Dahn. Structure and electrochemistry of Li[NixCo1-2xMnx]O2(0≤x≤1/2)[J]. J. Electrochem. Soc.,2002,149: A1332-A1336
    [32] A.K. Padhi. Phospho-olivines as positive-electrode materials for rechargeable lithiumbatteries [J]. J. Electrochem. Soc.,1997,144:1188-1194
    [33] D.-K. Kim, H.-M. Park, S.-J. Jung, Y.U. Jeong, J.-H. Lee, J.-J. Kim. Effect of synthesisconditions on the properties of LiFePO4for secondary lithium batteries [J]. J. PowerSources,2006,159:237-240
    [34] H.-C. Kang, D.-K. Jun, B. Jin, E.M. Jin, K.-H. Park, H.-B. Gu, K.-W. Kim. Optimizedsolid-state synthesis of LiFePO4cathode materials using ball-milling [J]. J. PowerSources,2008,179:340-346
    [35] G.T.-K. Fey, Y.G. Chen, H.-M. Kao. Electrochemical properties of LiFePO4prepared viaball-milling [J]. J. Power Sources,2009,189:169-178
    [36] E.M. Jin, B. Jin, D.-K. Jun, K.-H. Park, H.-B. Gu, K.-W. Kim. A study on theelectrochemical characteristics of LiFePO4cathode for lithium polymer batteries byhydrothermal method [J]. J. Power Sources,2008,178:801-806
    [37] Z. Wang, S. Su, C. Yu, Y. Chen, D. Xia. Synthesises, characterizations andelectrochemical properties of spherical-like LiFePO4by hydrothermal method [J]. J.Power Sources,2008,184:633-636
    [38] C.W. Kim, J.S. Park, K.S. Lee. Effect of Fe2P on the electron conductivity andelectrochemical performance of LiFePO4synthesized by mechanical alloying using Fe3+raw material [J]. J. Power Sources,2006,163:144-150
    [39] C. Yada, Y. Iriyama, S.-K. Jeong, T. Abe, M. Inaba, Z. Ogumi. Electrochemicalproperties of LiFePO4thin films prepared by pulsed laser deposition [J]. J. PowerSources,2005,146:559-564
    [40] F. Yu, J. Zhang, Y. Yang, G. Song. Preparation and characterization of mesoporousLiFePO4/C microsphere by spray drying assisted template method [J]. J. Power Sources,2009,189:794-797
    [41] S. Beninati, L. Damen, M. Mastragostino. Fast sol–gel synthesis of LiFePO4/C for highpower lithium-ion batteries for hybrid electric vehicle application [J]. J. Power Sources,2009,194:1094-1098
    [42] O.K. Park, Y. Cho, S. Lee, H.-C. Yoo, H.-K. Song, J. Cho. Who will drive electricvehicles, olivine or spinel?[J]. Energy Environ. Sci.,2011,4:1621-1633
    [43] X. Yin, K. Huang, S. Liu, H. Wang, H. Wang. Preparation and characterization ofNa-doped LiFePO4/C composites as cathode materials for lithium-ion batteries [J]. J.Power Sources,2010,195:4308-4312
    [44] Y. Wang, Y. Wang, E. Hosono, K. Wang, H. Zhou. The design of a LiFePO4/carbonnanocomposite with a core-shell structure and its synthesis by an in situ polymerizationrestriction method [J]. Angew Chem. Int. Ed.,2008,47:7461-7465
    [45] A. Caballero, M. Cruz-Yusta, J. Morales, J. Santos-Pe a, E. Rodríguez-Castellón. A newand fast synthesis of nanosized LiFePO4electrode materials [J]. European J. Inorg.Chem.,2006,2006:1758-1764
    [46] K.-F. Hsu, S.-Y. Tsay, B.-J. Hwang. Synthesis and characterization of nano-sizedLiFePO4cathode materials prepared by a citric acid-based sol-gel route [J]. J. Mater.Chem.,2004,14:2690-2695
    [47] P.R. Kumar, M. Venkateswarlu, M. Misra, A.K. Mohanty, N. Satyanarayana. Carboncoated LiMnPO4nanorods for lithium batteries [J]. J. Electrochem. Soci.,2011,158:A227-A230
    [48] J. Wolfenstine, J. Allen. Ni3+/Ni2+redox potential in LiNiPO4[J]. J. Power Sources,2005,142:389-390
    [49] J. Wolfenstine, J. Allen. LiNiPO4–LiCoPO4solid solutions as cathodes [J]. J. PowerSources,2004,136:150-153
    [50] A. Vadivel Murugan, T. Muraliganth, A. Manthiram. One-pot microwave-hydrothermalsynthesis and characterization of carbon-coated LiMPO4(M=Mn, Fe, and Co) cathodes[J]. J. Electrochem. Soci.,2009,156: A79-A83
    [51] K.Y. Chung, K.-B. Kim. Investigations into capacity fading as a result of a Jahn–Tellerdistortion in4V LiMn2O4thin film electrodes [J]. Electrochim. Acta,2004,49:3327-3337
    [52] D. Capsoni, M. Bini, G. Chiodelli, P. Mustarelli, V. Massarotti, C.B. Azzoni, M.C.Mozzati, L. Linati. Inhibition of Jahn-Teller cooperative distortion in LiMn2O4spinel byGa3+doping [J]. J. Phys. Chem. B2002,106:7432-7438
    [53] D.H. Jang, Y.J. Shin, S.M. Oh. Dissolution of spinel oxides and capacily losses in4VLi/LiMn2O4cells [J]. J. Electrochem. Soc,1996,143:2204-2211
    [54] G. Amatucci, A. Du Pasquier, T.Z. A. Blyr, J.-M. Tarascon. The elevated temperatureperformance of the LiMn2O4/C system: failure and solutions [J]. Electrochim. Acta,1999,45:255-271
    [55] Y. J. Wei, L. Y. Yan, C. Z. Wang, X. G. Xu, F. Wu, G. Chen. Effects of Ni doping on
    [MnO6] octahedron in LiMn2O4[J]. J. Phys. Chem. B,2004,108:18547-18551
    [56] K.Y. Chung, H.S. Lee, W.-S. Yoon, J. McBreen, X.-Q. Yang. Studies of LiMn2O4capacity fading at elevated temperature using in situ synchrotron X-ray diffraction [J]. J.Electrochem. Soc.,2006,153: A774-A780
    [57] Q. Zhong. Synthesis and Electrochemistry of LiNixMn2-xO4[J]. J. Electrochem. Soc.,1997,144:205-213
    [58] J.-H. Kim, S.-T. Myung, C. S. Yoon, S. G. Kang, Y.-K. Sun. Comparative study ofLiNi0.5Mn1.5O4-and LiNi0.5Mn1.5O4cathodes having two crystallographic structures:Fd-3m and P4332[J]. Chem. Mater.,2004,16:906-914
    [59] Y. Idemoto, H. Narai, N. Koura. Crystal structure and cathode performance dependenceon oxygen content of LiMn1.5Ni0.5O4as a cathode material for secondary lithiumbatteries [J]. J. Power Sources,2003,119-121:125-129
    [60] O. Sha, S. Wang, Z. Qiao, W. Yuan, Z. Tang, Q. Xu, Y. Su. Synthesis of spinelLiNi0.5Mn1.5O4cathode material with excellent cycle stability using urea-based sol–gelmethod [J]. Mater. Lett.,2012,89:251-253
    [61] J. Mao, K. Dai, Y. Zhai. Electrochemical studies of spinel LiNi0.5Mn1.5O4cathodes withdifferent particle morphologies [J]. Electrochim. Acta,2012,63:381-390
    [62] Z. Chen, S. Qiu, Y. Cao, X. Ai, K. Xie, X. Hong, H. Yang. Surface-oriented andnanoflake-stacked LiNi0.5Mn1.5O4spinel for high-rate and long-cycle-life lithium ionbatteries [J]. J. Mater. Chem.,2012,22:17768
    [63] T. Yoon, S. Park, J. Mun, J.H. Ryu, W. Choi, Y.-S. Kang, J.-H. Park, S.M. Oh. Failuremechanisms of LiNi0.5Mn1.5O4electrode at elevated temperature [J]. J. Power Sources,2012,215:312-316
    [64] O. Sha, Z. Tang, S. Wang, W. Yuan, Z. Qiao, Q. Xu, L. Ma. The multi-substitutedLiNi0.475Al0.01Cr0.04Mn1.475O3.95F0.05cathode material with excellent rate capability andcycle life [J]. Electrochim. Acta,2012,77:250-255
    [65] G. Zhao, Y. Lin, T. Zhou, Y. Lin, Y. Huang, Z. Huang. Enhanced rate andhigh-temperature performance of La0.7Sr0.3MnO3-coated LiNi0.5Mn1.5O4cathodematerials for lithium ion battery [J]. J. Power Sources,2012,215:63-68
    [66] D.Y.W. Yu, K. Yanagida, Y. Kato, H. Nakamura. Electrochemical activities in Li2MnO3[J]. J. Electrochem. Soc.,2009,156: A417-A424
    [67] D.Y.W. Yu, K. Yanagida. Structural Analysis of Li2MnO3and related Li-Mn-O materials[J]. J. Electrochem. Soc.,2011,158: A1015-A1022
    [68] Z. Lu, D.D. MacNeil, J.R. Dahn. Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2for lithium-ion batteries [J]. Electrochem. Solid-State Lett.,2001,4: A191-A194
    [69] C.S. Johnson, N. Li, C. Lefief, M.M. Thackeray. Anomalous capacity and cyclingstability of xLi2MnO3·(1-x)LiMO2electrodes (M=Mn, Ni, Co) in lithium batteries at50°C [J]. Electrochem. Commun.,2007,9:787-795
    [70] Y.J. Park, Y.-S. Hong, X. Wu, M.G. Kim, K.S. Ryu, S.H. Chang. Synthesis andelectrochemical characteristics of Li[CoxLi(1/3-x/3)Mn(2/3-2x/3)]O2compounds [J]. J.Electrochem. Soc.,2004,151: A720-A727
    [71] C.W. Park, S.H. Kim, I.R. Mangani, J.H. Lee, S. Boo, J. Kim. Synthesis and materialscharacterization of Li2MnO3–LiCrO2system nanocomposite electrode materials [J].Mater. Res. Bull.,2007,42:1374-1383
    [72] Z. Lu, J.R. Dahn. Structure and electrochemistry of layered Li[CrxLi(1/3x/3)Mn(2/32x/3)]O2[J]. J. Electrochem. Soc.,2002,149: A1454-A1459
    [73] J.-M. Kim, S. Tsuruta, N. Kumagai. Electrochemical properties ofLi(Li(1-x)/3CoxMn(2-2x)/3)O2(0≤x≤1) solid solutions prepared by poly-vinyl alcohol (PVA)method [J]. Electrochem. Commun.,2007,9:103-108
    [74] P.S. Whitfield, S. Niketic, I.J. Davidson. Effects of synthesis on electrochemical,structural and physical properties of solution phases of Li2MnO3–LiNi1-xCoxO2[J]. J.Power Sources,2005,146:617-621
    [75] J.-S. Kim, C.S. Johnson, J.T. Vaughey, M.M. Thackeray. Electrochemical and structuralproperties of xLi2MO3-(1-x)LiMn0.5Ni0.5O2electrodes for lithium batteries (M=Ti, Mn,Zr;0    [76] F. Amalraj, D. Kovacheva, M. Talianker, L. Zeiri, J. Grinblat, N. Leifer, G. Goobes, B.Markovsky, D. Aurbach. Synthesis of integrated materialsxLi2MnO3-(1-x)LiMn1/3Ni1/3Co1/3]O2(x=0.3,0.5,0.7)[J]. J. Electrochem. Soc.,2010,157: A1121-A1130
    [77] A. Boulineau, L. Simonin, J.-F. Colin, E. Canévet, L. Daniel, S. Patoux. Evolutions ofLi1.2Mn0.61Ni0.18Mg0.01O2during the initial charge/discharge cycle studied by advancedelectron microscopy [J]. Chem. Mater.,2012,24:3558-3566
    [78] Z.H Lu, Z.H Chen, J.R. Dahn. Lack of cation clustering in Li[NixLi1/3-2x/3Mn2/3-x/3]O2(0    [79] K.A. Jarvis, Z. Deng, L.F. Allard, A. Manthiram, P.J. Ferreira. Atomic structure of alithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution[J]. Chem. Mater.,2011,23:3614-3621
    [80] E. McCalla, C.M. Lowartz, C.R. Brown, J.R. Dahn. Formation of layered–layeredcomposites in the Li–Co–Mn oxide pseudoternary system during slow cooling [J]. Chem.Mater.,2013,25:912-918
    [81] C.-C. Wang, K.A. Jarvis, P.J. Ferreira, A. Manthiram. Effect of synthesis conditions onthe first charge and reversible capacities of lithium-rich layered oxide cathodes [J]. Chem.Mater.,2013,25:3267-3275
    [82] A.R. Armstrong, M. Holzapfel, P. Nov k, C.S. Johnson, S.-H. Kang, M.M. Thackeray,P.G. Bruce. Demonstrating oxygen loss and associated structural reorganization in thelithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. J. Am. Chem. Soc.,2006,128:8694-8698
    [83] Z. Lu, L.Y. Beaulieu, R.A. Donaberger, C.L. Thomas, J.R. Dahn. Synthesis, structure,and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2[J]. J. Electrochem. Soc.,2002,149: A778-A791
    [84] Z.Q. Deng, A. Manthiram. Influence of cationic substitutions on the oxygen loss andreversible capacity of lithium-rich layered oxide cathodes [J]. J. Phys. Chem. C,2011,115:7097-7103
    [85] T. Ohzuku, M. Nagayama, K. Tsuji, K. Ariyoshi. High-capacity lithium insertionmaterials of lithium nickel manganese oxides for advanced lithium-ion batteries: towardrechargeable capacity more than300mA h g-1[J]. J. Mater. Chem.,2011,21:10179-10188
    [86] A. Abouimrane, O.C. Compton, H. Deng, I. Belharouak, D.A. Dikin, S.T. Nguyen, K.Amine. Improved rate capability in a high-capacity layered cathode material via thermalreduction [J]. Electrochem. Solid-State Lett.,2011,14: A126-A129
    [87] C.R. Fell, K.J. Carroll, M. Chi, Y.S. Meng. Synthesis–structure–property relations inlayered,“Li-excess” oxides electrode materials Li[Li1/3-2x/3NixMn2/3-x/3]O2(x=1/3,1/4,and1/5)[J]. J. Electrochem. Soc.,2010,157: A1202-A1211
    [88] H. Deng, I. Belharouak, Y.-K. Sun, K. Amine. LixNi0.25Mn0.75Oy(0.5≤x≤2,2≤y≤2.75)compounds for high-energy lithium-ion batteries [J]. J. Mater. Chem.,2009,19:4510-4516
    [89] J. Wang, X. Yao, X. Zhou, Z. Liu. Synthesis and electrochemical properties of layeredlithium transition metal oxides [J]. J. Mater. Chem.,2011,21:2544-2549
    [90] C.-C. Wang, A. Manthiram. Influence of cationic substitutions on the first charge andreversible capacities of lithium-rich layered oxide cathodes [J]. J. Mater. Chem. A,2013,1:10209-10217
    [91] T. Zhao, S. Chen, L. Li, X. Zhang, R. Chen, I. Belharouak, F. Wu, K. Amine. Synthesis,characterization, and electrochemistry of cathode material Li[Li0.2Co0.13Ni0.13Mn0.54]O2using organic chelating agents for lithium-ion batteries [J]. J. Power Sources,2013,228:206-213
    [92] J. Liu, L. Chen, M. Hou, F. Wang, R. Che, Y. Xia. General synthesis of xLi2MnO3·(1-x)LiMn1/3Ni1/3Co1/3O2nanomaterials by a molten-salt method: towards a high capacityand high power cathode for rechargeable lithium batteries [J]. J. Mater. Chem.,2012,22:25380-25387
    [93] J. Liu, M. Hou, J. Yi, S. Guo, C. Wang, Y. Xia. Improving the electrochemicalperformance of layered lithium-rich transition-metal oxides by controlling the structuraldefects [J]. Energy Environ. Sci.,2014,7:705-714
    [94] S.J. Shi, J.P. Tu, Y.Y. Tang, Y.X. Yu, Y.Q. Zhang, X.L. Wang, C.D. Gu. Combustionsynthesis and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2withimproved rate capability [J]. J. Power Sources,2013,228:14-23
    [95] W. Ahn, S.N. Lim, K.-N. Jung, S.-H. Yeon, K.-B. Kim, H.S. Song, K.-H. Shin.Combustion-synthesized LiNi0.6Mn0.2Co0.2O2as cathode material for lithium ionbatteries [J]. J. Alloys Comp.,2014, doi.org/10.1016/j.jallcom.2014.03.123
    [96] G.-Y. Kim, S.-B. Yi, Y.J. Park, H.-G. Kim. Electrochemical behaviors ofLi[Li(1x)/3Mn(2x)/3Nix/3Cox/3]O2cathode series (0    [97] C. Fu, G. Li, D. Luo, J. Zheng, L. Li. Gel-combustion synthesis of Li1.2Mn0.4Co0.4O2composites with a high capacity and superior rate capability for lithium-ion batteries [J].J. Mater. Chem. A,2014,2:1471-1483
    [98] Z. Zhong, N. Ye, H. Wang, Z. Ma. Low temperature combustion synthesis andperformance of spherical0.5Li2MnO3–0.5LiNi0.5Mn0.5O2cathode material for Li-ionbatteries [J]. Chem. Eng. J.,2011,175:579-584
    [99] E.-S. Lee, A. Manthiram. Smart design of lithium-rich layered oxide cathodecompositions with suppressed voltage decay [J]. J. Mater. Chem. A,2014,2:3932-3939
    [100] J. Liu, Q. Wang, B. Reeja-Jayan, A. Manthiram. Carbon-coated high capacity layeredLi[Li0.2Mn0.54Ni0.13Co0.13]O2cathodes [J]. Electrochem. Commun.,2010,12:750-753
    [101] Jun Liu, B. Reeja-Jayan, A. Manthiram. Conductive surface modification withaluminum of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2cathodes [J]. J. Phys.Chem. C,2010,114:9528-9533
    [102] J. Liu, A. Manthiram. Functional surface modifications of a high capacity layeredLi[Li0.2Mn0.54Ni0.13Co0.13]O2cathode [J]. J. Mater. Chem.,2010,20:3961-3967
    [103] S.J. Shi, J.P. Tu, Y.J. Zhang, Y.D. Zhang, X.Y. Zhao, X.L. Wang, C.D. Gu. Effect ofSm2O3modification on Li[Li0.2Mn0.56Ni0.16Co0.08]O2cathode material for lithium ionbatteries [J]. Electrochim. Acta,2013,108:441-448
    [104] A. Manthiram. Materials challenges and opportunities of lithium ion batteries [J]. J.Phys. Chem. Lett.,2011,2:176-184
    [105] W.-H. Zhang, L. Fang, M. Yue, Z.-L. Yu. Improved electrochemical performance ofmodified natural graphite anode for lithium secondary batteries [J]. J. Power Sources,2007,174:766-769
    [106] P. He, H. Wang, L. Qi, T. Osaka. Synthetic optimization of spherical LiCoO2andprecursor via uniform-phase precipitation [J]. J. Power Sources,2006,158:529-534
    [107] X. Xiang, Z. Fu, W. Li. Morphology-controllable synthesis of LiMn2O4particles ascathode materials of lithium batteries [J]. J. Solid State Electrochem.,2013,17:1201-1206
    [108] H.-M. Xie, R.-S. Wang, J.-R. Ying, L.-Y. Zhang, A.F. Jalbout, H.-Y. Yu, G.-L. Yang,X.-M. Pan, Z.-M. Su. Optimized LiFePO4–polyacene cathode material for lithium-ionBatteries [J]. Adv. Mater.,2006,18:2609-2613
    [109] M.H. Lee, Y.J. Kang, S.T. Myung, Y.K. Sun. Synthetic optimization ofLi[Ni1/3Co1/3Mn1/3]O2via co-precipitation [J]. Electrochim. Acta,2004,50:939-948
    [110] H.Y. Xu, Q.Y. Wang, C.H. Chen. Synthesis of Li[Li0.2Ni0.2Mn0.6]O2by radiatedpolymer gel method and impact of deficient Li on its structure and electrochemicalproperties [J]. J. Solid State Electrochem.,2008,12:1173-1178
    [111] J. Lin, D. Mu, Y. Jin, B. Wu, Y. Ma, F. Wu. Li-rich layered compositeLi[Li0.2Ni0.2Mn0.6]O2synthesized by a novel approach as cathode material for lithium ionbattery [J]. J. Power Sources,2013,230:76-80
    [112] S.H. Kang, Y.K. Sun, K. Amine. Electrochemical and ex Situ X-ray study ofLi(Li0.2Ni0.2Mn0.6)O2cathode material for Li secondary batteries [J]. Electrochem.Solid-State Lett.,2003,6: A183-A186
    [113] Y. S. Meng, G. Ceder, C. P. Grey, W.-S. Yoon, M. Jiang, J. Bre′ger, Y. Shao-Horn.Cation ordering in layered O3Li[NixLi1/3-2x/3Mn2/3-x/3]O2(0    [114] C.P. Grey, W.-S. Yoon, J. Reed, G. Ceder. Electrochemical activity of Li in thetransition-metal sites of O3Li[Li(1-2x)/3Mn(2-x)/3Nix]O2[J]. Electrochem. Solid-State Lett.,2004,7: A290-A293
    [115] M. Jiang, B. Key, Y.S. Meng, C.P. Grey. Electrochemical and structural study of thelayered,“Li-Excess” lithium-Ion Battery electrode material Li[Li1/9Ni1/3Mn5/9]O2[J].Chem. Mater.,2009,21:2733-2745
    [116] J. Bréger, M. Jiang, N. Dupré, Y.S. Meng, Y. Shao-Horn, G. Ceder, C.P. Grey.High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorderin the Li2MnO3–Li[Ni1/2Mn1/2]O2solid solution [J]. J. Solid State Chem.,2005,178:2575-2585
    [117] J. Jiang, J.R. Dahn. Electrochemical and thermal studies of Li[NixLi(1/32x/3)Mn(2/3x/3)]O2(x=1/12,1/4,5/12, and1/2)[J]. Electrochim. Acta,2005,50:4778-4783
    [118] J. Jiang, K.W. Eberman, L.J. Krause, J.R. Dahn. Structure, Electrochemical properties,and thermal stability studies of cathode materials in thexLi[Mn1/2Ni1/2]O2-yLiCoO2-zLi[Li1/3Mn2/3]O2pseudoternary system (x+y+z=1)[J]. J. Electrochem.Soc.,2005,152: A1879-A1889
    [119] Y. Wu, A. Manthiram. Effect of surface modifications on the layered solid solutioncathodes (1-z) Li[Li1/3Mn2/3]O2-(z) Li[Mn0.5-yNi0.5-yCo2y]O2[J]. Solid State Ionics,2009,180:50-56
    [120] J. Liu, B. Reeja-Jayan, A. Manthiram. Conductive surface modification with aluminumof high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2cathodes [J]. J. Phys. Chem. C,2010,114:9528-9533
    [121] Q.Y. Wang, J. Liu, A.V. Murugan, A. Manthiram. High capacity double-layer surfacemodified Li[Li0.2Mn0.54Ni0.13Co0.13]O2cathode with improved rate capability [J]. J. Mater.Chem.,2009,19:4965-4972
    [122] Y. Wu, A. Vadivel Murugan, A. Manthiram. Surface modification of high capacitylayered Li[Li0.2Mn0.54Ni0.13Co0.13]O2cathodes by AlPO4[J]. J. Electrochem. Soc.,2008,155: A635-A641
    [123] D.A.R. Barkhouse, J.R. Dahn. A novel fabrication technique for producing denseLi[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2,0≤x≤1/2[J]. J. Electrochem. Soc.,2005,152: A746-A751
    [124] Y.J. Hong, J.H. Kim, M.H. Kim, Y.C. Kang. Electrochemical properties of0.3Li2MnO3·0.7LiNi0.5Mn0.5O2composite cathode powders prepared by large-scale spraypyrolysis [J]. Mater. Res. Bull.,2012,47:2022-2026
    [125] C.S. Johnson, J.S. Kim, C. Lefief, N. Li, J.T. Vaughey, M.M. Thackeray. Thesignificance of the Li2MnO3component in ‘composite’ xLi2MnO3·(1-x)LiMn0.5Ni0.5O2electrodes [J]. Electrochem. Commun.,2004,6:1085-1091
    [126] D. Li, F. Lian, W.H. Qiu, F.S. Li, K.C. Chou. Fe content effects on electrochemicalproperties of0.3Li2MnO3·0.7LiMnxNixFe(1-2x)/2O2cathode materials [J]. Adv. Mater. Res.,2011,347-353:3518-3521
    [127] J.S. Kim, C.S. Johnson, J.T. Vaughey, M.M. Thackeray. Pre-conditioned layeredelectrodes for lithium batteries [J]. J. Power Sources,2006,153:258-264
    [128] B. Xu, C.R. Fell, M. Chi, Y.S. Meng. Identifying surface structural changes in layeredLi-excess nickel manganese oxides in high voltage lithium ion batteries: A jointexperimental and theoretical study [J]. Energy Environ. Sci.,2011,4:2223-2233
    [129] A. Gutierrez, N.A. Benedek, A. Manthiram. Crystal-chemical guide for understandingredox energy variations of M2+/3+couples in polyanion cathodes for lithium-ion batteries[J]. Chem. Mater.,2013,25:4010-4016
    [130] T. Muraliganth, A. Manthiram. Understanding the Shifts in the redox potentials ofolivine LiM1-yMyPO4(M=Fe, Mn, Co, and Mg) solid solution cathodes [J]. J. Phys.Chem. C,2010,114:15530-15540
    [131] A. Boulineau, L. Simonin, J.F. Colin, C. Bourbon, S. Patoux. First evidence ofmanganese-nickel segregation and densification upon cycling in Li-rich layered oxidesfor lithium batteries [J]. Nano Lett,2013,13:3857-3863
    [132] J. Zheng, M. Gu, J. Xiao, P. Zuo, C. Wang, J.G. Zhang. Corrosion/fragmentation oflayered composite cathode and related capacity/voltage fading during cycling process [J].Nano Lett,2013,13:3824-3830
    [133] Meng Gu, Ilias Belharouak, Jianming Zheng, Huiming Wu, Jie Xiao, Arda Genc, KhalilAmine, Suntharampillai Thevuthasan, Donald R. Baer, Ji-Guang Zhang, Nigel D.Browning, Jun Liu, C. Wang. Formation of the spinel phase in the layered compositecathode used in Li-ion batteries [J]. ACS Nano,2013,7:760-767
    [134] M. Gu, A. Genc, I. Belharouak, D. Wang, K. Amine, S. Thevuthasan, D.R. Baer, J.-G.Zhang, N.D. Browning, J. Liu, C. Wang. Nanoscale phase separation, cation ordering,and surface chemistry in pristine Li1.2Ni0.2Mn0.6O2for Li-ion batteries [J]. Chem. Mater.,2013,25:2319-2326
    [135] A. Manthiram. Materials challenges and opportunities of lithium ion batteries [J]. J.Phys. Chem. Lett.,2011,2:176-184
    [136] A. Manthiram, J. Choi. Chemical and structural instabilities of lithium ion batterycathodes [J]. J. Power Sources,2006,159:249-253
    [137] H. Ben Yahia, M. Shikano, H. Kobayashi. Phase Transition Mechanisms in LixCoO2(0.25≤x≤1) based on group-subgroup transformations [J]. Chem. Mater.,2013,25:3687-3701
    [138] D.K. Kim, P. Muralidharan, H.-W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H. Peng, R.A.Huggins, Y. Cui. Spinel LiMn2O4nanorods as lithium ion battery cathodes [J]. NanoLett,2008,8:3948-3952
    [139] J. Yang, J. Wang, Y. Tang, D. Wang, X. Li, Y. Hu, R. Li, G. Liang, T.-K. Sham, X. Sun.LiFePO4–graphene as a superior cathode material for rechargeable lithium batteries:impact of stacked graphene and unfolded graphene [J]. Energy Environ. Sci.,2013,6:1521-1528
    [140] G.Z. Wei, X. Lu, F.S. Ke, L. Huang, J.T. Li, Z.X. Wang, Z.Y. Zhou, S.G. Sun. Crystalhabit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O2for high-rate performancelithium-ion batteries [J]. Adv Mater,2010,22:4364-4367
    [141] H. Yu, H. Zhou. Initial Coulombic efficiency improvement of theLi1.2Mn0.567Ni0.166Co0.067O2lithium-rich material by ruthenium substitution formanganese [J]. J. Mater. Chem.,2012,22:15507-15510
    [142] J. Hong, D.-H. Seo, S.-W. Kim, H. Gwon, S.-T. Oh, K. Kang. Structural evolution oflayered Li1.2Ni0.2Mn0.6O2upon electrochemical cycling in a Li rechargeable battery [J]. J.Mater. Chem.,2010,20:10179-10186
    [143] D. Liu, Z. Wang, L. Chen. Comparison of structure and electrochemistry of Al-andFe-doped LiNi1/3Co1/3Mn1/3O2[J]. Electrochim. Acta,2006,51:4199-4203
    [144] D. Zeng, J. Cabana, W.-S. Yoon, C.P. Grey. Investigation of the structural changes inLi[NiyMnyCo(1-2y)]O2(y=0.05) upon electrochemical lithium deintercalation [J]. Chem.Mater.,2010,22:1209-1219
    [145] F. Cheng, J. Liang, Z. Tao, J. Chen. Functional materials for rechargeable batteries [J].Adv Mater,2011,23:1695-1715
    [146] T. A. Arunkumar, Y. Wu, A. Manthiram. Factors influencing the irreversible oxygenloss and reversible capacity in layered Li[Li1/3Mn2/3]O2-Li[M]O2(M=Mn0.5-yNi0.5-yCo2yand Ni1-yCoy) Solid Solutions [J]. Chem. Mater.,2007,19:3067-3073
    [147] Zhe Li, Fei Du, Xiaofei Bie, Dong Zhang, Yongmao Cai, Xinran Cui, ChunzhongWang, Gang Chen, Y. Wei. Electrochemical kinetics of the Li[Li0.23Co0.3Mn0.47]O2cathode material studied by GITT and EIS [J]. J. Phys. Chem. C,2010,114:22751-22757
    [148] K.A. Jarvis, Z. Deng, L.F. Allard, A. Manthiram, P.J. Ferreira. Understanding structuraldefects in lithium-rich layered oxide cathodes [J]. J. Mater. Chem.,2012,22:11550-11555
    [149] H. Yu, H. Kim, Y. Wang, P. He, D. Asakura, Y. Nakamura, H. Zhou. High-energy'composite' layered manganese-rich cathode materials via controlling Li2MnO3phaseactivation for lithium-ion batteries [J]. Phys. Chem. Chem. Phys.,2012,14:6584-6595
    [150] S.J. Shi, J.P. Tu, Y.Y. Tang, X.Y. Liu, Y.Q. Zhang, X.L. Wang, C.D. Gu. Enhancedcycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2by surface modification of MgO withmelting impregnation method [J]. Electrochim. Acta,2013,88:671-679
    [151] Z. Jiang, B. Pei, A. Manthiram. Randomly stacked holey graphene anodes for lithiumion batteries with enhanced electrochemical performance [J]. J. Mater. Chem. A,2013,1:7775-7781
    [152] Z. Jiang, Z.-j. Jiang. Effects of carbon content on the electrochemical performance ofLiFePO4/C core/shell nanocomposites fabricated using FePO4/polyaniline as an ironsource [J]. J. Alloys Comp.,2012,537:308-317
    [153] Z. Zhu, F. Cheng, J. Chen. Investigation of effects of carbon coating on theelectrochemical performance of Li4Ti5O12/C nanocomposites [J]. J. Mater. Chem. A,2013,1:9484-9490
    [154] H. Yu, Y. Wang, D. Asakura, E. Hosono, T. Zhang, H. Zhou. Electrochemical kineticsof the0.5Li2MnO3·0.5LiMn0.42Ni0.42Co0.16O2‘composite’ layered cathode material forlithium-ion batteries [J]. RSC Adv.,2012,2:8797-8807
    [155] N. Yabuuchi, K. Yoshii, S.T. Myung, I. Nakai, S. Komaba. Detailed studies of ahigh-capacity electrode material for rechargeable batteries,Li2MnO3-LiCo1/3Ni1/3Mn1/3O2[J]. J. Am. Chem. Soc.,2011,133:4404-4419
    [156] Z. Lu, J.R. Dahn. Understanding the anomalous capacity ofLi/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2cells using in situ X-ray diffraction and electrochemicalstudies [J]. J. Electrochem. Soc.,2002,149: A815-A822
    [157] H. Koga, L. Croguennec, P. Mannessiez, M. Ménétrier, F. Weill, L. Bourgeois, M.Duttine, E. Suard, C. Delmas. Li1.20Mn0.54Co0.13Ni0.13O2with different particle sizes asattractive positive electrode materials for lithium-ion batteries: insights into theirstructure [J]. J. Phys. Chem. C,2012,116:13497-13506
    [158] X. Jin, Q. Xu, X. Yuan, L. Zhou, Y. Xia. Synthesis, characterization andelectrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2cathode materials forlithium-ion batteries [J]. Electrochim. Acta,2013,114:605-610
    [159] X. Zhang, C. Yu, X. Huang, J. Zheng, X. Guan, D. Luo, L. Li. Novel compositesLi[LixNi0.34-xMn0.47Co0.19]O2(0.18≤x≤0.21): synthesis and application as high-voltagecathode with improved electrochemical performance for lithium ion batteries [J].Electrochim. Acta,2012,81:233-238
    [160] B. Song, Z. Liu, M.O. Lai, L. Lu. Structural evolution and the capacity fade mechanismupon long-term cycling in Li-rich cathode material [J]. Phys. Chem. Chem. Phys.,2012,14:12875-12883
    [161] K.G. Gallagher, J.R. Croy, M. Balasubramanian, M. Bettge, D.P. Abraham, A.K.Burrell, M.M. Thackeray. Correlating hysteresis and voltage fade in lithium-andmanganese-rich layered transition-metal oxide electrodes [J]. Electrochem. Commun.,2013,33:96-98
    [162] S. Kim, X. Ma, S.P. Ong, G. Ceder. A comparison of destabilization mechanisms of thelayered NaxMO2and LixMO2compounds upon alkali de-intercalation [J]. Phys. Chem.Chem. Phys.,2012,14:15571-15578
    [163] C.S. Johnson, S.D. Korte, J.T. Vaughey, M.M. Thackeray, T.E. Bofinger, Y. Shao-Horn,S.A. Hackney. Structural and electrochemical analysis of layered compounds fromLi2MnO3[J]. J. Power Sources,1999,81-82:491-495
    [164] Y. Sun, Y. Shiosaki, Y. Xia, H. Noguchi. The preparation and electrochemicalperformance of solid solutions LiCoO2–Li2MnO3as cathode materials for lithium ionbatteries [J]. J. Power Sources,2006,159:1353-1359
    [165] S. Kim, C. Kim, Y.-I. Jhon, J.-K. Noh, S.H. Vemuri, R. Smith, K.Y. Chung, M.S. Jhon,B.-W. Cho. Synthesis of layered–layered0.5Li2MnO3·0.5LiCoO2nanocompositeelectrode materials by the mechanochemical process and first principles study [J]. J.Mater. Chem.,2012,22:25418-25426
    [166] J. Bare o, M. Balasubramanian, S.H. Kang, J.G. Wen, C.H. Lei, S.V. Pol, I. Petrov, D.P.Abraham. Long-range and local structure in the layered oxide Li1.2Co0.4Mn0.4O2[J].Chem. Mater.,2011,23:2039-2050
    [167] S.J. Shi, J.P. Tu, Y.Y. Tang, Y.Q. Zhang, X.L. Wang, C.D. Gu. Preparation andcharacterization of macroporous Li1.2Mn0.54Ni0.13Co0.13O2cathode material forlithium-ion batteries via aerogel template [J]. J. Power Sources,2013,240:140-148
    [168] B. Ammundsen, J. Paulsen, I. Davidson, R.-S. Liu, C.-H. Shen, J.-M. Chen, L.-Y. Jang,J.-F. Lee. Local structure and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4]O2cathode material [J]. J. Electrochem. Soc.,2002,149: A431-A436
    [169] J. Kikkawa, T. Akita, M. Tabuchi, M. Shikano, K. Tatsumi, M. Kohyama. Fe-rich andMn-rich nanodomains in Li1.2Mn0.4Fe0.4O2positive electrode materials for lithium-ionbatteries [J]. App. Phys. Lett.,2007,91:054103
    [170] J. Kikkawa, T. Akita, M. Tabuchi, M. Shikano, K. Tatsumi, M. Kohyama. Formationand disappearance of spinel nanograins in Li1.2-xMn0.4Fe0.4O2(0≤x≤0.99) duringextraction and insertion of Li ions [J]. J. Electrochem. Soc.,2009,156: A839-A845
    [171] M. Balasubramanian, J. McBreen, I.J. Davidson, P.S. Whitfield, I. Kargina. In situX-ray absorption study of a layered manganese-chromium oxide-based cathode material[J]. J. Electrochem. Soc.,2002,149: A176-A184
    [172] Z. Lu, J.R. Dahn. In Situ and ex situ XRD investigation of Li[CrxLi1/3-x/3Mn2/3-2x/3]O2(x=1/3) cathode material [J]. J. Electrochem. Soc.,2003,150: A1044-A1051

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700