分布源目标方位估计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在传统的目标方位估计研究中,目标源一般都假定为点源。但自上世纪90年代以来,分布源目标方位估计问题开始受到国内外学者的广泛关注。无论是理论建模还是DOA估计算法研究,已经有相当多的研究成果公诸于世。从点源演化至分布源,模型、算法的形式和复杂度都有了非常大的改变,这对于广大研究者而言是新的研究方向和挑战。本文着重讨论了分布源问题,主要内容和研究成果如下:
     1.介绍分布源的基本概念。随着阵列信号处理研究的深入,研究者们发现在一些近场、存在大量多径散射以及目标高速移动的环境中,利用分布源模型进行描述更符合实际。分布源模型认为目标在空间具有一定的体积或者能量分布,能量分布可以是连续的或者是离散的。截止到目前,研究者们已经提出了多种形式分布源模型以及相应的方位估计方法。
     2.介绍了分布源信号模型。在分布源建模理论中,目标能量在空间中会有一定的散布,这样可以将这些能量分量抽象为一个个点目标源。依照分布源各个分量之间的空间、时间相关性,可以将其划分为相干分布源(CD)、非相干分布源(ID)和部分相干分布源(PD)。本文着重讨论了离散ID分布源模型。
     3.对现有的分布源DOA估计方法进行总结。分布源目标方位估计课题经过多年的研究,已经有很多的成果公诸于世。按照其基本原理,文中将这些方法大致划分为“子空间类方法”、“波束形成方法”、“最大似然估计方法”、“协方差匹配方法”和“低复杂度方法”几类,并对它们做以详细的介绍。
     4.提出一种波束域分布源高分辨方位估计的新方法。分布源目标方位估计算法的计算量普遍较大,庞大的计算量在很多方面限制了估计方法的应用。将高分辨方位估计方法在波束域进行预处理是目前广泛采用的降低计算量的方法。当阵列采样从阵元域变换到波束域时,将得到预滤波,提升了信噪比。随后再采用高分辨估计方法,因为波束域信号的自由度小于阵元域信号的自由度,这使得计算量得到极大的降低。
     文中首先介绍了窄带波束形成的基本原理以及波束域目标方位估计理论,随后将波束域处理的技术引入分布源DOA估计当中,得出新的波束域分布源DOA估计方法。
     5.提出一种简化的分布源最大似然(MLE)估计算法。已有的分布源MLE参数估计算法是一个四维非线性最优化问题,计算量庞大,文中称之为四维MLE算法。为了能够减少MLE算法的计算复杂度,论文提出了一种降维的MLE算法。新方法是三维非线性最优化问题,称之为三维MLE算法。分析表明新算法的计算量比四维MLE算法大为减少,同时还可以节省大量的存储空间,因此计算效率可以得到提高。文中对新算法性能的评估准则CRB给出了具体的计算公式,新CRB计算公式的计算量也有所降低。最后通过计算机仿真验证,三维MLE算法和四维MLE算法的估计精度相当,因此新算法在减少计算量的同时没有损失性能,实用性和实时性都显著提高。
     6.提出一种新的分布源模型和DOA估计方法:非对称大角度扩展分布源方位估计方法。在以往的分布源方位估计问题中,一般都假定分布源空间角度扩展很小,并且分布源角度扩展满足对称性。然而这是一种非常理想化的假设,现实中的分布源信号往往会突破这两种限制条件。
     为了更普遍的描述分布源模型,文中利用Jacobi-Anger(JA)级数展开和高斯混合模型技术,得出了非对称、大角度扩展分布源模型。新模型将不受分布对称性以及空间扩展角度的限制,以往的空间能量满足对称性和小角度扩展的分布源模型都可以看作是新模型的特例。
     在利用JA级数展开后得到的分布源模型中,模型误差仅仅和级数展开的阶数有关,而和分布源空间扩展角度无关。当JA级数的阶数足够高时,分布源模型误差将会被控制在一个足够小的范围内。此外在理论建模中,一般将非对称的概率分布函数描述为多个对称概率分布函数之和。文中利用高斯混合模型来构造非对称分布,当调整混合模型中的参数时,非对称概率分布的形状也将发生改变。随后将新的分布源模型与最速下降算法结合,得出了新的分布源DOA估计算法,通过计算机仿真,结果表明新模型是合理有效的,估计方法的性能接近CRB。
     7.提出了二阶近似分布源模型及低阶近似SMVDR算法。在小角度空间能量扩展假设条件下,分布源模型可以用低阶Taylor级数近似表示。广义阵列流型利用了一阶Taylor级数展开,这里称之为一阶近似分布源模型。文中研究表明,此种模型忽略高次项带来的模型误差以及DOA估计算法的性能损失还是比较可观的。因此提出了二阶近似分布源模型,即利用二阶Taylor级数展开。新模型能够进一步减小模型误差,并且对相应的DOA估计算法带来较大的性能提升。文中将一阶近似分布源模型和二阶近似分布源模型统称为低阶近似分布源模型。此种分布源模型与空间能量分布形式无关,实用性更强;在此模型基础上得到的DOA估计方法简单明确,计算量较小,同时也具有良好的估计性能。
     随后将分布源的一阶近似模型、二阶近似模型、空间频率模型和低阶JA级数展开模型的模型精度进行了比较。结论是空间频率模型的精度最高,一阶近似模型和二阶近似模型的精度比较接近,并且和低阶JA级数展开模型的精度处于同样的数量级。
In the conventional research on direction-of-arrival (DOA) estimation, thesource is usually assumed to be a point. But from the time of 90s of last century, theresearch on distributed sources DOA estimation has been paid much attention. Nomatter the theoretical model establishment or DOA estimator, there have manyproductions been proposed. From the point source to distributed sources, the form oftheir model, estimation algorithm and the computational cost have change greatly.This is a new research area and a challenge for researchers. This thesis will discussdistributed sources problem. The main content and innovations are as the follows:
     1. Introducing some fundamental concepts and theories of distributed sources.As the development of array signal processing, researchers found that the distributedsources model can reflect the reality more properly in the case of near field, largeamount of multipath and high speed movement. The target in the distributed sourcestheory is always considered with volume or spatial power distribution. The spatialpower distribution can be continuous or discrete. Now, researchers have proposedmany kinds of distributed sources models and corresponding DOA estimators.
     2. Introducing the distributed sources model. In the model establishment theoryof distributed sources, the spatial power distribution of the target is usually abstractedto many point sources. According to the relativity in space domain and time domainof these points, the distributed sources can be divided into coherent distributed (CD)model, incoherent distributed (ID) model and partial coherent (PD) model. This thesismainly discusses the discrete ID model.
     3. Making a summary of the proposed distributed sources DOA estimationmethods. For many years of research on distributed sources, there have manyproductions been proposed. In this thesis, these methods, which being divided bytheir basic theory, are called subspace methods, beamforming methods, maximumlikelihood methods, covariance fitting methods and low complexity methods.
     4. Proposing a beam domain high resolution DOA estimation method fordistributed sources. The computational cost is usually very large for distributedsources DOA methods. In order to reduce the computational cost, a popular techniqueis making a pretreatment of these methods in beam domain. When the array sample istransformed from array domain to beam domain, it will be filtered in advance and thesignal-to-noise ratio will be enhanced. Then the high resolution method will be used.Because the freeness of sample in beam domain is much less than it in array domain,the computational cost will be reduced greatly.
     In this thesis, the basic theories of narrowband beamforming and beam domain DOA estimation are introduced first. Then the beam domain technique is associatedwith distributed sources DOA estimation method and a new method is derived.
     5. Proposing a simplified maximum likelihood estimation (MLE) method fordistributed sources. The former MLE method for distributed sources parameterestimation is a four dimensional nonlinear optimization method. Its computationalcost is very large and is called as four dimensional MLE in this thesis. In order toreduce its computational complexity, here proposes a lower dimensional MLEmethod. This new method is three dimensional nonlinear optimization method and iscalled three dimensional MLE. The theoretical analysis shows that the computationalcost of the new method will be reduced greatly. So the efficiency of the searchalgorithm is improved and more memory is saved. The CRB for the new MLEalgorithm is proposed, its computational cost is reduced also. The computersimulation validates that the estimation accuracy of these two MLE methods aresimilar. The new algorithm not only reduces the computational cost but also avoidsthe loss of performance, so it has higher practicability and real time capability.
     6. Proposing a new non-symmetric and large angular spread distributed sourcesmodel and the corresponding DOA estimation method. In former distributed sourcesresearch, the spatial angular spread is always assumed to be very small andsymmetric. This is an ideal assumption and usually not fitting in reality.
     In this thesis, a non-symmetric and large angular spread distributed sourcesmodel is proposed with Jacobi-Anger (JA) series expansion and Gaussian mixturetechniques. The new model will not be restricted by the distribution form and spatialangular spread. The former distributed sources models can be regarded as the specialcases of this new model.
     Using the JA series expansion technique, the model error will only relate withthe series order and have no relationship with the spatial angular spread. Furthermore,the model error can be very small if the series order is high enough. In theoreticalmodel establishment, the non-symmetric distribution is usually described as thesummation of many symmetric distributions. Here the non-symmetric distribution isconstructed with Gaussian mixtures technique, its shape can be changed when theparameters of mixtures is altered. Then the new model is associated with the steepestdescent algorithm and a new DOA estimation method is derived. Finally, dataanalysis validated the exactness of the theory.
     7. Proposing a distributed sources model with two orders Taylor series expansionand the corresponding low order approximation SMVDR algorithms. With theassumption of small spatial angular spread, the distributed sources model can bederived with low order Taylor series expansion approximately. Generalized arraymanifold uses one order Taylor series expansion and is called one order
     approximation distributed sources model here. Research on this thesis show that themodel error generated by neglecting high order items is distinct and the performanceof DOA estimation algorithm will degrade as a result. A two orders approximationdistributed sources model is proposed with two orders Taylor series expansion. Thenew model can reduce the model error and enhance the performance of DOAestimation. Here the distributed sources models with one order approximation andtwo orders approximation are called low order approximation model together. Thesemodels have no relationship with the form of spatial angular distribution. Thecorresponding DOA estimation algorithms have simple forms, low computationalcost, and good estimation performance.
     Then the distributed sources models of one order approximation model, twoorders approximation model, spatial frequency model and low order JA seriesexpansion model are compared with respect to the model accuracy. The conclusion isthat the spatial frequency model has the best accuracy. The accuracies of one orderapproximation model and two orders approximation model are close and have thesame order with low JA series expansion model.
引文
[1] Lillian Xiaolan Xu, "Parameter Estimation for Spatially-Spread Sources", PhD dissertation, George Mason university, 2002.
    [2] H. Krim and M. Viberg, "Two Decades of Array and Signal Processing: The Parametric Approach", IEEE signal processing magazine, 1996, 6: 67-94.
    [3] T. Chen, "Highlights of Statistical Signal and Array Processing", IEEE signal processing magazine, 1998, 9: 21-64.
    [4] Ottersten B, "Array Processing for Wireless Communications", Proc. on statistical signal and array processing, 1996: 466-473.
    [5] S. Valaee, P. Kabal and B. Champagne, "Localization of Distributed Sources", Proc. fourteenth GRETSI symposium on signal and image processing (Juan les Pins, France), pp. 289-292, Sept. 1993.
    [6] Lal C. Godara, "Application of Antenna Arrays to Mobile Communications. Ⅰ. Performance Improvement, Feasibility, and System Considerations", Proceedings of IEEE, 85(7): 1031-1060, July 1997.
    [7] Lal C. Godara, "Application of Antenna Arrays to Mobile Communications. Ⅱ. Beam-forming and Direction-of-arrival Considerations", Proceedings of IEEE, 85(8): 1195-1245, August 1997.
    [8] Joseph C. Liberti, Jr and Theodore S. Rappaport, "Smart Antenna for Wireless Communications: IS-95 and Third Generation CDMA Applications", Prentice-Hall, 1999.
    [9] Caffery J J., "Wireless Location in CDMA Cellular Radio Systems", Bosston Dordrecht London: Kluwer Academic Publishers, 2000.
    [10] Durgin G and Rappaport, "Basic Relationship Between Multipath Angular Spread and Narrowband Fading in Wireless Channels", Electronics Letters, 1998, 34(12): 2431-2432.
    [11] Ralph Otto Schmidt, "Multiple Emitter Location and Signal Parameter Estimation", IEEE Trans. AP, 1986, 34(3): 276-280.
    [12] Roy R, Paulraj A and Kailath T, "Estimation of Signal Parameters via Rotational Invariance Techniques-ESPRIT", Proc. on ACCSCM, 1985.
    [13] J. Capon, "High Resolution Frequency Wave Number Spectrum Analysis", Proc IEEE, 1969, 57: 1408-1418.
    [14] P. Stoica and A. Nehorai, "Music, Maximum Likelihood, and Cramer-Rao Bound", IEEE Trans-SP, 1989, 37(5): 720-741.
    [15] M. I. Miller and D. R. Fuhrmann, "Maximum Likelihood Narrow Band Direction Finding and the EM Algorithm", IEEE Trans-ASSP, 1990, 38(9): 1560-1577.
    [16] J. Li, P. Stoica and D. Zheng, "Angle and Waveform Estimation Via RELAX", IEEE Trans-AES, 1997, 3(6): 1077-1087.
    [17] P. Stoica and K. C. Sharman, "Novel Eigenanalysis Method for Direction Estimation", IEE Proceedings, Pt. F, 137(1): 19-26, February, 1990.
    [18] K. M. Wong, J. P. Reilly, Q. Wu and S. Qiao, "Estimation of Direction of Arrival of Signals in Unknown Correlated Noise, Part Ⅰ: The MAP Approach and Its Implementation", IEEE Trans-SP, 1992, 40(8): 2007-2017.
    [19] G. C. Carter, "Coherence and Time Delay Estimation," Proceedings of the IEEE, vol.75, no.2, February 1987.
    [20] J. F. Cardoso, "Source Separation Using Higher Order Moment", Proc ICASSP, 1989: 2109-2112.
    [21] John G. Proakis, "Digital Communications", McGraw-Hill, New York, 3rd edition, 1995.
    [22] Ralph Otto Schmidt, "A Signal Subspace Approach to Multiple Emitter Location and Spectral Estimation", PhD thesis, Stanford University, Stanford, CA, November 1981.
    [23] Arthur J. Barabell, "Improving the Resolution Performance of Eigenstructure-based Direction-finding Algorithms", In Proc. IEEE ICASSP 83, pages 336-339, 1983.
    [24] Mats Bengtsson, "Antenna Array Signal Processing for High Rank Data Models", PhD thesis, Royal institute of technology, Stockholm, Sweden, 1999.
    [25] MatsViberg and Bjorn Ottersten, "Sensor Array Processing Based on Subspace Fitting", IEEE transaction on signal processing, 39(5): 1110-1121, May 1991.
    [26] 万群,“分布式目标波达方向估计方法研究”,电子科技大学博士论文,2000。
    [27] Vanderveen M C, Vanderveen A J and Paulraj A, "Estimation of Multipath Parameters in Wireless Communications", IEEE Trans. SP, 1998, 46(3): 682-690.
    [28] R. Rajagopal and P. R. Rao, "DOA Estimation with Unknown Noise Field: A Matrix Decomposition Method", ITT Proc-F, 1991, 138(5): 495-501.
    [29] A. Swindlehurst, "Robust Algorithm for Direction Finding in the Presence of Modal Errors", Proc 5th ASSP spectral estimation modeling, Rochester, 1990(10): 362-366.
    [30] P. Tsakalides and C. L. Nikias, "The Robust Covariance-based MUSIC Algorithm for Bearing Estimation in Impulsive Noise Environments", IEEE Trans-SP, 1996, 44(7): 1623-1633.
    [31] B. Friedlander, "A Sensitivity Analysis of the MUSIC Algorithm", IEEE Trans-ASSP, 1990, 38(10): 1740-1751.
    [32] A. J. Weiss, B. Friedlander, "Effects of Modeling Errors on the Resolution Threshold of the MUSIC Algorithm", IEEE Trans-SP, 1994, 42(6): 1519-1526.
    [33] A. Fieller, A. Fereol, P. Larzabal and H. Clergrot, "Robust Bearing Estimation in the Presence of Direction-dependent Modeling Errors: Identifiability and Treatment", ICASSP, Detroit, MI, 1995: 1884-1887.
    [34] A. Kangas, P. Stoica and T. Soderstrom, "Large Sample Analysis of MUSIC and Mini-norm Direction Estimators in the Presence of Model Errors", CSSP, 1996, 15: 377-393.
    [35] T. P. Jantti, "The Influence of the Extended Sources on the Theoretical Performance of MUSIC and ESPRIT Method: Narrow-band Sources", Proc ICASSP, San Francisco, 1992, 3: Ⅱ-429-Ⅱ-432.
    [36] D. Astely and B. Ottersten, "The Effect of Local Scattering on Direction of Arrival Estimation with MUSIC and ESPRIT", ICASSP, 1998, 5: 3333-3336.
    [37] D. Astely and B. Ottersten, "The Effect of Local Scattering on Direction of Arrival Estimation with MUSIC", IEEE Trans-SP, 1999, 47(12): 3220-3234.
    [38] Valaee S, Champagne B and Kabal P, "Parametric Localization of Distributed Sources", IEEE Trans. SP, 1995, 43(9): 2144-2153.
    [39] Trump T and Ottersten B, "Estimation of Nominal Direction of Arrival and Angular Spread Using an Array of Sensors", Signal Processing, 1996, 50: 57-69.
    [40] Y. U. Lee, J. Choi, I. Song and S. R. Lee, "Distributed Source Modeling and Direction-of-arrival Estimation Techniques", IEEE Trans-SP, 1997, 45(4): 960-969.
    [41] Raich R, Goldberg J and Messer H., "Localization of a Distributed Source Which is 'Partially Coherent' Modeling and Cramer-Rao Bounds", ICASSP, 1999, 5:2941-2944.
    [42] Raich R, Goldberg J and Messer H., "Bearing Estimation for a Distributed Source: Modeling, Inherent Accuracy Limitations and Algorithms", IEEE Trans. SP, 2000, 48(2): 429-441.
    [43] Ghogho M and Durrani T S, "Broadband Direction of Arrival Estimation in Presence of Angular Spread", Electronics Letters, 2001, 37(15): 986-987.
    [44] Monakov A A., "Observation of Extended Targets with Antenna Arrays", IEEE Trans. AES, 2000, 36(1): 297-302.
    [45] Meng Y, Wong K M and Wu Q, "Estimation of the Direction of Arrival of Spread Source in Sensor Array Processing", ICSP, 1993, 10: 430-434.
    [46] Jonathan Friedmann, Raviv Raich and Jason Goldberg, "Bearing Estimation for a Distributed Source of Nonconstant Modulus—Bounds and Analysis", IEEE Transactions on Signal Processing, vol. 51, no. 12, December 2003.
    [47] Meng Y, Wong K M and Wu Q, "Direction Finding for Point and Dispersed Sources: Vec-MUSIC and Its Performance", ICASSP, 1996, 5: 2908-2911.
    [48] Samadi A and Gazor S, "Parametric Estimation of Ocean Waves Using Distributed Source Modeling", OCEANS'98 Conf. Proc., 1998, 1: 162-166.
    [49] Liberti J C and Rappaport T S, "A Geometrically Based Model for Line-of-sight Multipath Radio Channels", VTC, 1996: 844-848.
    [50] Fuhl J, Molish A F and Bonek e., "Unified Channel Model for Mobile Radio Systems with Smart Antennas", IEE Proc. Radar, Sonar Navig., 1998, 145(1): 32-41.
    [51] Ertel R B, Cardieri P and Sowerby K W, et al, "Overview of Spatial Channel Models for Antenna Array Communication Systems", IEEE Personal Comm. Magazine, 1998, 5(1): 10-22.
    [52] Friedlander B and Jin Y, "Adaptive Array Processing for Distributed Sources", Proc. of ACSSC'01, 2001, 1: 634-638.
    [53] Gershman A B, Mecklenbrauker C F and Bohme J F, "Direction Finding with Imperfect Wavefront Coherence: a Matrix Fitting Approach Using Genetic Algorithm", ICASSP, 1997, 1: 519-522.
    [54] Montalbano G and Serebryakov G V, "Optimum Array Signal Processing in the Presence of Imperfect Spatial Coherence of Wavefronts", OCEANS'98, 1998, 3: 1704-1708.
    [55] Besson O, Vincent F and Stoica P, "Approximate Maximum Likelihood Estimators for Array Processing in Multiplicative Noise Environments", IEEE Trans. SP, 2000, 48(9): 2506-2518.
    [56] Stoica P, Besson O and Gershman A B, "Deterministic Maximum Likelihood DOA Estimation in Heterogeneous Propagation Media", IEEE SP Workshop on Statistical Signal and Array Processing, 2000: 424-428.
    [57] Besson O, Stoica P and Gershman A B, "Simple and Accurate Direction of Arrival Estimator in the Case of Imperfect Spatial Coherence", IEEE Trans. SP, 2001, 49(4): 730-737.
    [58] Stoica P, Besson O and Gershman A B, "Direction-of-arrival Estimation of an Amplitude-distorted Wavefront", IEEE Trans. SP, 2001, 49(2): 269-276.
    [59] Wu Q, Wong K M and Meng Y, et al, "DOA Estimation of Point and Scattered Sources: Vec-MUSIC", IEEE SP Workshop on Statistical Signal and Array Processing, 1994: 365-368.
    [60] Meng Y, Wong K M and Wu Q, "Direction Finding for Point and Dispersed Sources: Vec-MUSIC and its performance", ICASSP, 1996, 5: 2908-2911.
    [61] Mwax, "On Unique Location of Constrained-signal Sources", IEEE Trans-SP, 1992, 40(6): 1542-1547.
    [62] Y.U. Lee, S. R. Lee, H. M. Kim and I. Song, "Estimation of Direction of Arrival for Angle-perturbed Sources", IEICE Trans-Fundamentals, 1997, E80A(1): 109-117.
    [63] Asztely D, Ottersten B and Swindlehurst A L, "Generalized Array Manifold Model for Wireless Communication Channels with Local Scattering", IEE Proc. Radar, Sonar Navig., 1998, 145(1): 51-57.
    [64] Asztely D and Ottersten B, "The Effects of Local Scattering on Direction of Arrival Estimation with MUSIC", IEEE Trans. SP, 1999, 47(12): 3220-3234.
    [65] R. H. Clarke, "A Statistical Theory of Mobile-radio Reception", The Bell System Technical Journal, 47(6): 957-1000, July-August 1968.
    [66] William C. Jakes and Jr. Editor, "Microwave Mobile Communications", Wiley, 1974.
    [67] Per Zetterberg, "Mobile Cellular Communications with Base Station Antenna Arrays: Spectrum Efficiency, Algorithms and Propagation Models", PhD thesis, Royal Institute of Technology, Stockholm, Sweden, June 1997.
    [68] A. Paulraj and T. Kailath, "Direction of Arrival Estimation by Eigenstructure Methods with Imperfect Spatial Coherence of Wavefronts", J. Acoust. Soc. Am., 83(3): 1034-1040, March 1988.
    [69] Y. Meng, P. Stoica, and K.M. Wong, "Estimation of the Directions of Arrival of Spatially Dispersed Signals in Array Processing", IEE Proceedings of Radar, Sonar and Navigation, 143(1):1-9, February 1996.
    [70] R.B. Ertel, P. Cardieri, K. W. Sowerby, T. S. Rappaport, and J. H. Reed, "Overview of Spatial Channel Models for Antenna Array Communication Systems", IEEE Personal Communications, 5 (1): 10_22, February 1998.
    [71] William John Bangs, Ⅱ, "Array Processing with Generalized Beamformers", PhD Thesis, Yale University, New Haven, CT, 1971.
    [72] Milton Abramowitz and Irene A., "Handbook of Mathematical Functions", Number 55 in National Bureau of Standards Applied Mathematics Series, U.S. Department of Commerce, 1964.
    [73] I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series, and Products", Academic Press, Inc., 4 editions, 1980.
    [74] Athanasios Papoulis, "Probability, Random Variables, and Stochastic Processes", McGraw-Hill, third edition, 1991.
    [75] Harry L. Van Trees, "Array Processing: Detection, and Estimation Theory, ⅳ (draft)", 1997.
    [76] M. Zatman, "How Narrow is Narrowband?" IEE Proc. Radar, Sonar Naving., 145(2): 85-91, April 1998.
    [77] H. Akaike, "A New Look at the Statistical Model Identification," IEEE Trans. Automatic Control, 19: 716-723, 1974.
    [78] G. Schwartz, "Estimating the Dimension of a Model", Ann. Statistics, 6: 4461-4464, 1978.
    [79] H. B. Lee, "Eigenvalues and Eigenvectors of Covariance Matrices for Signals Closely Spaced in Frequency", Signal Processing, IEEE Transactions on, 40(10): 2518-2535, October 1992.
    [80] H.L. Van Trees, "Optimum Array Processing", New York: Wiley, 2002.
    [81] Aboulnarsr Hassanien, Shahram Shahbazpanahi and Alex B. Gershman, "A Generalized Capon Estimator for Localization of Multiple Spread Sources", IEEE Transactions on Signal Processing, Vol. 52, No. 1, January 2004.
    [82] R. Raich, J. Goldberg and H. Messer, "Bearing Estimation for a Distributed Source via the Conventional Beamformer", Proc. Stat. Signal Array Process, Workshop, pages 5-8, Sep. 1998.
    [83] A. Swindlehurst and Petre Stoica, "Maximum Likelihood Methods in Radar Array Signal Processing", Signal Processing Technical Report IR-S3-SB-9717, Royal Institute of Technology, Department of Signals, Sensors and Systems, May 1997.
    [84] A. Swindlehurst and Petre Stoica, "Radar Array Processing with Antenna Arrays via Maximum Likelihood", Conference Record of the Thirty-First Asilomar Conference on Signal, Systems and Computers, 2:1219-1223, 1997.
    [85] A. Swindlehurst and Petre Stoica, "Maximum Likelihood Methods in Radar Array Signal Processing", Proceedings of the IEEE, 86(2):421-441, February 1998.
    [86] P. Zetterberg and B. Ottersten, "The Spectrum Efficiency of a Basestation Antenna Array System for Spatially Selective Transmission", IEEE Trans. On Vehicular Technology, 1995,44(3): 651-660.
    [87] 杨益新,“声纳波束形成与波束域高分辨方位估计技术研究”,西北工业大学博士学位论文,2002。
    [88] 李启虎,“声纳信号处理引论(第二版)”,北京:海洋出版社,2000。
    [89] Johnson D H, Dudgeon D E, "Array Signal Processing: Concept and Techniques", Englewood Cliffs, NJ: Prentice-Hall, 1993.
    [90] Zoltowski M D, Kautz C M and Silverstein S D, "Beamspace root-MUSIC", IEEE Trans. Signal Processing, 1993, 41(11), 344-364.
    [91] Lee H B, Wengrovitz M S, "Resolution Threshold of Beamspace MUSIC for Two Closely Spaced Emitters", IEEE Trans. Acoust., Speech, Signal Processing, 1990, 38(9), 1545-1559.
    [92] Bienvenu G, Lopp L, "Decreasing High Resolution Method Sensitivity by Conventional Bearnformer Processing", in Proc. of Int. Conf. on Acoust., Speech, Signal Processing, 1984, pp. 33.2.1-33.2.4.
    [93] B. D. Rao and K. V. S. Hari, "Performance Analysis of Root-Music", IEEE transactions on Acoustics, Speech, and Signal Processing, 37(12):1939-1949, December 1989.
    [94] Arthur J. Barabell, "Improving the Resolution Performance of Eigenstructure-based Direction-finding Algorithm", in Proc. ICASSP, Boston, MA, 1983, 1919. 336-339.
    [95] 李燮,“分布式目标参数估计”,西安电子科技大学硕士学位论文,2003。
    [96] “数学手册”,高等教育出版社,1979。
    [97] P. Zetterkrg and B. Ottersten, "The Spectrum Efficiency of a Base Station Antenna Array System for Spatially Selective Transmission," IEEE Trans. Vehicular Technology, vol. 44, no.3, pp. 65 1-660, Aug. 1995.
    [98] O. Besson, E Vincent, P. Stoica, and A. B. Gershman, "Approximate Maximum Likelihood Estimators for Array Processing in Multiplicative Noise Environments," IEEE Tram. Signal Processing, vol. 48, pp. 2506-25 18, Sep. 2000.
    [99] M. Ghogho, O. Besson, and A. Swami, "Estimation of Directions of Arrival of Multiple Scattered Sources," IEEE Trans. Signal Processing, Vol. 49, pp. 2467-2480, Nov. 2001 .
    [100] K. I. Pedersen, P. E. Mongcnsen, and B. H. Fleury, "A Stochastic Model of the Temporal and Azimuthal Dispersion Seen At the Base Station in Outdoor Propagation Environments," IEEE Trans. Vehicular Technology, vol. 49, no. 2, pp. 437-447, Mar. 2000.
    [101] A. Monakov and O. Besson, "Direction Finding for an Extended Target with Possibly Non-symmetric Spatial Spectrum," JEEE Trans. Signal Processing, vol. 52, pp. 283-287, Jan. 2004.
    [102] D. M. Tittirington, A. F. M. Smith and U. F. Makov, "Statistical Analysis of Finite Distributions", Wiley, New York, 1985.
    [103] G J. Mclachlam and K. E. Basford, "Mixture Models: Inference and Applications to Clustering", Marcel Dekker, New York, 1988.
    [104] B. S. Everitt and D. J. Hand, "Finite Mixture Distributions", Chapman & Hall, London, 1981.
    [105] R. O. Duda and P. E. Hart, "Pattern Recognition and Scene Analysis", Wiley, New York, 1973.
    [106] J. Koreyaar, "Mathematical Methods", vol. 1, pp. 330-333, Academic Press, New York, 1968.
    [107] W. Feller, "An Introduction to Probability and Its Applications", vol. II, pp. 249, John Wiley & Sons, New York, 1966.
    [108] S. S. Gupta and W. T. Huang, "On Mixtures of Distributions: A Survey and Some New Results on Ranking and Selection", Sankhya Ser. B. 43, 245-290, 1981.
    [109] M. Aitkin and D. B. Rubin, "Estimation and Hypothesis Testing in Finite Mixture Models", J. R. Stat. Soc. B, 47,67-75,1985.
    [110] K. E. Basford and G J. Maclachlan, "Likelihood Estimation with Normal Mixture Models", Appl. Stat., 34, 282-289,1985.
    [111] J. Behboodian, "On a Mixture of Normal Distributions", Biometrika, 57, 215-217,1970.
    [112] J. G Fryer and C. A. Robertson, "A Comparison of Some Methods for Estimating Mixed Normal Distributions", Biometrika, 59, 639-648,1972.
    [113] V. Husselblad, "Estimation of Finite Mixtures of Distributions from Exponential Family", J. Am. Stat. Assoc., 64,1459-1471, 1969.
    [114] R. A. Render and H. F. Walker, "Mixture Densities, Maximum Likelihood and EM Algorithm", SIAM Rev., 26(2), 195-293,1984.
    [115] H. G C. Traven, "A Neural Network Approach to Statistical Pattern Classification by Semiparametric Estimation of Probability Density Function", IEEE Trans. Neural Networks, 2(3), 366-377,1991.
    [116] H. amindavar and J. A. Ritchey, "Pade Approximations of Probability Functions", IEEE Trans. Aerosp. Eletron. Syst., AES-30,416-424, 1994.
    [117] D. F. Specht, "Probabilistic Neural Networks", Neural Networks, 3, 109-118, 1990.
    [118] T. Y. Young and G. Copaluppi, "Stochastic Estimation of a Mixture of Normal Density Functions Using an Information Criterion", IEEE Trans. Inf. Theory, IT-16,258-263,1970.
    [119] R. J. Hathaway, "Another Interpretation of the EM Algorithm for Mixture Distributions", Stat. Probability Lett., 4, 53-56.
    [120] R. A. Render and H. F. Walker, "Mixture Densities, Maximum Likelihood and the EM Algorithm", SIAM Rev., 26(2), 195-293,1984.
    [121] R. A. Patrick, "Fundamentals of Pattern Recognition", Prentice-Hall, Englewood Cliffs, NJ, 1972.
    [122] J. C. Rajapakse, J. N. Gieldd and J. L. Rapaport, "Statistical Approach to Segmentation of Single-channel Cerebral MR Images", IEEE Trans. Med. Imaging, 16(2), 176-186, 1997.
    [123] P. Schroeter, J. M. Vesin, T. Langenberger and R. Meuli, "Robust Parameter Estimation of Intensity Distributions for Brain Magnetic Resonance Images", IEEE Trans. Med. Imaging, 27(2), 172-186,1998.
    [124] J. C. Rajapakse and F. Kruggel, "Segmentation of MR Images with Intensity Inhomogeneities", Image Vision Comput, 16(3), 165-180,1998.
    [125] S. G Sanjay and T. J. Hebert, "Bayesian Pixel Classification Using Spatially Variant Finite Mixtures and The Generalized EM Algorithm", IEEE Trans. Image Process., 7(7), 1024-1028,1998.
    [126] R. S. Bucy and P. D. Joseph, "Filtering for Stochastic Process with Application to Guidance, Interscience", New York, 1968.
    [127] A. S. Zeevi and R. Meir, "Density Estimation through Convex Combination of Densities: Approximation and Estimation Bounds", Neural Networks, 10(1), 99-109,1997.
    [128] H. W. Sorenson and D. L. Alspach, "Recursive Bayesian Estimation Using Gaussian Sums", Automatics, 7, 465-479,1971.
    [129] H. W. Sorenson and A. R. Stubberud, "Nonlinear Filtering by Approximation of a Posteriori Density", Int. J. Control, 38, 33-51,1968.
    [130] T. Numera and A.R. Stubberud, "Gaussian Sum Approximation for Non-linear Fixed Point Prediction", Int. J. Control, 38,1047-1053,1983.
    [131] H. M. Kim and J. M. Mendel, "Fuzzy Basis Functions: Comparisons with Other Basis Functions", IEEE Trans. Fuzzy Syst, 3, 158-168,1995.
    [132] A. P. Dempster, N. M. Laird and D. B. Rubin, "Maximum Likelihood from Incomplete Data via the EM Algorithm", J. Royal Statical Soc, Ser. B, vol. 39, no.1, pp.1-38,1977.
    [133] C. Jiang, "The Use of Mixture Models to Detect Effects of Major Genes on Quantitative Characteristics in a Plant-breeding Experiment", Genetics, vol. 136, no. 1, pp. 383-394,1994.
    [134] R. Redner and H. F. Walker, "Mixture Densities, Maximum-likelihood Estimation and The EM Algorithm (review)", SIAM Rev., vol. 26, no. 2, pp. 195-237,1984.
    [135] J. Schmee and G J. Hahn, "Simple Method for Regression Analysis with Censored Data", Technometrics, vol. 21, no. 4, pp. 417-432,1979.
    [136] R. Little and D. Rubin, "On Jointly Estimation Parameters and Missing Data by Maximizing the Complete-data Likelihood", Am. Statistn., vol. 37, no. 3, pp. 218-300, 1983.
    [137] Zheng Cheng and T. T. Tjhung, "A New Algorithm for Explicit Time Delay Estimation," IEEE DSP, 2002, pp. 1297-1300.
    [138] A. H. Quazi, "An Overview on the Time Delay Estimate in Active and Passive Systems for Target Localization," IEEE Trans, Acoust., Speech, Signal Processing, vol.ASSP-29, no.3, pp.527-533, June 1981.
    [139] W. W. Smith and P. G Steffes, "Time-Delay Techniques for Satellite Interference Location System," IEEE Trans. Aerospace and Elect. Sys., vol.25, no.2, pp.224-230, March 1989.
    [140] R. V. Foutz, "Estimation of a Common Group Delay between Two Multiple Time Series," J. Amer. Stat. Ass., vol.75, pp.779-788, Dec. 1980.
    [141] G. C. Carter and Richard Robinson, "Ocean Effects on Time Delay Estimation Requiring Adaptation," IEEE Journal of Oceanic Engineering, vol.18, no.4, October 1993.
    [142] Brian G Ferguson, "Improved Time-Delay Estimation of Underwater Acoustic Signals Using Beamforming and Prefiltering Techniques," IEEE Journal of Oceanic Engineering, vol.14, no.3, July 1989.
    [143] Shyh-Neng Lin and Shiunn-Jang Chern, "A New Adaptive Constrained LMS time Delay Estimation Algorithm," Signal Processing, 71,1998, pp.29-44.
    [144] K.C.H., P. C. Ching and Y. T. Chan, "A New Configuration for Convergence Speedup in Adaptive Time-Delay Estimation," IEEE Transactions on Signal Processing, vol.40, no. 11, November 1992.
    [145] Nader M. Namazi and Bharat Biswal, "Variable Time Delay Estimation in Colored and Correlated Noise Enviroment," IEEE Transactions on Aerospace and Electronic Systems, vol.28, no.2, April 1992.
    [146] C. H. Knapp and G. C. Carter, "The Generalized Correlation Method for Estimation of Time Delay," IEEE Trans, Acoust., Speech, Signal Processing, vol.ASSP-24, pp.320-327, Aug.1976.
    [147] M. Kaveh and A. Barabell, "The Statistical Performance of the MUSIC and the Minimum-norm Algorithms in Resolving Plane Waves in Noise", IEEE Trans. onASSP, 34(2):331-341, April 1986.
    [148] B. Porat and B. Friedlander, "Analysis of the Asymptotic Relative Efficiency of the MUSIC Algorithm", IEEE Trans. on ASSP, 36(4):532-544, April 1988.
    [149] P. Stoica and A. Nehorai, "MUSIC, Maximum Likelihood, and Cramer-Rao bound", IEEE Trans. on ASSP, 37(5):720-741, May 1989.
    [150] K. M. Wong, R. S. Walker and G. Niezgoda, "Effects of Random Sensor Motion on Bearing Estimation by the MUSIC Algorithm", IEE Proceeding, 135, Pt. F(3):233-250, June 1988.
    [151] F. Li and R. Vaccaro, "Statistical Comparison of Subspace Based DOA Estimation Algorithm in the Presence of Sensor Errors", In Proc.5th ASSP Spectral Estimation Workshop, pages 327-331, Rochester, NY, October 1990.
    [152] B. Friedlander, "A Sensitivity Analysis of the MUSIC Algorithm", IEEE Trans. on ASSP,38(10):1740-1751,October 1990.
    [153] P. Stoica and A. Nehorai, "MUSIC, Maximum Likelihood, and Cramer-Rao bound", IEEE Trans. on ASSP, 38(12):2140-2150, December 1990.
    [154] R. H. Roy, "ESPRIT-Estimation of Signal Parameters Via Rotational Invariance Techniques", PHD thesis, Stanford University, Stanford, CA, 1987.
    [155] A. L. Swindlehurst, B. Ottersten, R. Roy and T. Kailath, "Multiple Invariance ESPRIT", IEEE Trans. Signal Processing, vol.40, pp. 867-881, April 1992.
    [156] K. T. Wong and M. D. Zoltowski, "Close-form Multidimensional Multi-invariance ESPRIT", in Proc. ICASSP'97, (Munich, FRG),pp. 3489-3493, April 1997.
    [157] P. STOICA and R. L. MOSES, "1997 Introduction to Spectral Analysis", Upper Saddle River, NJ: Prentice-Hall.
    [158] S. M. KAY 1988, "Modern Spectral Estimation, Theory and Application", Englewood Cliffs, NJ: Prentice-Hall.
    [159] R. ROY and T. KAILATH 1989, "ESPRIT estimation of signal parameters via rotational invariance techniques", IEEE Transactions on Acoustics, Speech and Signal Processing, 37, 984-995.
    [160] M. N. Murthi and B. D. Rao, "All-pole Modeling of Speech Based on the Minimum Variance Distortionless Response Spectrum", IEEE Trans. on Speech and Audio Processing, pp. 221-239, May 2000.
    [161] M. D. Zoltowski, "On the Performance Analysis of the MVDR Beamformer in the Presence of Correlated Interference," IEEE Trans. Acoust., Speech, Signal Processing, vol. 36, pp. 945-947,1988.
    [162] K. J. Raghunath and U. V. Reddy, "Finite Data Performance Analysis of MVDR Beamformer with and Without Spatial Smoothing," IEEE Trans. Acoust., Speech, Signal Processing, vol. 40, pp. 2726-2736,1992.
    [163] W. H. Yang and K. K. Chan, "Programmable Switched-capacitor Neural Network for MVDR beamforming," IEEE J. Oceanic Eng., vol. 21, pp. 77-84, 1996.
    [164] P. R. Chang, W. H. Yang, and K. K. Chan, "A Neural Network Approach to MVDR Beamforming Problem," IEEE Trans. Antennas Propagat., vol. 40, pp. 313-322,1992.
    [165] Y. Bresler and A. Macovski, "Exact Maximum Likelihood Parameter Estimation of Superimposed Exponential Signals in Noise," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-34, pp. 1081-1089, Oct. 1986.
    [166] I. Ziskind and M. Wax, "Maximum Likelihood Localization of Multiple Sources by Alternating Projection," IEEE Trans. Acoust., Speech, Signal Processing, vol. 36, pp. 1553-1560, Oct. 1988.
    [167] V. Nagesha and S. Kay, "Maximum Likelihood Estimation for Array Processing in Colored Noise," IEEE Trans. Signal Processing, vol. 44, pp. 169-180, Feb. 1996.
    [168] H. L. Van Trees, "Detection Estimation and Modulation Theory", New York: Wiley, 1968.
    [169] P. Stoica and K. C. Sharman, "Maximum Likelihood Methods for Direction-of-anival Estimation", IEEE Trans. Acoust., Speech, Signal Proc, vol. ASSP-38, no. 7, pp. 1132-1142, July 1990.
    [170] J. F. Bohme, "Estimation of Source Parameters by Maximum Likelihood and Nonlinear Regression", In Proc. ICASSP'84, pages 7.3.1-7.3.4,1984.
    [171] A. G Jaffer, "Maximum Likelihood Direction Finding of Stochastic Sources: a Separable Solution", In Proc. ICASSP'88, pages 2839-2896, New York, N. Y.,1988.
    [172] B. Ottersten, M. Viberg, P. Stoica and A. Nehorai, "Exact and Large Sample ML Techniques for Parameter Estimation and Detection in Array Processing", IEEE Radar Array Processing, pages 99-151, Berlin, 1993.
    [173] Z-S. Liu, J. Li and P. Stocia, "Relax-based Estimation of Damped Sinusoidal Signal Parameters", Signal Processing, 62,1997.
    [174] Jian Li, P. Stoica, and Dumin Zheng, "Angle and Waveform Estimation in the Presence of Colored Noise Via RELAX", Twenty-Ninth Asilomar Conference on Signals, Systems and Computers, Volume 1, 30 Oct.-2 Nov., 1995, Page(s):433-437.
    [175] Zheng-She Liu and Jian Li, "Implementation of the RELAX algorithm", IEEE Transactions on Aerospace and Electronic Systems, vol. 34, Issue 2, April 1998 Page(s): 657-664.
    [176] Jian Li, Dunmin Zheng and P. Stoica, "Angle and Waveform Estimation via RELAX", Aerospace and Electronic Systems, IEEE Transactions on Volume 33, Issue 3, July 1997 Page(s): 1077-1087.
    [177] X. D. Ye, D. G. Fang, G. X. Sheng, and N. Shahid, "2-D Angle Estimation with a Uniform Circular Array via RELAX", Computational Electromagnetics and Its Applications, Proceedings. (ICCEA '99) International Conference on 1999 Page(s):175-178.
    [178] Dunmin Zheng, Jian Li and P. Stoica, "One-dimensional MODE Algorithm for Two-dimensional Frequency Estimation", IEEE Acoustics, Speech, and Signal Processing, ICASSP-97 International Conference on Volume 5, 21-24 April, 1997 Page(s):3981 - 3984.
    [179] A. L.Swindlehurst, P. Stoica and M. Jansson, "Exploiting Arrays with Multiple Invariances Using MUSIC and MODE", IEEE Transactions on Acoustics, Speech, and Signal Processing, Volume 49, Issue 11, Nov. 2001 Page(s): 2511-2521.
    [180] Changlin Ma, Yingning Peng and Lisheng Tian, "An Improved MODE Algorithm for DOA Estimation Based on UCA", IEEE Proceedings of Speech and Image Technologies for Computing and Telecommunications, Volume 2, 2-4 Dec., 1997 Page(s): 811-814.
    [181] V. Weerackody and S. A. Kassam, "Blind Adaptive Equalization Using Dual-MODE Algorithms", Twenty-Fourth Asilomar Conference on Signals, Systems and Computers, Volume 1, 5-7 Nov. 1990, Page(s):263.
    [182] K.L. Li and S. W. Cheung, "Modified MAP Algorithm Incorporated with PSA Technique for Turbo Codes in Rayleigh Fading Channels", Electronics Letters, Volume 35, Issue 7, 1 April, 1999, Page(s):537-539.
    [183] B. Porat and B. Friedlander, "Direction Finding Algorithms Based on High-order Statistics", IEEE Trans. on SP, vol.39, pp. 2016-2025, Jan. 1991.
    [184] 张贤达,“时间序列分析——高阶统计量方法”,清华大学出版社,1996年4月。
    [185] J. F Cardoso, "Higher-Order Narrow-Band Array Processing", Proc. Int. Sig. Proc. Work. on HOS, pp 121-130, Chamrousse, 1991.
    [186] E. Moulines, J. F Cardoso, "Second-order Versus Fourth-order MUSIC Algorithms: An Asymptotical Statistical Performance Analysis", Proc. Int. Sig. Proc. Work. on Higher-Order Statistics, pp 121-130, Chamrousse, 1991.
    [187] S. Shamsunder, G. Giannakis, "Detection and Parameter Estimation of Multiple Sources via HOS", Proc. Int. Sig. Proc. Work. on HOS, pp. 265-268, Chamrousse, 1991.
    [188] J. M. Mendel, "Tutorial on Higher-order Statistics (Spectra) in Signal Processing and System Theory: Theoretical Results and Some Applications", Proc. IEEE, vol.79, no. 3, 1991.
    [189] J. F. Cardoso, "Super-Symmetric Decomposition of the Fourth-Order Cumulant Tensor: Blind Identification of More Sources than Sensors", Proc. ICASSP'91, pp. 3109-112, Toronto, 1991.
    [190] J. F. Cardoso, "Eigen-structure of the Fourth-order Cumulant Tensor with Application to the Blind Source Separation Problem", Proc. ICASSP'90, pp. 2655-2658, Albuquerque, 1990.
    [191] A. L. Swindelhurst, T. Kailath, "Detection and Estimation Using the Third Moment Matrix", Proc. ICASSP'89, pp. 2325-2328, Glasgow, May 1989.
    [192] H. H. Chiang, C. Nikias, "The ESPRIT Algorithm with Higher-order Statistics", Proc. Workshop on Higher-Order Spectral Analysis, Vail, 1989.
    [193] 万群,杨万麟,“相干分布式目标一维波达方向搜索迭代估计方法”,电子 科技大学学报,vol.29,no.6,pp.583-586,2000。
    [194] 万群,杨万麟,“一种分布式目标波达方向估计方法”,通信学报,vol.22,no.2,pp.65-70,2000。
    [195] 李强,李志舜,穆海燕,“分布式目标方位估计新方法”,弹箭与制导学报,vol.25,no.4,pp.975-977,2005。
    [196] 杨海,“分布式目标波达方向估计方法研究”,西北工业大学硕士学位论文,2001。
    [197] Mats Bengtsson and Bjorn, "A Generalization of Weighted Subspace Fitting to Full-rank Models", IEEE Transactions on Signal Processing, 49(5): 1002-1012, May 2001.
    [198] Goldberg J, Messer H. "A Polynomial Rooting Approach to the Localization of Coherently Scattered Sources", ICASSP, 1998, 4: 2057-2060
    [199] Abdellatif T, Larzabal P and Clergeot H, "Performance Study of a Generalized Subspace-based Method for Scattered Sources", ICASSP, 2000, 5:3101-3104
    [200] Jeong J S, Sakaguchi K and Takada J, et al, "Generalization of MUSIC Using Eextended Array Mode Vector for Joint Estimation of Instantaneous DOA and Angular Spread", IEICE Trans. Comm., 2002, E84-B(7): 1781-1789.
    [201] Mats Bengtsson and Bjorn Ottersten, "Low Complexity Estimation for Distributed Sources", Signal Processing Technical Report IR-$3-9721, Royal Institute of Technology, Department of Signals, Sensors and Systems, October 1997.
    [202] Mats Bengtsson and Bjorn Ottersten, "Rooting Techniques for Estimation of Angular Spread with an Antenna Array", Vehicular Technology Conference, 1997, IEEE 47th, 2: 1158-1162, 1997.
    [203] Mats Bengtsson and Bjorn Ottersten, "Low Complexity Estimation for Distributed Sources", IEEE Transactions on Signal Processing, 48(8): 2185-2194, August 2000.
    [204] S. Shahbazpanahi, S. Valaee and M. H. Bastani, "Distributed Source Localization Using Esprit Algorithm", IEEE Transactions on Signal Processing, 49(10): 2169-2178, October 2001.
    [205] Bjorn Ottersten, P. Stoica and R. Roy, "Covariance Matching Estimation Techniques for Array Signal Processing Applications", Digital Signal Processing, pages 185-210, August 1998.
    [206] Olivier Besson and Petre Stoica, "Decoupled Estimation of DOA and Angular Spread for Spatially Distributed Source", Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems and Computers, 1: 253-257, 1999.
    [207] Olivier Besson and Petre Stoica, "Decoupled Estimation of DOA and Angular Spread for Spatially Distributed Source", Signal Processing, IEEE Transactions on, 48(7): 1872-1882, July 2000.
    [208] Abdellatif T, Larzabal P and Clergeot H, "Linear Prediction Methods for Scattered Sources", VTC, 1999, 1: 112-116.
    [209] Goldberg J and Messer H, "A Polynomial Rooting Approach to the Localization of Coherently Scattered Sources", ICASSP, 1998, 4: 2057-2060.
    [210] Lora G. Weiss, "Wideband, Nearfield Processing of Spatially Distributed Source Using Multiple Wavelet Transforms", Digital Signal Processing work-shop, pages 1.16.1-1.16.2, 1992.
    [211] 李强,李志舜,“分布源目标方位估计的降维MLE算法”,声学技术学报,已录用。
    [212] S.J. Liu, Q. Wang and Y. N. Peng, "A Robust Beating Estimator Based on Jacobi-Anger Expansion for Large Angular Spread Source", IEEE Sensor Array and Multichannel Signal Processing Workshop, August, 2002: 499-502.
    [213] Shohei Kikuchi, Hiroyuki Tsuji and Akira Sano, "Direction-of-Arrival Estimation for Spatially Non-symmetric Distributed Sources", IEEE Sensor Array and Multichannel Signal Processing Workshop, 2004: 589-593.
    [214] 王永良,陈辉,彭应宁,万群,“空间谱估计理论与算法”,清华大学出版社,2004。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700