深度混合动力汽车整车系统控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合动力汽车由于其兼备传统燃油汽车和纯电动汽车的双重优点,是近阶段汽车发展较为理想的选择,而搭载有采用行星排耦合技术的动力分流系统的深度混合动力汽车,其不仅燃油利用率高、节能减排效果好,而且市场占有率高,从而成为未来混合动力汽车的发展趋势,是汽车制造商争相发展的目标。本文通过对深度混合动力汽车动力系统结构和工作原理的研究和分析,对比先进混合动力技术,设计了整车运行模式、整车状态控制方法以及与之匹配的系统控制算法,采用建模和快速控制原型技术,经控制系统仿真、动力总成台架试验和整车转鼓试验成功地验证了系统控制算法的正确性,可以为同类型深度混合动力汽车系统控制技术的研究和开发提供一定的技术指导和借鉴。
     设计并研究了深度混合动力汽车动力系统的结构和工作原理,对比经典和先进混合动力技术的结构和优缺点,设计了深度混合动力汽车的整车运行模式。采用扭矩控制方法和功率平衡控制技术,通过数学分析获得了混合动力系统中双行星排的各轴扭矩方程、扭矩平衡方程、动力学方程以及整车电功率平衡方程和动力学方程,并以以上数学方程为基础,设计了用于计算动力部件扭矩和功率的基础函数。
     基于动力系统的基础函数和等效杠杆原理,通过对深度混合动力汽车整车各运行模式的分析和计算,以及对整车挡位状态、发动机状态和制动器状态等整车关键部件状态的控制研究,并结合对电机能力、发动机能力、动力电池能力、整车需求扭矩、动力电池荷电状态阈值以及发动机水温阈值等整车关键参数的计算和定义,设计了整车运行模式和状态控制的系统控制算法。
     采用Simulink/Stateflow建模软件,将整车的动力系统基础函数,各运行模式控制算法,整车各关键部件状态控制算法,以及整车各关键参数的计算和定义算法建成了系统控制模型,并通过MotoTron快速控制原型系统开发工具将系统控制模型集成为快速控制原型开发系统,经系统仿真、动力总成台架试验和整车转鼓试验,从静态测试和动态测试两个方面成功地验证了深度混合动力汽车系统控制算法的正确性。
     本文所设计的深度混合动力汽车的整车系统控制算法,采用扭矩控制方法和功率平衡控制技术,在合理分配发动机能量的同时,降低了整车的燃油消耗和排放,保证了整车的稳定运行以及整车各运行模式之间的平滑切换,达到了整车在经济性、动力性和排放性能上的最佳控制目标。
     结合深度混合动力汽车系统控制算法的研究成果,学习和研究以Prius、Insight和Volt为代表的先进混合动力汽车动力系统的结构和整车系统控制算法,分析和对比我国开发混合动力汽车技术的不足,并明确以行星排动力分流系统作为混合动力汽车动力系统结构的主要发展趋势,为我国自主研发和设计混合动力汽车提供必要的技术支持,填补国内在动力分流深度混合动力汽车系统控制技术和试验研究上的空白,对未来我国汽车工业的发展具有深远意义。
Having the merits of traditional fuel vehicle and pure electric vehicle, hybrid car is the idealchoice for recent vehicle development. The full hybrid vehicle, being popular among vehiclemanufacturers, has become the major trend of future hybrid vehicles because of its great fuelefficiency, good energy saving effect, and high market share. Based on the research and analysis ofthe structure and working principles of full hybrid vehicle power system, and the comparison withadvanced hybrid technology, this paper designed the vehicle operating mode, state control method andits matching system control algorithms. With the help of modeling and rapid control prototypingtechnology, the correctness of the system control algorithms was verified successfully through controlsystem simulation, powertrain bench test and revolving drum test. This paper could provide technicalguidance and reference for the research and development of the same type of hybrid vehicles.
     The paper designed and researched the structure, working principles and the car operating modeof full hybrid vehicle power system in comparison with the structure and advantages/disadvantages ofclassical and advanced hybrid technology. Using torque control method and power balance controltechnology, the shaft torque equations, torque balance equation, kinetic equation and the vehicleelectric power balance equation, kinetic equation of the double planetary line of full hybrid vehiclepower system were obtained with mathematical analysis. And the basic function of power system wasdevised for calculating power components torque and power on the basis of above mentionedmathematical equations.
     Based on basic equations and equivalent lever principle of power system, the system controlalgorithm of vehicle operating mode and state control was designed through the analysis andcalculation of different running modes of full hybrid vehicle and the controlled study of the status offull hybrid vehicle key components, such as the status of vehicle gear, the engine and the brake, aswell as the computation and defining of the key parameters, such as the motor capacity, the enginecapacity, the power battery capacity, the vehicle demand torque, the power battery charge statethreshold and the engine water temperature threshold.
     The system control models of the power system basic equations, operation mode controlalgorithms, the key components’ status control algorithms and the calculating and defining algorithmsof key parameters were built with Simulink/Stateflow modeling software. Using MotoTron rapidcontrol prototyping system development tool, these system control models were integrated into rapidcontrol prototyping system, based on which the correctness of the system control algorithms wasverified successfully through system simulation, powertrain bench test and revolving drum test from two aspects of static and dynamic test.
     The vehicle system control algorithm of the full hybrid vehicle in this paper was developedutilizing torque control method and power balance control technology. With the reasonabledistribution of engine energy, it had reduced the fuel consumption and emissions, ensuring the stableoperation of the vehicle as well as the smooth switching between different running modes. As a result,the vehicle realizes the optimal control object in terms of economy, power and emission performance.
     Referring to the research findings of hybrid vehicle system control algorithm, this paper studiedand researched the advanced hybrid vehicle power system structures and system control algorithmrepresented by Prius, Insight and Volt, analyzed and compared the shortcomings of hybrid vehicletechnology development in China, and affirmed the planetary line power split system as the maintrend of hybrid vehicle power system structure. It could be a necessary technical assist to China’s owndevelopment and design of hybrid vehicles, and fill the blank of research and experiment of powersplit full hybrid vehicle system control technology, and could be profound significance for futuredevelopment of China’s automobile industry.
引文
[1] M.Eghtessad, T.Kassel, F.Kuecuekay. Requirement engineering of electrified drivetrains[C].9thInternational CTI symposium, Volume1, Nov.30th,2010. Berlin, Germany.
    [2] Stephan Rinderknecht, Torben Meier. Transmissions for electrified power trains-concepts,requirements, challenge[C].9thInternational CTI symposium, Volume1, Nov.30th,2010. Berlin,Germany.
    [3]曹秉刚.中国电动汽车技术新进展[J].西安交通大学学报,2007,41(1):114~118.
    [4] B Vahlensieck. Hybrid and EV drivelines: A closer look to different concepts and solutions[C].9thInternational CTI symposium, Volume1, Nov.30th,2010. Berlin, Germany.
    [5] Ahn K, Cho S, Park Y. Diesel HEV control strategy for enhanced fuel economy and reduced NOxemissions[C]. AEVC-3,2004.
    [6] Conlon, B. Comparative analysis of single and combined hybrid electrically variabletransmission operation modes[C]. SAE paper:2005-01-1162,2005.
    [7]张华,周荣.混联式混合动力汽车控制策略开发与仿真研究[J].汽车技术,2007(8):27~29.
    [8]张金柱.丰田第二代混合动力系统[J].内燃机,2005(03):6~9.
    [9] Miller J M, Everett M. An assessment of ultra-capacitors as the power cache in Toyota THS-Ⅱ,GM-Allison AHS-2and Ford FHS hybrid propulsion systems[C]. Proceedings of Applied PowerElectronics Conference and Exposition, Austin, Texas, USA,2005,1:481~490.
    [10]赵晓静,武一民,王海霞.丰田PRIUS混合动力传动系统分析与建模[J].机械传动,2010,34(6):31~35.
    [11]纪峻岭,齐晓杰,朱荣福.丰田混合动力汽车动力研究[J].交通科技与经济,2007,9(6):51~53.
    [12] Hendrickson J, Holmes A, Freiman D. General Motors Frontwheel Drive Two-mode HybridTransmission[C]. SAE Paper:2009-01-0508,2009.
    [13] T Grewe, B Conlon, A Holmes. Defining the General Motors2-mode hybrid transmission[C].SAE paper:2007-01-0273,2007.
    [14]魏长河,王忠,王宇成,等.弱混合动力柴油机起动工况仿真与实验[J].农业机械学报,2010(4):6~11.
    [15]王燕,夏顺礼,韩太安.微混合动力产品研究[J].合肥工业大学学报,2009(11):61~63.
    [16]王明,孙骏,王超.双离合ISG混合动力汽车控制策略[J].汽车工程学报,2013(1):22~27.
    [17]叶心,秦大同,胡明辉,等. ISG型中度混合动力汽车能量管理策略研究[J].系统仿真学报,2011(4):832~837.
    [18] Ehsani M, Gao Y, Miller J M. Hybrid electric vehicle: Architecture and motor drives[C].Proceedings of the IEEE,2007,95(4):719~728.
    [19] Chan C C. The state of the art of electric, hybrid, and fuel cell vehicles[C]. Proceedings of theIEEE,2007,95(4):704~718.
    [20] Ehsani M, Rahman K M, Toliyat H A. Propulsion System Design of Electric and HybridVehicles[J]. IEEE Transactions on Industrial Electronic,1997,44(1):19~27.
    [21] Chan C C. The State of the Art of Electric and Hybrid Vehicles[J]. Proceedings of the IEEE,2002,90(2):247~275.
    [22]邓元望,王耀南,陈洁平.混合电动汽车驱动系统的分类方法及应用[J].农业机械学报,2006,37(5):22~25.
    [23] Fesefeldt T, Muller S. Optimization and Comparison of Quick and Hybrid Start[C]. SAE Paper2009-01-1340,2009.
    [24]戴一凡,罗禹贡,李克强,等.单电机强混合动力电动车辆的动态协调控制[J].汽车工程,2011(12):1007~1012.
    [25]戴一凡,罗禹贡,边明远,等.单电机式强混合动力车辆控制策略[J].中国机械工程,2010(7):872~876.
    [26]陈东,徐寅,梁华军.双电机后轮驱动混合动力汽车电子差速控制的研究[J].汽车工程,2013(1):46~50.
    [27]李骏,赵子亮,刘明辉,等.插电式双电机强混合动力轿车的参数匹配[J].吉林大学学报,2011(2):298~302.
    [28]麻友良,陈全世.混合动力汽车的发展[J].公路交通科技,2001,18:77~80.
    [29]姜顺明,黄鼎友.串联式混合动力汽车性能模拟的研究[J].农业机械学报,2003,34(6):34~36.
    [30]王成,郭淑英,刘凌.串联式混合动力系统在公交客车中的开发与应用[J].机械工程学报,2009,45(2):18~24.
    [31]张欣,郝小健.并联式混合动力汽车动力总成控制策略的仿真研究[J].汽车技术,2005,27(2):141~145.
    [32]罗禹贡,杨殿阁,李孟海.并联式混合动力汽车(PHEV)动态协调控制方法硬件在环仿真[J].机械工程学报,2008,44(5).
    [33] Xiong Weiwei, Zhang Yong, Yin Chengliang. Optimal Energy Management for a Series-parallelHybrid Electric Bus[J]. Energy Conversion&Management,2009,50(7):1730~1737.
    [34]熊伟威,舒杰,张勇.一种混联式混合动力客车动力系统参数匹配[J].上海交通大学学报,2008,42(8):1324~1328.
    [35]纪峻岭,齐晓杰,朱荣福.丰田混合动力汽车驱动系统结构分析及性能研究[J].内燃机,2007(6):4~7.
    [36]刘钊,黄海涛,吴强,等.一种新型混合动力传动装置的行星轮系设计[J].机械科学与技术,2010(10):1282~1284.
    [37]郝利君,王卫东.串联型混合动力公交车性能仿真分析[J].汽车工程.2006(10):881-883.
    [38]李俭,杨正林,何华强.串联式混合动力客车前向建模研究[J].机械与电子,2008(12):24-27.
    [39] G Behnam, Z Abbas. Drive cycle analysis of the performance of hybrid electric vehicles[J].LSMS/ICSEE2010, Part1, LNCS6328,434~444.
    [40] T Hofman, R Van Druten, A. Serrarens, etc. Parametric modeling of components for the selectionand specification of hybrid vehicle drive trans[J]. WEVA J.,2007,1(1):215~224.
    [41] J P Gao, G M G Zhu, E G Strangas, etc. Equivalent fuel consumption optimal control of a serieshybrid electric vehicle[C]. Proc. IMechE, Part D: J. Automobile Engineering,2009,223:1003~1020.
    [42]童毅,欧阳明高,张俊智.并联式混合动力汽车控制算法的实时仿真研究[J].机械工程学报,2003,39(10):156~161.
    [43]张彤,袁银南,朱磊,陈笃红.基于超级电容的并联混合动力轿车的开发[J].内燃机工程,2008,29(1):1~5.
    [44]王保华,王伟明,张建武,罗永革.并联混合动力汽车控制策略比较研究[J].系统仿真学报,2006(2):401~404.
    [45]王爱华.并联式混合动力车能量控制策略设计[J].南京航空航天大学学报,2009,26(2):107~113.
    [46]郭晋晟,王家明,杨林.无级变速混联式混合动力客车能量分配策略[J].中国公路学报,2008,21(5):115~120.
    [47]王家明,郭晋晟,冒晓建.新型混联式混合动力客车动力系统分析[J].汽车技术,2008(9):1~4.
    [48] Zhang Hua, Zhou Rong. Development of control strategy and simulation research forseries-parallel HEV[J]. Automobile Technology,2007(8):27~29.
    [49]左义和,项昌乐,闫清东.基于功率跟随的混联混合动力汽车控制策略[J].农业机械学报,2009,40(12):23~29.
    [50] Schulenberg. Electrification of the drive train-challenges and opportunities[C]. Internationalhybrid vehicle technology development and large-scale operation semina. Dec10~12, Beijing,China.
    [51] Kevin D. Today’s Eaton hybrid power system[C]. International hybrid vehicle technologydevelopment and large-scale operation semina. Dec.10~12, Beijing, China.
    [52] T Hofman, T Purnot. A comparative study and analysis of an optimized control strategy for theToyota hybrid system[C]. EVS24International battery, Hybrid and Fuel Cell Electric VehicleSymposium, Stavanger, Norway, May.13~16,2009.
    [53] Masayuki Komatsu, Toshifumi Takaoka. Development of Toyota plug-in hybrid system[C]. SAEpaper:2011-01-0874,2011.
    [54] Bart Biebuyck. The new Toyota Prius hybrid system[C]. International Conference onContinuously Variable and Hybrid Transmissions (CVT2010), Maastricht, Nov.17~19,2010.
    [55]范健文,吴彤峰.丰田PRIUS控制策略研究[J].机械制造,2004,42(12):10~12.
    [56] M. Kamiya. Development of Traction Drive Motors for the Toyota Hybrid System [J].Transactions of the Institute of Electrical Engineers of Japan,2006,126(4):473~479.
    [57]张传旺.并联式混合动力城市客车动力系统匹配计算[J].客车技术与研究,2011,33(2):39~41.
    [58]杨芸芸,吴森,黄小枫,黄君.并联式混合动力车动力系统设计及仿真[J].机械设计与制造,2010(7):34~36.
    [59] M Duoba, H Ng. Characterization and comparison of two hybrid electric vehicles(HEVs)-HondaInsight and Toyota Prius[C]. SAE paper:2001-01-1335,2001.
    [60] E. D. Tate, Michael O. Harpster and Peter J. Savagian. The Electrification of the Automobile:From Conventional Hybrid, to Plug-in Hybrids, to Extended-Range Electric Vehicles[C]. SAEpaper:2008-01-0458,2008.
    [61] Brendan M. Conlon, Peter J. Savagian, Alan G. Holmes. Output split electrically-variabletransmission with electric propulsion using one or two motors[P]. US2009/0082171A1,2009-05-26.
    [62] Tony Argote, Gery Kissel. Development of the Chevrolet Volt portable EVSE[C]. SAE paper:2011-01-0878,2011.
    [63]洪永福.中国新能源汽车发展前景展望[J].汽车科技,2009(04):7~10.
    [64]李俊.一汽混合动力轿车技术与产品战略[C].国际混合动力汽车技术发展与规模化应用研讨会,2008, Dec.10~11,北京.
    [65]张凤格,杨赟.并联式混合动力汽车控制策略分析[J].农业装备与车辆工程,2010(6):10~12.
    [66] Olle Sundstroem, Lino Guzzella, Patrik Soltic. Torque-assist hybrid electric powertrain sizing:from optimal control towards a sizing law[C]. IEEE transactions on control systems technology,2010,18(4):837~849.
    [67] C L Wang, C L Yin, T zhang, etc. Powertrain design and experiment research of a parallel hybridelectric vehicle[J]. International Journal of Automotive Technology,2009,10(5):589~596.
    [68] Martin J. Hoeijmakers, Marcel Rondel. The electrical variable transmission in a city bus[C].35thAnnual IEEE Power Electronics Specialists Conference, Aachen, Germany,2004.
    [69] Y Cheng, K Chen, C C Chan, etc. Global modeling and control strategy simulation for a hybridelectric vehicle using electrical variable transmission[C]. IEEE Vehicle Power and PropulsionConference(VPPC), Sep.3~5,2008, Harbin, China.
    [70] Yang H, Kim B, Park Y, et al. Analysis of Planetary Gear Hybrid Powertrain System Part2:Output Split System[J]. International Journal of Automotive Technology,2009,10(3):381~390.
    [71] Y Zhang, H Lin, B Zhang. Performance modeling and optimization of a novel multi-mode hybridpowertrain[J]. Journal of Mechanical Design,2006,128:79~89.
    [72]吴森,张明涛.串联式混合动力电动客车动力系统匹配计算[J].武汉理工大学学报,2009,31(4):594~597.
    [73]朱静,申福林.串联式混合动力客车技术的现状及前景[J].客车技术与研究,2008,30(2):1~3.
    [74]崔星,项昌乐.串联式混合动力车辆驱动系统参数设计与优化[J].机械传动,2010,34(2):30~34.
    [75] M Lee. Sykes. Transmissions in China-key future technologies[C].7thInternational CTIsymposium, Volume1, Dec.2nd,2008, Berlin, Germany.
    [76] Alex Tylee-Birdsall. Design methods for electric vehicle transmission[C].9thinternational CTIsymposium, Volume1, Nov.30th,2010, Berlin, Germany.
    [77] M Klueting. BMW efficient dynamics-objectives for new drivetrain concepts[C].9thinternationalCTI symposium, Volume1, Nov.30th,2010, Berlin, Germany.
    [78] Koichi Hayasaki, Tatsuo Abe, Kaori Tanishima, etc. Development of a parallel hybrid system forRWD vehicles[C]. SAE paper:2011-01-0884.
    [79] Jun Motosugi, Kazutaka Adachi, Hiroyuki Ashizawa, etc. Development of a slip control systemfor RWD hybrid vehicle using integrated motor-clutch control[C]. SAE paper:2011-01-0945,2011.
    [80] U Knoedel, C Koehler. Axel-Split-A scalable hybrid system for various vehicle application of theGetrag BOSCH Cooperation[C].7thinternational CTI symposium, Volume1, Dec.2~3,2008,Berlin, Germany.
    [81] A Moser, V Saxena. BorgWarner Dual Tronic transmission concepts for efficiency, cost&robustness[C].7thinternational CTI symposium, Volume1, Dec.2~3,2008, Berlin,Germany.
    [82] Patrick Debal. Configuration selection for hybrid CVT[C]. CVT2010, Maastricht, Nov.17~19,2010.
    [83] John M. Miller. Hybrid electric vehicle propulsion system architectures of the e-CVT type[C].IEEE Transactions on electronics,2006,21(3):756~767.
    [84] D Choi. Evaluation of fuel economy for a parallel hybrid electric vehicle[J]. KSME InternationalJournal,2002,16(10):1287~1295.
    [85] Barsali S, Miulli C, Possenti A. A Control Strategy to Minimize Fuel Consumption of SeriesHybrid Electric Vehicles[J]. IEEE Transactions on Energy Conversion,2004,19(1):187~195.
    [86]李宏才,王伟达,韩立金.混联式混合动力控制系统硬件在环仿真平台设计与应用[J].公路交通科技,2011,28(4):130~135.
    [87]徐寅,陈东,新型混联式混合动力轿车驱动系统设计[J].汽车工程,2010,32(6):501~504.
    [88] Hong Yang, Anthony Smith, Shawn Swales, etc. Development of two-mode hybrid powertrainwith enhanced EV capability. SAE paper:2011-01-0883,2011.
    [89] Michael A, Miller, Alan G, etc. The GM “Voltec”4ET50multi-mode electric transaxle[C].SAE paper:2011-01-0887,2011.
    [90]吴国强,秦大同,胡建军,等.混合动力行星齿轮动力传动系统方案及参数匹配研究[J].机械设计,2009,26(6):60~66.
    [91]黄宗益.现代轿车自动变速器原理和设计[M].上海,同济大学出版社,2006.
    [92] Bclliord H L, Leising M B. The lever analogy: A new tool in transmission analysis[C]. SAEpaper:1981-429-437,1981.
    [93]王志新,王军. Prius功率分配机构的杠杆模拟方法[J].湖北汽车工业学院学报,2004,18(4):15~17.
    [94]梁海波,高卫民. THS-Ⅱ系统动力分配模式的研究[J].机械设计与制造,2007(2):12~16.
    [95] K Munehiro. Development of traction drive motors for Toyata hybrid system[J]. IEEETransactions on Industry Applications,2006,126(4):473~479.
    [96] D karbowski, J Kwon, N Kim, etc. instantaneously optimized controller for a multi-mode hybridelectric vehicle[C]. SAE paper:2010-01-0816,2010.
    [97] K Buford, J Williams, M Simonini. Determining most enegy efficient cooling control strategy ofa rechargeable energy storage system[C]. SAE paper:2011-01-0893.
    [98] N kim, J Kwon, A Rousseau. Trade-off between multi-mode powertrain complexity and fuelconsumption[C]. EVS-25Shenzhen, China, Nov.5~9,2010.
    [99] A Holmes, M Schmidt. Three-mode, compound-split, electrically-variable transmission[P]. Pub.No.:US2003/0078126.
    [100]李欣,过学迅.拉维娜式行星齿轮机构传动比的图解法计算[J].汽车科技,2005(6):30~33.
    [101]焦安源,鲍力.拉维娜行星齿轮机构精确建模及运动分析[J].机械工程师,2009(2):36~38.
    [102]韩兵,蔡忆昔,张彤,等.强混合动力变速器液压系统设计与动态特性仿真[J].农业机械学报,2011,42(2):43~47.
    [103]韩兵,张彤,蔡忆昔,等.深度混合动力合成箱液压系统集成设计[J].机械设计与研究,2011(2):87~90.
    [104]汪东坪,李舜酩,魏民祥,等.混合动力汽车电子换挡手柄控制信号可靠性设计[J].农业机械学报,2012,43(6):25~29.
    [105] Wang Qingnian, Liu Zhiru, Wang Weihua. Modeling and Simulation of Hybrid ElectricVehicles[J]. Automotive Engineering,2005,27(4):392~394,398.
    [106] Gao Wenzhong. Modeling and Simulation of Electric and Hybrid Vehicles[J]. Proceedings ofthe IEEE,2007,95(4):729~745.
    [107]王斌,刘昭度,王仁广.汽车电子节气门模糊控制器快速控制原型设计[J].农业机械学报,2007,38(11):9~11,16.
    [108]孙文凯,郭永斌,蒋元广.基于模糊逻辑的混合动力汽车节气门快速控制原型[J].小型内燃机与摩托车,2009,38(4):45~48.
    [109]章健勇,吕世亮,陈林.基于快速原型系统的汽油机控制策略开发[J].车用发动机,2011(2):25~28.
    [110]赵永胜,刘志峰.基于dSPACE的汽车自动离合器快速控制原型试验[J].农业机械学报,2009,40(9):12~15.
    [111]徐中明,张志飞,庄建兵,文琍.基于Matlab的轿车动力性和燃油经济性仿真[J].计算机仿真,2005(4):247~250.
    [112] Wu PENG, ZHANG Junzhi, LU Qingchun. Simulation on the Control Strategy of HybridElectric Bus [J]. Journal of Highway and Transportation Research and Development,2003,20(1):148~150.
    [113]孙骏,薛敏,房娜娜.基于Matlab/Stateflow的4AT换挡控制仿真研究[J].合肥工业大学学报,2012(4):439~443.
    [114]王蓓,赵廷弟.应用Stateflow技术的安全性建模与仿真[J].北京航空航天大学学报,2011(11):1415~1420.
    [115]金小飞,赵韩,李杨.基于dSPACE硬件在环仿真的纯电动汽车整车控制器开发[J].机电工程技术,2012(8):1~6.
    [116] YAN Quanzhong. Chassis Control System Development Using Simulation: Software in theLoop, Rapid Prototyping, and Hardware in the Loop[C]. SAE Automotive Dynamics andStability Conference,2002/01.
    [117]汪东坪,李舜酩,张彤.混合动力变速箱液压控制及优化[J].汽车科技,2013(1):5~9.
    [118]汪东坪,李舜酩,魏民祥,等.汽车电子加速踏板可靠性控制的研究[J].汽车工程,2012,34(8):713~717.
    [119]王庆年,刘志茹,王伟华,等.混合动力汽车正向建模与仿真[J].汽车工程,2005,27(4):392~394,398.
    [120] Grepl R, Lee B. Modeling, parameter estimation and nonlinear control of automotive electronicthrottle using a rapid-control prototyping technique [J]. International Journal of AutomotiveTechnology,2010,11(4):601~610.
    [121]高海宇,陆文昌,商哲,等.基于MotoTron平台的发动机ECU快速原型开发[J].柴油机设计与制造,2008(3):16~20.
    [122]陆文昌,高海宇,孟鑫.基于MotoTron平台的ETC控制系统设计与试验研究[J].内燃机工程,2010,31(6):59~64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700