多醇燃料混合动力车辆控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车用能源短缺和城市空气恶化的问题已对我国国民经济持续发展和人民身体健康产生了巨大的负面影响。为缓解上述问题,高效节能的新能源汽车技术和替代石油基的清洁代用燃料技术对实现能源高效利用与降低污染排放起着极为重要的作用。
     结合“十一五”国家“863”计划重大项目(2008AA11A140)“一汽解放牌混合动力客车新型整车技术开发”项目和“国家公派出国留学”项目期间本人在外的研究经历,对城市运行混合动力客车的控制算法和混合动力车用替代燃料进行研究。主要的内容包括:
     1.城市运行混合动力客车的循环工况分析
     根据混合动力客车在城市中运行工况的特点,针对不同类型的标准循环工况,应用均匀设计的优化方法,分析了循环工况的众多特征参数的关系。遴选出以车辆经济性评为价指标时,不同特征参数的相关度和权重指标。为后续制定控制算法时,对行驶路况的判别提供了重要的理论依据。
     2.基于模型预测算法的控制策略开发
     混合动力汽车的整体性能不仅仅依赖于各个独立部件的性能优劣,还很大程度上受到各个部件协调工作优劣程度的影响。本文将协调两动力源(发动机和电池)输出满足整车的功率需求,同时保证燃油的消耗最少定义为混合动力车辆的最优控制问题,针对非线性的混合动力车辆系统,提出基于模型预测控制算法,以优化的概念来解决混合动力汽车能量控制的最核心问题。相对于传统的控制算法,基于模型预测算法的控制策略能够提高车辆的燃油经济性并保持合理的电池核电状态(SOC)状态。
     3.基于GPS信息的模型预测算法
     车辆的未来能量需求,车辆的行驶状态都将会影响混合动力汽车的燃油消耗量。基于此,本文提出的能量控制算法结合了对车辆未来能量需求的预测。该能量预测算法基于GPS提供的信息和道路的交通状态,使用基于神经网络的模型识别方法,综合考虑车辆的驾驶环境,确定未来可能的能量需求水平。根据该能量需求水平,能控制算法将实时调整输入参数(如,发动机燃油消耗率、电池SOC、发动机转速等)的各个权重关系。利用均匀设计算法来优化不同能量需求下的运行权重系数。最后结合基于模型预测的能量控制算法和基于GPS信息的神经网络能量需求水平预测算法,提出了一种新的混合动力车辆的控制策略——基于GPS模型预测的控制策略,仿真结果证明了它的有效性。
     4.混合动力车用多醇复合燃料研究
     车用发动机的性能与整车控制算法的效果密切相关。为了进一步发挥混合动力车辆的节能减排特性,结合本人在国外的研究工作,基于多醇复合代用燃料燃烧特性的分析,对混合动力专用醇类燃料发动机开发和高效区的确定进行了相关分析。在定容燃烧室中对复合燃料的燃烧特性进行可视化研究,分析了传统工况和低温工况下燃料不同的燃烧特性。结果表明,在低环境温度并辅以高EGR比例的条件下,相比较传统的柴油,复合燃料表现出更高的燃烧效率和更低的排放特性。最后基于混合动力发动机,分析了在应用多醇复合燃料后,对混合动力车用发动机经济性和排放的影响。研究表明新的车用复合燃料具有进一步提高混合动力发动机经济性和排放性能的潜力。
Regarding to the challenges of energy supply and environmental pollution, energy issuesand the deterioration of urban air environment have the tremendous negative impact onChina's sustainable economy development and people's health. The new automotivepower train and alternative clean fuel technologies could be as practical solution for thoseissues.
     Based on the “control strategy development for FAW Jiefang hybrid electric bus”(2008AA11A140) sponsored by the China “863project” and the “State-Sponsored StudyAbroad" sponsored by China scholarship council, control algorithms for hybrid electricbuses(HEB) and alternative fuels for hybrid electric bus have been studied in thedissertation. The main contents are as below:
     1. The analysis for HEB driving cycleAccording to hybrid buses which running in the city, uniform design optimization waschosen to analysis the characteristic characters for different types of standard drivingcycle. When selecting vehicle economy as the target function, evaluation of relevanceamong the different characteristic parameters of and weight indicators was carried out.Those provide a theoretical basis for the development of control strategy.
     2. Model predictive control strategy based control algorithms for HEBOverall, the performance of the hybrid vehicle is not only on the performance of themerits of each individual part, but also on the components coordination. Model predictionalgorithm is based on the model for multi-input output control loop optimization. Thealgorithm has a good control effect and robustness. Hybrid system is such a multi-inputoutput nonlinear system, so the proposed control approach is based on model predictivecontrol and trying to solve the HEV control problem by an optimization concept.Compared with the traditional control algorithm it can improve the fuel economy of thevehicle and maintain a reasonable battery state.
     3. GPS-based model predictive control strategyFuture energy demand of the vehicle and the state of vehicle will affect the fuelconsumption of a hybrid vehicle. So the proposed energy control algorithm combines thefuture energy needs using a prediction algorithm. The prediction algorithm is based ontraffic and road information provided by GPS, using of neural network model
     identification method, combing the driving conditions of the vehicle, the possible futureenergy needs could be obtained. According to the level of demand, energy controlalgorithm for real-time adjust the weight of input parameters, such as engine fuelconsumption rate, battery state (State Of Charge), engine speed, and so on. By thisalgorithm, the control strategy approach leads to improve the overall performance of thevehicle for further. Uniform design algorithm was used to find optimal weights fordifferent energy request. Model predictive control algorithm combined with energy levelof demand prediction using GPS information, we propose a new control strategy for ahybrid vehicle——GPS-based model predictive control strategy, and simulation resultsshow its effectiveness.
     4. Alcohol-diesel blends for HEB engineA new ABE (acetone-butanol-ethanol) and diesel blended fuel combustioncharacteristics was studied. For hybrid vehicle control, engine performance is a key partfor the whole strategy. The study shows that ABE and diesel blended can further improveHEB engine fuel economy and emissions. In the constant volume combustion chamber,visualization research on combustion characteristics of the blends under the conventionaldiesel engine operating conditions and low temperature conditions. Under Low ambienttemperature and supplemented with a high proportion of the EGR condition, compared toconventional diesel, the blends exhibits higher fuel combustion efficiency and loweremissions properties. Finally, based on a hybrid engine, the possible application for HEBengine on the economy and emissions is analyzed.
引文
[1] Mehrdad Ehsani, Yimin Gao等著,倪光正,熊素铭等译,现代电动汽车、混合动力电动汽车和燃料电池车-基本原理,理论和设计[M].机械工业出版社,2010.
    [2]浦金欢,殷承良,张建武.并联型混合动力汽车燃油经济性最优控制[J].上海交通大学学报,2006,40(6):947-951.
    [3]隗寒冰,秦大同,段志辉.重度混合动力汽车燃油经济性和排放多目标优化[J].汽车工程,2011,33(11):937-941.
    [4]聂天雄.插电式并联混合动力汽车模型预测控制[D].重庆大学硕士学位论文.2011.5.
    [5]高银平.中度混合动力汽车燃油经济性最优控制研究[D].重庆大学硕士学位论文.2008.6.
    [6]刘乐.串联混合动力汽车建模与能源管理系统控制策略研究[D].吉林大学博士学位论文.2011.12.
    [7] H.-D. Lee and S.-K. Sul. Fuzzy logic based torque control strategy for parallel typehybrid electric vehicle [J]. IEEE Transaction on Industrial Electronics,45(4):625-632,August1998.
    [8]欧阳明高,田硕,徐梁飞汽车动力的混合化发展趋势与构型分析[J]汽车工程,2008-30-9
    [9] R. Langari and J.-S. Won. Intelligent energy management agent for a parallel hybridvehicle-part I: System architecture and design of the driving situation identificationprocess [J]. IEEE Transactions on Vehicular Technology,54(3):925-934, May2005.
    [10]清华大学中国车用能源研究中心,中国车用能源展望2012.2012
    [11]C. Liang, W. Weihua and W. Qingnian. Energy Management Strategy and ParametricDesign for Hybrid Electric Military Vehicle[C]. SAE paper2003-01-0086.
    [12]白钰枝,混合动力汽车的发展现状与前景[J].科技创新导报,2011No.12
    [13]胡先锋.并联混合动力汽车动力系统优化及控制策略研究[D].合肥工业大学硕士学位论文.2009.4.
    [14]付健夫.不同工况下的混合动力汽车的整车性能研究[D].哈尔滨工业大学硕士学位论文.2007.7.
    [15]钱立军,袭著永,赵韩.基于模糊神经网络的混合动力汽车控制策略仿真[J].系统仿真学报,18(5):1384-1387.
    [16]刘家良.基于模糊神经网络的混合动力电动汽车能量管理的研究[D].武汉理工大学硕士学位论文.2003.2.
    [17]陈慧勇,吴光强.混合动力汽车补偿模糊神经网络能量管理策略[J].同济大学学报(自然科学版),37(4):525-530.
    [18]孔庆,崔纳新,吴剑,张承慧.基于神经网络的并联式混合动力汽车控制策略[J].系统仿真学报,2009,21(18):5831-5835.
    [19]姬瓅瓅,蔡海霄,王宇.新能源冲击波下的卡车节能减排路线图[C].交通世界(运输.车辆)2009-09.
    [20]聂彦鑫,李孟良,余乐.混合动力客车与常规车排放对比研究[J].汽车配件,2009-07.
    [21]Fazal U. Syed, Dimitar Filev, and Hao Ying.A Rule-Based Fuzzy DriverGuidanceControl System for Improving Fuel Economy in a HybridElectricVehicle[C].Proceedings of North American Fuzzy InformationProcessing SocietyConference, pp.178-183, San Diego, USA, June24-27,2007.
    [22]Y.Gurkaynak, A.Khaligh, A.Emadi, Stateof the ArtPowerManagement Algorithms forHybrid Electric Vehicles[C], IEEE Vehicle Power and Propulsion Conference,Dearborn, USA, Sept.2009,388-394.
    [23]M. Duoba, H. Lohse-Busch, T.Bohn, Investigating Vehicle Fuel Economy Robustnessof Conventional and Hybrid Electric Vehicles[C], EVS21, Monaco, April2004.
    [24]S. K. Tae, C. Manzie, R. Sharma, Model predictive control of velocity andtorque splitin a parallel hybrid vehicle[C], IEEE International Conference on Systems, Man andCybernetics, San Antonio, USA, Oct.2009,2014-2019.
    [25]S. Zorrofi, S. Filizadeh, P. Zanetel, A simulation study of the impact of drivingpatterns and driver behavior on fuel economy of hybrid transit buses[C], IEEEVehicle Power and Propulsion Conference, Dearborn, USA,
    [26]Y.L. Murphey, R. Milton, L. Kiliaris, Driver's styleclassification using jerkanalysis[C], IEEE Workshop on Computational Intelligence in Vehicles and VehicularSystems, March2009,23-28.
    [27]G. Reichart et al. Potentials of BMW Driver Assistance to Improve FuelEconomy,[J],FISITA Paper No.98S205, Paris,1998.
    [28]N. Tricot, D. Sonnerat, J.C. Popieul, Driving styles and traffic density diagnosis insimulated driving conditions[C], Intelligent Vehicle Symposium, IEEE, vol.2, June2002,298-303.
    [29]M. H. Hajimiri, F. R. Salmasi, A Fuzzy Energy Management Strategy for SeriesHybrid Electric Vehicle with Predictive Control and Durability Extension of theBattery[C], IEEE Conference on Electric and Hybrid Vehicles, Dec.2006,1-5.
    [30]C. Musardo, G. Rizzoni, B. Staccia, A-ECMS: An Adaptive Algorithm for HybridElectric Vehicle Energy Management[C], IEEE Conference on Decision and Control,European Control Conference, Dec.2005,1816-1823.
    [31]C. Zhang, A. Vahidi,et al. Role of Terrain Preview in Energy Management ofHybrid Electric ehicles[J], IEEE Transactions on Vehicular Technology, vol.59, no.3, March2010,1139-1147.
    [32]Q.Gong,Y Li, Z.Peng, Computationally Efficient Optimal Power Management forPlug-in Hybrid Electric Vehicles Based on Spatial-Domain Two-Scale DynamicProgramming[C], IEEE International Conference on Vehicular Electronics and Safety,Sept.2008,90-95.
    [33]Q. Gong, Y. Li, Z. Peng, Optimal Power Management of Plug-in HEV withIntelligentTransportation System[C], IEEE/ASME international conference onadvanced intelligent mechatronics, Sept.2007,1-6.
    [34]D. Zhu, H. Xie, Control Strategy Optimization of the Hybrid Electric Bus Based onRemote Self-Learning Driving Cycles[C], Vehicle Power and Propulsion Conference,IEEE, Sept.2008,1-5.
    [35]Y. Bin, Y. Li, Multi-Information Integrated Trip Specific Optimal Power Managementfor Plug-In Hybrid Electric Vehicles[C], American Control Conference, June2009,4607-4612.
    [36]C. Zhang, A. Vahidi, Real-Time Optimal Control of Plug-in Hybrid Vehicles withTrip Preview[C],2010American Control Conference, June,2010,6917–6922.
    [37]M. Kuhler, D. Karstens, Improved Driving Cycle for Testing Automotive ExhaustEmissions [J], SAE Technical Paper Series780650,1978.
    [38]M. Staackmann, B. Liaw, D.Y.Y.Yun, Dynamic Driving Cycle Analyses UsingElectric Vehicle Time-SeriesData[C], Energy Conversion Engineering Conference,July,1997,2014–2018.
    [39]M. Andre, Driving Cycles Development: Characterization of the Methods [J], SAETechnical Paper Series961112,1996.
    [40]I.Fomunung,et al. A Statistic Model For Estimating Oxides of Nitrogen Emissionsfrom Light Duty Motor Vehicles [J],” Transportation Research Part D,1999,333-352.
    [41]E. Ericsson, Variability in Urban Driving Patterns [J], Transportation Research Part D5/5,2000,337-354.
    [42]E. Ericsson, Independent Driving Pattern Factors and Their Influence on Fuel-Useand Exhaust Emission Factors [J], Transportation Research Part D, Volume6, Issue5,2001,325-345.
    [43]R. Langari, J. Won, Intelligent Energy Management Agent for a Parallel HybridVehicle—Part I: System Architecture and Design of the Driving SituationIdentification Process [J], IEEE Transactions on Vehicular Technology, vol.54, no.3,May2005,925-934.
    [44]S. Jeon, Y. Park, J. Lee, Multi-Mode Driving Control of a Parallel Hybrid ElectricVehicleUsing Driving Pattern Recognition [J],Journal of Dynamic Systems,Measurement, and Control, Volume124, Issue1, March2002,141-149.
    [45]Y.L. Murphey, Z. Chen, et al. Neural learning of driving environment prediction forvehicle power management[C], IEEE International Joint Conference on NeuralNetworks, June2008,3755-3761.
    [46]Y. Tian, X. Zhang, L. Zhang, X. Zhang, Intelligent Energy Management Basedon Driving Cycle Identification Using Fuzzy Neural Network[C], SecondInternational Symposium on Computational Intelligence and Design, vol.2, Dec.2009,501-504.
    [47]X. Huang, Y. Tan, X. He, An Intelligent Multifeature StatisticalApproach for the Discrimination of Driving Conditions of a Hybrid ElectricVehicle [J], IEEE Transactions on Intelligent Transportation Systems, Dec.2010,1-13.
    [48]Z. Chen, etal. Intelligent Power Management in SHEV based on Roadway Typeand Traffic Congestion Levels[C], Vehicle Power and Propulsion Conference, IEEE,Sept.2009,915-920
    [49]Lin, Chan-Chiao; Jeon, Soonil; Peng, Huei; Moo Lee, Jang Driving PatternRecognition for Control of Hybrid Electric Trucks [J], Vehicle SystemDynamics, Volume42,2004,41-58(18).
    [50]M. Montazeri-Gh, A. Ahmadi and M. Asadi, Driving Condition Recognition forGenetic-Fuzzy HEV Control[C],3rdInternational Workshop on Genetic and EvolvingFuzzy Systems, Germany, March2008.
    [51]Sierra Research, SCF Improvement–Cycle Development, Sierra Report No.SR2003-06-02,2003.
    [52]Y. Zhang, DIRECT Algorithm and Driving Cycle Recognition based OptimizationStudy for Hybrid Electric Vehicle [D], Ph.D thesis, Dept. Mech.Eng., Beijing Inst. ofTech., Beijing, China,2010.
    [53]蒋德明,黄佐华,吴东垠等.内燃机替代燃料燃烧学[M].西安:西安交通大学出版社,2007.
    [54]深圳车城网.报告称巴西乙醇燃料汽车数量将大幅减少
    [EB/OL].http//www.sznews.com/szsbcar/content/2007-03/04/content_904470.htm,2007-03-04
    [55]李双定.乙醇柴油混合燃料发动机的试验研究:[D].广西:广西大学,2008,1-50.
    [56]张福根.生物质含氧燃料对柴油机性能、燃烧过程和排放特性影响的试验研究:[D].广西:广西大学,2005,1-20.
    [57]C.Weiskirch, M. Kaack, I. Blei, et al. Alternative Fuels for Alternative andConventional Diesel Combustion Systems. In: SAE Technical Paper, Fuels&Lubricants Meeting Rosemont[C]. Illinois,2008,2008-01-2507.
    [58]Scott A. Miers, Richard W. Carlson, Steven S. McConnell, et al. Drive CycleAnalysis ofButanol/Diesel Blends in a Light-Duty Vehicle. In: SAE Technical Paper,Fuels&Lubricants Meeting Rosemont[C]. Illinois,2008,2008-01-2381.
    [59]刘娅,刘宏娟,张建安等.新型生物燃料丁醇的研究进展[J].现代化工,2008,28(6):2-3.
    [60]沈兆兵,杜风光,史吉平等.丙酮丁醇生产技术进展[J].广州化工,2007,35(5):8-10.
    [61]英计划用甜菜生产生物丁醇,用作车辆驱动燃料[J].功能材料信息,2006,3(5):47.
    [62]Butanol breakthrough soon promises UK developer [EB/OL]. http://www.Bioenergybusiness,com/index.cfm?section=technology&action=view&id=10371&return=search,2007-02-05
    [63]The next generation in biofuels: A new approach to the production of biofuels
    [EB/OL]. Http://www. energenet icsusa. com
    [64]马福军.在柴油机上燃用乙醇柴油的试验研究:[D].天津:天津大学,2002,8-30.
    [65]杜宝国.乙醇-柴油-汽油混合燃料在柴油机上的应用研究:[D].大连:大连理工大学,2003,8-30.
    [66]王海军.乙醇柴油混合燃料在柴油机上的应用研究:[D].大连:大连理工大学2005,12-20.
    [67]蒋德明.内燃机燃烧与排放学[M].西安:西安交通大学出版社,2001.
    [68]周龙保.内燃机学[M].北京:机械工业出版社,1998.
    [69]X Feng, M Huo, C F Lee, H F Liu. The Effects of EGR and Injection Timing on theEngine Combustion and Emission Performances Fueled by Butanol-Diesel Blends [J].SAE International Journal of Engines2012,5(3),794-811.
    [70]Dattatray Bapu Hulwan, Satishchandra V Joshi. Performance, emission andcombustion characteristic of a multicylinder DI diesel engine running ondiesel-ethanol-biodiesel blends of high ethanol content [J]. Applied Energy2011,88,5042-5055.
    [71]HFLiu, XJBi, M Huo, CF Lee, MF Yao, Soot Emissions of Various OxygenatedBiofuels in Conventional Diesel Combustion and Low-Temperature CombustionConditions [J]. Energy and Fuels2012,26(3),1900-1911.
    [72]HF Liu, M Huo, CF Lee, MF Yao. Comparison of Ethanol and Butanol as Additivesin Soybean Biodiesel Using a Constant Volume Combustion Chamber [J]. Energy andFuels2011,25(4),1837–1846.
    [73]Lin SL, Lee WJ, Lee CF, Wu Y. Reduction in emissions of nitrogen oxides,particulate matter, and polycyclic aromatic hydrocarbon by adding water containingbutanol into a diesel-fueled engine generator [J]. Fuel2012,93,364–372.
    [74]BQ He, SJ Shuai, J X Wang, HHe. The effect of ethanol blended diesel fuels onemissions from a diesel engine [J]. Atmospheric Environment2003,37(35),4965-4971.
    [75]Li DG, Zhen H, Lu X, Zhang WG, Yang JG. Physico-chemical properties ofethanol–diesel blend fuel and its effect on performance and emissions of dieselengines [J]. Renew Energy2005,30,967–976.
    [76]Sukjit E, Herreros JM, Dearn KD, García-Contreras R, Tsolakis A. The effect of theaddition of individual methyl esters on the combustion and emissions of ethanol andbutanol–diesel blends [J]. Energy2012,42,364–74.
    [77]KR Gerdes, GJ Suppes. Miscibility of ethanol in diesel fuels [J]. Ind Eng Chem Res2001,40,949–956.
    [78]SL Lin, WJ Lee, CF Lee, SJ Chen. Energy savings and emission reduction ofnitrogen oxides, particulate matter, and polycyclic aromatic hydrocarbons by addingwater-containing acetone and neat soybean oil to a diesel-fueled engine generator [J].Energy Fuels2010,24,4522–4533
    [79]YCChang, WJLee, SLLin, LCWang. Green energy: Water-containingacetone–butanol–ethanol diesel blends fueled in diesel engines [J]. Applied Energy2013,109,182–191.
    [80]Akihama K, Takatori Y, Inagaki K, Sasaki S, Dean AM. Mechanism of the SmokelessRich Diesel Combustion by Reducing Temperature [J]. SAE Technical Paper2001–01-0655,2001.
    [81]J Zhang, W Jing, TG Fang, High speed imaging of OH*chemiluminescence andnatural luminosity of low temperature diesel spray combustion [J]. Fuel2012,99,226–234.
    [82]LM Pickett, DLSiebers. Non-Sooting, Low Flame Temperature Mixing-ControlledDI Diesel Combustion [J], SAE2004-01-1399,2004.
    [83]CAIdicheria, LMPickett. Soot Formation in Diesel Combustion under High-EGRConditions [J]. SAE2005-01-3834,2005.
    [84]LMPickett. Low flame temperature limits for mixing-controlled diesel combustion [J].Proceedings of the Combustion Institute2005,30,2727-2735.
    [85]李卫民,混合动力汽车控制系统与能量管理策略研究[D],上海交通大学博士论文2008
    [86]李安寿,并联式混合动力汽车控制策略与显示系统研究[D],哈尔滨工业大学硕士论文,2009
    [87]袁园,HEV再生制动与摩擦制动综合控制研究[D],重庆大学硕士论文,2008
    [88]邓涛,CVT混合动力汽车再生制动系统前向建模与仿真[D],重庆大学硕士论文,2007
    [89]蒋鸣,机械自动变速器(AMT)的多领域统一建模与仿真关键技术研究[D],华中科技大学博士论文,2011
    [90]黄贤广;胡清森,混合动力车辆动力系统设计与仿真[J],农业装备与车辆工程,2008-04-10
    [91]方开泰.正交设计的最新发展和应用[M].数理统计与管理,1999,18(2)~(5)
    [92]朱伟勇等.最优设计在工业中的应用[M].沈阳:辽宁科学技术出版社,1993.
    [93]任露泉.试验优化设计与分析[M].长春:吉林科学技术出版社,2001
    [94]周楠,多工况自适应的并联混合动力客车能量管理算法研究与优化[D],吉林大学硕士论文,2008
    [95]荣伟,非线性系统的多目标预测控制研究[D],河北科技大学硕士论文,2012
    [96]田海林,高精度激光跟踪装置闭环控制若干关键问题研究[D],哈尔滨工业大学硕士论文,2008
    [97]翁学义,非线性预测控制方法的研究[D],浙江大学博士论文,1998
    [98]陶伟光;戴博,基于模型预测控制的磨机优化系统[J],有色金属(选矿部分),2011-09
    [99]李平;王子威,间歇聚合反应过程先进控制技术研究的概况[C],第五届全球智能控制与自动化大会会议论文集,2004-06
    [100] AfscharA S, BieblH, SchallerK, Schügerl K. Production of acetone and butanol byClostridium acetobutylicum in continuous culture with cell recycle [J]. AppliedMicrobiology and Biotechnology1985,22,394.
    [101] QureshiN, Maddox I S, FriedlA.Application of continuous substrate feeding to theABE fermentation: Relief of product inhibition using extraction, perstraction,stripping, and pervaporation [J]. Biotechnology Progress1992,8,382.
    [102] E Crabbe, CNHipolito, G Kobayashi, K Sonomoto, A Ishizaki.Biodiesel productionfrom crude palm oil and evaluation of butanol extraction and fuel properties [J].Process Biochemistry2001,37(1),65-71.
    [103] QureshiN, Hughes S, Maddox I S, CottaM A. Energy-efficient recovery of butanolfrom model solutions and fermentation broth by adsorption [J]. Bioprocess andBiosystems Engineering2005,27,215.
    [104] K Kraemer, A Harwardt, R Bronneberg, W Marquardt. Separation of butanol fromacetone–butanol–ethanol fermentation by a hybrid extraction–distillation process [J].Computers and Chemical Engineering2011,35,949–963.
    [105] Qureshi N, Ezeji T C. Butanol,‘a superior biofuel’ production from agriculturalresidues (renewable bio fuel’ production from agricultural residues (renewablebiomass): Recent progress in technology[C]. Biofuels, Bioproducts, Biorefining2008,2,319.
    [106] HF Liu, M Huo, CF Lee, MF Yao. Combustion Characteristics and SootDistributions of Neat Butanol and Neat Soybean Biodiesel [J]. Energy and Fuels2011,25(7),3192–3203.
    [107] LMPickett. Low flame temperature limits for mixing-controlled diesel combustion[J]. Proceedings of the Combustion Institute2005,30,2727-2735.
    [108] DLSiebers and BSHiggins. Flame Lift-off on Direct-Injection Diesel Sprays UnderQuiescent Conditions [J]. SAE2001-01-0530,2001.
    [109] DLSiebers, BSHiggins, LMPickett. Flame Lift-Off on Direct-Injection Diesel FuelJets: Oxygen Concentration Effects [J]. SAE2002-01-0890,2002.
    [110] BSHiggins, DLSiebers. Measurement of the Flame Lift-Off Location on DI DieselSprays Using OH Chemiluminescence [J].SAE2001-01-0918,2001.
    [111] LM Pickett, DLSiebers. Soot in Diesel Fuel Jets: Effects of Ambient Temperature,Ambient Density, and Injection Pressure [J]. Combustion and Flame2004,138,114-135.
    [112] LM Pickett, DLSiebers, CA Idicheria. Relationship between Ignition Processes andthe Lift-off Length of Diesel Fuel Jets [J]. SAE2005-01-3843,2005.
    [113] AJDonkerbroek, MD Boot, CCMLiujten, NJ Dam, JJ ter Meulen. Flame lift-offlength and soot production of oxygenated fuels in relation with ignition delay in aDI heavy-duty diesel engine [J]. Combustion and Flame2011,158,525–538.
    [114] LMPickett, SHKook, TCWilliams. Visualization of Diesel Spray Penetration,Cool-Flame, Ignition, High-Temperature Combustion, and Soot Formation UsingHigh-Speed Imaging [J]. SAE2009-01-0658,2009.
    [115] GrowmarkInc. Flammability Limits for Ethanol/Diesel Blends; Final Report fromBattelle Agreement No. CP037328R,1998, Sept.30.
    [116] Lapuerta M, García-Contreras R, Campos-Fernández J, Dorado MP.Stability,lubricity, viscosity, and cold-flow properties of alcohol–diesel blends [J]. EnergyFuels2010,24,4497–4502.
    [117] Lin YC, Lee WJ, Chao HR, Wang SL, Tsou TC, Chang-Chien G-P, et al. Approachfor energy saving and pollution reducingby fueling diesel engines with emulsifiedbiosolution/biodiesel/diesel blends [J]. Environ Sci Technol2008,42,3849–3855
    [118] Rakopoulos CD, Dimaratos AM, Giakoumis EG, Rakopoulos DC. Study ofturbocharged diesel engine operation, pollutant emissions and combustion noiseradiation during starting with bio-diesel or n-butanol diesel fuel blends [J]. AppliedEnergy2011,88,3905–3916.
    [119] CHWang, CKLaw. Microexplosion of Fuel Droplets under High Pressure [J].CombustFlame1985,59(53-62),53.
    [120] JS Gong, WBFu. A study on the effect of more volatile fuel on evaporation andignition for emulsified oil [J]. Fuel2001,80(30),437-445.
    [121] TKadota, HYamasaki. Recent advances in the combustion of water fuel emulsion.Prog [J]. Energy Combust. Sci.2002,28,385-404.
    [122] T Kadota, HTanaka, DSegawa, SNakaya, HYamasaki. Microexplosion of anemulsion droplet during Leidenfrost burning [J]. Proc. Combust. Inst.2007,31,2125-2131.
    [123] HWatanabe, T Harada, YMatsushita, HAoki, TMiura. The characteristics of puffingof the carbonated emulsified fuel, Int. J [J]. Heat Mass Transfer2009,52(15–16),3676–3684.
    [124] M Huo, HWu, NZhou, KNithyanandan, CFLee. Effects of spray characteristics ofemulsified diesel on soot emissions in a constant volume chamber[C].25th ILASSconference, Pittsburgh,2013.
    [125] J Dec. A conceptual model of DI diesel combustion based on laser-sheet imaging [J].SAE970873,1997.
    [126] H Zhao, N Ladommatos. Optical diagnostics for soot and temperature measurementin diesel engines [J]. Progress in Energy and Combustion Science1998,24(3),221–255.
    [127]刘宇,生物柴油燃料喷雾、燃烧及碳烟生成过程可视化研究[D],吉林大学博士论文,2011
    [128]朱庆林.基于瞬时优化的混合动力汽车控制策略研究[D].吉林大学博士学位论文.2009.12.
    [129]石英乔,何彬,曹桂军等.燃油电池混合动力瞬时优化能量管理策略研究[J].汽车工程,2008,30(1):30-35.
    [130]胡红斐,黄向东,罗玉涛等.HEV实时等效能量消耗最小控制策略[J].汽车工程,2006,28(6):516-521.孙海波,于瑞,柴油机排放控制技术的研究,农机使用与维修,2008-08-01
    [131]张全长,尧命发,郑尊清,张鹏,正丁醇对柴油机低温燃烧和排放的影响[J],燃烧科学与技术,2010-08-05
    [132]孙海波;于瑞,柴油机排放控制技术的研究[J],农机使用与维修,2008-08-01
    [133] Zhi-Hui Zhang, Rajasekhar Balasubramanian,Influence of butanol–diesel blends onparticulate emissions ofa non-road diesel engine [J].Fuel118(2014)130–136
    [134] Volkan Sezer, Varlk Klc, Murat Yldrm.Maximizing Overall Efficiency StrategyforPower Split Control of a Parallel Hybrid Electric Vehicle [J].SAEPaper2008-01-2682.
    [135] Cristian Musardo, Giorgio Rizzoni, Benedetto Staccia. An AdaptiveAlgorithm forHybrid Electric Vehicle Energy Management[C].Proceedings of the44thIEEEConference on Decision and Control, and the European Control Conference2005.
    [136] Gino Paganelli, Gabriele Ercole, Avra Brahma et al.General supervisorycontrolpolicy for the energy optimization of charge-sustaining hybrid electricvehicles[J].JSAEReview,22(2001):511-518.
    [137] Li D, Zhen H,Xing-cai L, et al. Physicochemical properties of ethanol-diesel blendfuel and its effect on performance and emissions of diesel engines [J]. RenewEnergy,2005,30(6):967-976.
    [138] Bayraktar H. An experimental study on the performance parameters of anexperimental CI engine fueled with diesel-methanol-dodecanol blends [J]. Fuel,2008,87(2):158-164.
    [139] Huang ZH, Lu HB, Jiang DM, et al. Combustion characteristics and heat releaseanalysis of a compression ignition engine operating on a diesel/methanol blend [J].ImechE,2004,218(9):1011-1024.
    [140] Hansen AC, Zhang Q, Lyne PWL. Ethanol-diesel fuel blends-a review [J].Bioresour Technol,2005,96(3):277-285.
    [141] Rakopoulos CD, Antonopoulos KA, Rakopoulos DC, et al. Comparativeperformance and emissions study of a direct injection diesel engine using blends ofdiesel fuel with vegetable oils or bio-diesels of various origins [J].Energy Convers Manage,2006,47(18-19):3272-3287.
    [142] Rakopoulos CD, Rakopoulos DC, Hountalas DT, et al. Performance and emissionsof bus engine using blends of diesel fuel with biodiesel of sunflower or cottonseedoils derived from Greek feedstock [J]. Fuel,2008,87(2):147-157.
    [143] Benjumea P, Agudelo J, Agudelo A. Effect of altitude and palm oil biodieselfuelling on the performance and combustion characteristics of a HSDI diesel engine[J]. Fuel,2009,88(4):725-731.
    [144] Lapuerta M, Armas O, Rodríguez-Fernandez J. Effect of biodiesel fuels on dieselengine emissions [J]. Prog Energy Combust Sci,2008,34(2):198-223.浦金欢,殷承良,张建武.并联型混合动力汽车燃油经济性最优控制[J].上海交通大学学报,2006,40(6):947-951.
    [145] Cheolwoong P, Sanghoon K, Choongsik B. Effects of multiple injectionsin a HSDI diesel engine equipped with common rail injectionsystem. In: SAE Technical Paper [C].2004,2004-01-0127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700