移动Ad Hoc网络中资源分配及跨层技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动Ad Hoc网络代表一种无基础设施的、完全分布式的、多跳的自治系统。人们有着很大的兴趣来设计和实现这种网络,以提供多样化的应用服务,如救灾和临时会议等。近年来,随着多媒体应用的不断普及,在移动Ad Hoc网络中提供服务质量支持已成为一个重要而又具有挑战性的任务。但是,由于无线网络带宽有限,有限的无线资源与多媒体业务的服务质量需求的矛盾日益突出,如何设计合理有效的资源分配方案成为保证服务质量的关键。
     本文研究的主要目标是在有限带宽条件下,为移动Ad Hoc网络建立一种有效的资源分配方案,以保证多媒体应用程序的端到端的QoS (Quality of Service)需求,并满足它们对时延、带宽或丢包率等方面的要求,同时能提高网络资源利用率。本文首先研究了移动Ad Hoc网络的资源分配模型和算法,接着研究了网络层资源分配技术,然后研究了MAC (Media Access Control)层资源分配技术,最后对联合网络层和MAC层的跨层资源分配技术进行了研究。
     本文的主要研究内容和成果如下:
     (1)在系统地分析Ad Hoc网络的信息流竞争特点的基础上,提出了新的基于价格的移动Ad Hoc网络资源分配算法。首先,构建移动Ad Hoc网络资源分配模型,将资源优化问题转换为拉格朗日对偶问题;接着,以价格作为资源分配的度量指标,通过路由发现时的价格查询以及路由响应时的价格反馈,消除分布式预测带来的不一致性;最后,利用小波变换将自相似性业务的长相关性转化为短相关性,对网络流量进行预测,提出一种改进的Ad Hoc网络资源分配算法。仿真结果表明:所提出的算法具有良好的收敛性,与现有的资源分配算法相比提高了资源利用率。
     (2)在网络层资源分配方面,提出了新的路由算法。在移动Ad Hoc网中,判断路径优劣的度量参数主要有跳数、延迟、能量等,常常导致过度使用中心节点,引起网络拥塞。针对这一问题,首先提出了一种基于价格感知的多目标优化按需路由协议。该协议以价格为路由度量指标,采用分层的体系结构以获得全网一致的拓扑视图。仿真结果表明:该协议提高了分组投递率并降低了端到端平均时延,在动态移动环境下具有较好的稳定性。接着,在分析DYMO (Dynamic MANET On-Demand)路由协议优缺点的基础上,将DYMO协议和服务质量及多径路由结合起来,提出一种新的QoS感知的多径DYMO路由协议QA-DYMO (QoS-Aware Multi-path Dynamic MANET On-Demand)。该协议以多径路由为基础,利用多条链路不相交路径来发送数据,能够适应Ad Hoc网络的动态变化和较好的支持QoS。
     (3)在MAC层资源分配方面,提出新的冲突退避算法和分析模型。首先,在分析传统的IEEE 802.11 DCF协议退避算法的基础上,设计了改进的多优先级退避算法和区分优先级的帧间隔,提出了一种支持区分服务的改进方案D-DCF (Differentiated Distributed Coordination Function)。接着,提出一种四维马尔可夫链模型对D-DCF进行建模,该模型能有效地评估饱和及非饱和状态下的网络性能。理论和仿真结果表明:D-DCF在吞吐量和平均分组延迟上的性能都优于802.11 DCF,并且能够支持3种优先级别的区分服务。
     (4)在跨层资源分配方面,提出一种联合网络层和MAC层的跨层资源分配算法CL-QARA (Cross-Layer QoS Aware Resource Allocation)。单纯的基于MAC层或者网络层的资源分配方案无法满足动态变化的Ad Hoc网络环境下的服务质量要求,而将跨层技术运用于资源分配中,可以提供多种服务质量的应用。CL-QARA的主要思想是引入价格作为资源分配的度量指标,以QoS带宽需求为参数,将网络层的动态资源分配信息与MAC层CSMA/CA接入机制相结合,以改进MAC层的冲突退避算法。并设计了改进的退避算法和呼叫接入控制算法,以实现MAC层与网络层的跨层技术。通过QoS感知的资源分配算法和跨层技术协同工作,为QoS服务提供了业务保障。仿真结果表明,CL-QARA算法具有良好的收敛性和稳定性,与其它算法相比,CL-QARA能有效地提供QoS保证,提高了网络的效用和性能。
Mobile ad hoc networks represent autonomous distributed systems that are infrastructure-less, fully distributed, and multi-hop in nature. There is considerable interest in designing and implementing such networks to provide services in a variety of diverse applications, e.g., disaster relief and temporary meetings. Recently, due to increasing popularity of multimedia applications, QoS support in mobile ad hoc networks has become an important yet challenging objective. However, due to the limited bandwidth, the conflict between the limited wireless resource and QoS requirements of multimedia service grows increasingly. How to design an effective resource allocation is the key to support QoS.
     The main objective of this dissertation is to develop an effective resource allocation scheme for mobile ad hoc networks under limited bandwidth conditions. It can guarantee satisfactory end-to-end QoS to multimedia applications according to certain QoS measures such as delay, bandwidth or packet loss, while achieving efficient network resource utilization. In this dissertation, resource allocation model and algorithm in mobile ad hoc network is firstly studied. Secondly, the network-layer resource allocation technique is studied. Thirdly, the MAC-layer resource allocation technique is studied. Finally, the cross-layer resource allocation with joint design of network layer and MAC layer is studied.
     The main research contributions of this dissertation are as follows:
     (1) With detailed analysis of the contest characteristics of ad hoc network's information flow, a new price-based resource allocation algorithm of mobile ad hoc network is proposed. Firstly, a resource allocation model of mobile ad hoc network is presented by converting the optimization problem to the Lagrangian dual problem. Secondly, price is introduced to measure resource allocation. Price query is done with the route discovery and price feedback is done with the route reply. It can eliminate the inconsistency of distributed prediction. Finally, long-range dependence can be converted into short-range dependence and the network traffic can be predicted with wavelet. An improved resource allocation algorithm is proposed. The simulation results show that the resource allocation algorithm has good convergence and it improves the resource utility compared to other algorithms.
     (2) In the network-layer resource allocation, new routing algorithms are proposed. In mobile ad hoc networks main routing metrics are hops, delay and energy etc, which lead to overload of central nodes and can cause network congestion. An on-demand routing protocol based on price awareness is proposed to deal with the problem. This protocol chooses price as routing metric and uses layered architecture. The method can obtain the same view of the whole network. The simulation results show that it improves the packet delivery fraction and reduces the average end-to-end delay and has good stability. Then, based on the analysis of the dynamic MANET on-demand (DYMO) routing protocol, a novel QoS-aware multi-path DYMO (QA-DYMO) protocol is proposed to provide QoS. QA-DYMO establishes and utilizes multiple routes of link-disjoint paths to send data packets concurrently. It can adapt to the dynamic changes of ad hoc network and support QoS better.
     (3) In the MAC-layer resource allocation, new backoff algorithm and analytical model are proposed. Firstly, based on the analysis of the traditional IEEE 802.11 DCF protocol, multi-priority backoff algorithm and inter-frame space are designed. A differentiated distributed coordination function (D-DCF) is proposed to support differentiated service. Then, a four-dimensional Markov chain model is proposed to modeling D-DCF. The model can effectively evaluate the network performance of saturated and non-saturated conditions. Theory and simulation results show that D-DCF performs better than 802.11 DCF considering throughput and average packet delay and it can support three kinds of priority of differentiated service.
     (4) With the cross-layer technique, a cross-layer resource allocation algorithm CL-QARA is proposed, which is jointly designed between network layer and MAC layer. Resource allocation schemes which are purely based on MAC layer or network layer can not meet QoS requirements of the dynamic ad hoc networks. But if the cross-layer technique is used in resource allocation, it can provide a variety of QoS applications. The key idea of CL-QARA algorithm is to introduce price and QoS bandwidth to measure resource allocation. The dynamic resource allocation information in network layer is combined with the CSMA/CA admission control in MAC layer to improve the backoff algorithm. A new backoff algorithm and call admission control algorithm is designed to implement the cross-layer technique between MAC layer and network layer. The QoS-aware resource allocation algorithm is cooperated with the cross-layer technique to provide QoS guarantee. Simulation results show that CL-QARA has good convergence and stability. Compared to other algorithms. CL-QARA provides better QoS guarantee and improves the network utility and performance.
引文
[1]Chlamtac I, Conti M, Liu J. Mobile Ad Hoc networking:imperatives and challenges [J]. Ad Hoc Networks Journal,2003(1):13-64.
    [2]M. Gerla. Ad hoc networks:Emerging applications, design challenges and future opportunities. In Ad Hoc Networks:Technologies and Protocols, P.Mohapatra and S. Krishnamurthy,2004,1:1-45.
    [3]Xueyuan Su, Chan S., Manton J.H. Bandwidth allocation in wireless ad hoc networks: Challenges and prospects [J]. IEEE Communications Magazine,2010,48(1):80-85.
    [4]J. Jennifer, N.Liu, and I. Chlamtac. Mobile ad hoc networking with a view of 4G wireless:Imperatives and challenges. In Mobile Ad Hoc Networking, Basagni and M. Conti,2004,1-45.
    [5]Ozan K. Tonguz, Mate Boban. Multiplayer games over Vehicular Ad Hoc Networks:A new application[J]. Ad Hoc Networks,2010,8(5):531-543.
    [6]DaSilva L.A., MacKenzie A.B., Thompson, M.S. The MANIAC Challenge:Educational Experiences in Ad Hoc Networking [J]. IEEE Pervasive Computing,2009,8(1):7-11.
    [7]Shuo Ding. A survey on integrating MANETs with the Internet:Challenges and designs[J]. Computer Communications,2008,31(14):3537-3551.
    [8]D. Palomar and M. Chiang. A tutorial on decomposition methods for network utility maximization [J]. IEEE Journal on Selected Areas in Communications,2006, 24(8):1439-1451.
    [9]F P Kelly, A K Maulloo, D K H Tan. Rate Control for Communication Networks: Shadow Prices, Proportional Fairness and Stability [J]. Journal of the Operational Research Society,1998,49(3):237-252.
    [10]Lei Shi, Changbin Liu, Bin Liu. Network utility maximization for triple-play services[J]. Computer Communications,2008,31(10):2257-2269.
    [11]Jingqiao Zhang, Heung-No Lee. Energy-efficient utility maximization for wireless networks with/without multipath routing[J]. AEU-International Journal of Electronics and Communications,2010,64(2):99-111.
    [12]S.H. Low. A duality model of tcp and queue management algorithms [J]. IEEE/ACM Transactions on Networking, Aug.2003,11(4):525-536.
    [13]S. Kunniyur, R. Srikant. End-to-end congestion control:utility functions, random losses and ECN marks[J]. IEEE/ACM Transactions on Networking, Oct.2003,10(5):689-702.
    [14]Y. Choi, S. Kang, S. Chong. Efficient abr service engine for atm networks. IEEE Proc. on Circuits, Devices and Systems, Dec.2001,148(6):323-327.
    [15]S. Chong, S. Lee, S. Kang. A simple, scalable, and stable explicit rate allocation algorithm for max-min flow control with minimum rate guarantee[J]. IEEE/ACM Transactions on Networking,Jun.2001,9(3):322-335.
    [16]N. Ghani, J. W. Mark. Enhanced distributed explicit rate allocation for abr services in atm networks[J]. IEEE/ACM Transactions on Networking, Feb.2000,8(1):71-86.
    [17]Zongkai Y., Shengbin L., Wenqing C. Joint power control and rate adaptation in wireless sensor networks [J]. Ad Hoc Networks,2009,7(2):401-410.
    [18]M. Mandjes, M. Ramakrishnan. Bandwidth trading under misaligned objectives: Decentralized measurement-based control [J]. Computer Networks,2008,52(3): 475-492.
    [19]X. Lin, N. B. Shroff, R. Srikant. A tutorial on cross-layer optimization in wireless networks [J]. IEEE Journal on Selected Areas in Communications,2006,24(8): 1452-1463.
    [20]J. Lee, M. Chiang, R. Calderbank. Price-based distributed algorithm for optimal rate-reliability tradeoff in network utility maximization[J]. IEEE Journal on Selected Areas in Communications, May.2006,24(5):962-976.
    [21]C. Tan, D. Palomar, M. Chiang. Distributed optimization of coupled systems with applications to network utility maximization [C]. in IEEE Proc. Int. conf. on Acoust., Speech, Signal Process. (ICASSP), vol.5, Toulouse, France, May 2006, pp.981-984.
    [22]Junshan Zhang; Dong Zheng; Mung Chiang. The Impact of Stochastic Noisy Feedback on Distributed Network Utility Maximization[J]. IEEE Transactions on Information Theory,2008,54(2):645-665.
    [23]D. Bertsekas, Nonlinear Programming[M],2nd edition. Belmont, MA:Athena Scientific, 1999,191-272.
    [24]Jang-Won Lee; Kwon, J.-A. Downlink power allocation for wireless systems through network utility maximization[C].14th Asia-Pacific Conference on Communications, APCC'08,2008,1-5.
    [25]Yuxia Lin; Wong, V.W.S. Cross-Layer Design of MIMO-Enabled WLANs With Network Utility Maximization [J]. IEEE Transactions on Vehicular Technology,2009, 58(5):2443-2456.
    [26]Leandros Tassiulas, Saswati Sarkar. Maxmin fair scheduling in wireless networks[C]. IEEE INFOCOM'02, New York,2002:763-772.
    [27]E. Altman, K. Avrachenkov, A. Garnaev. Fair resource allocation in wireless networks in the presence of a jammer[J]. Performance Evaluation,2010,67(4):338-349.
    [28]Y. Xue, B. Li, K. Nahrstedt. Price-based resource allocation in wireless ad hoc networks. In:Kevin J, Ion S, Klaus W, eds. Eleventh International Workshop on Quality of Service (IWQoS). Monterey:IEEE Press,2003:79-96.
    [29]Y. Xue, B. Li, K. Nahrstedt. Optimal resource allocation in wireless ad hoc networks:A price-based approach [J]. IEEE Transactions on Mobile Computing,2006,5(4):347-364.
    [30]Y Qiu, P. Marbach. Bandwidth allocation in ad hoc networks:a price-based approach. In INFOCOM 2003.22nd Annual Joint Conference of the IEEE Computer and Communications Societies, vol.2, Apr.2003, pp.797-807.
    [31]Yongpei Guan, Weilai Yang, Henry Owen, et al. A pricing approach for bandwidth allocation in differentiated service networks[J]. Computers & Operations Research, 2008,35(12):3769-3786.
    [32]C Curescu, S Nadjm-Tehrani. Price/utility-based optimized resource allocation in wireless ad hoc networks [C]. Second Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, Sept.2005. USA: IEEE,2005,85-95.
    [33]C Curescu, S Nadjm-Tehrani. Time-aware Utility-based Resource Allocation in Wireless Networks [J]. IEEE Transactions on Parallel and Distributed Systems,2005,16(7): 624-636.
    [34]M. Luthi, S. Nadjm-Tehrani, C. Curescu. Comparative study of price-based resource allocation algorithms for ad hoc networks[C]. In 20th International Parallel and Distributed Processing Symposium, Apr.2006.
    [35]Peng-Sheng You, Yi-Chih Hsieh, Chieh-Ming Huang. A particle swarm optimization based algorithm to the Internet subscription problem [J]. Expert Systems with Applications,2009,36(3):7093-7098.
    [36]Ronaldo M. Salles, Javier A. Barria. Lexicographic maximin optimisation for fair bandwidth allocation in computer networks [J]. European Journal of Operational Research,2008,185(2):778-794.
    [37]张新华AdHoc网络中基于效率与公平的带宽分配算法研究[硕士论文].武汉,华中师范大学,2007.
    [38]冯云霞.多接口无线MESH网络动态信道资源分配关键问题研究[博士论文].上海,上海交通大学,2008.
    [39]Jiong Jin, Wei-Hua Wang, Marimuthu Palaniswami. Utility max-min fair resource allocation for communication networks with multipath routing[J]. Computer Communications,2009,32(17):1802-1809.
    [40]L. Massoulie, J. Roberts. Bandwidth sharing:Objectives and algorithms [J]. IEEE/ACM Transactions on Networking, June 2002,10(3):320-328.
    [41]Mo J, Walrand J. Fair end-to-end window-based congestion control [J]. IEEE/ACM Transactions on Networking,2000,8(5):556-567.
    [42]余旭涛,张在深,毕光国.一种提高能量效率的Ad Hoc网络MAC层协议[J].计算机学报,2006,29(2):256-266.
    [43]Perkins CE, Bhagwat P. Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers [C]. ACM SIGCOMM Computer Communication Review,1994,24(4):234-244.
    [44]C. Perkins, E. Belding-Royer, S. Das. Ad hoc on-demand distance vector (AODV) routing.2003, IETF RFC3561.
    [45]Yu-Fen Kao, Jen-Hung Huang. Price-based resource allocation for wireless ad hoc networks with multi-rate capability and energy constraints [J]. Computer Communications,2008,31(15):3613-3624.
    [46]Hongtao Tian, Sanjay K. Bose, Choi Look Law, Wendong Xiao. Joint routing and flow rate optimization in multi-rate ad hoc networks [J]. Computer Networks,2008, 52(3):739-764.
    [47]Qingshan Wang, Qi Wang, Yinlong Xu, Qingwei Guo. A minimum transmission time encoding algorithm in multi-rate wireless networks [J]. Computer Communications, 2010,33(2):222-226.
    [48]B. Sadeghi, V. Kanodia, A. Sabharwal, E. Knightly. OAR:an opportunistic auto-rate media access protocol for ad hoc networks[J]. Wireless Networks,2005,11 (1):39-53.
    [49]Liping Qian, Jinfang Zhou, Ying Qian, Kangsheng Chen. Improved opportunistic auto rate media access protocol for multi-rate ad hoc networks[C]. In:International Conference on Wireless Communications, Networking and Mobile Computing,2006. WiCOM 2006,1-4.
    [50]Yi-fei WEI, Xiang-li GUO, Mei SONG, Jun-de SONG. High throughput route selection in multi-rate wireless mesh networks[J]. The Journal of China Universities of Posts and Telecommunications,2008,15(3):13-18.
    [51]Abdul Hasib, Abraham O. Fapojuwo. Cross-layer radio resource management in integrated WWAN and WLAN networks[J]. Computer Networks,2010,54(3):341-356.
    [52]程鹏.基于凸优化理论的无线网络跨层资源分配研究[博士论文].杭州,浙江大学, 2008.
    [53]V. Srivastava, M. Motani. Cross-layer design:a survey and the road ahead [J]. IEEE Communication Magazine,2005,43(12):1112-119.
    [54]M. Conti, G. Maselli, G. Turi. Cross-layering in mobile ad hoc network design [J]. IEEE Computer,2004,37(2):48-51.
    [55]Liang Zhou, Baoyu Zheng, Benoit Geller, Anne Wei, Jingwu Cui. Joint QoS control for video streaming over wireless multihop networks:A cross-layer approach[J]. AEU-International Journal of Electronics and Communications,2009,63(8):638-647.
    [56]Jinchang Lu, Maode Ma. A cross-layer elastic CAC and holistic opportunistic scheduling for QoS support in WiMAX [J]. Computer Networks,2010,54(7): 1155-1168.
    [57]Myungjin Lee, Moonsoo Kang, Myungchul Kim, Jeonghoon Mo. A cross-layer approach for TCP optimization over wireless and mobile networks[J]. Computer Communications,2008,31(11):2669-2675.
    [58]Liang Zhou, Baoyu Zheng, Benoit Geller, et al. Cross-layer rate control, medium access control and routing design in cooperative VANET[J]. Computer Communications,2008, 31(12):2870-2882.
    [59]D. Kliazovich, F. Granelli. Cross-Layer Congestion Control in Ad Hoc Wireless Networks[J]. Ad Hoc Networks,2006,4(6):687-708.
    [60]L. Le, E. Hossain. Cross-layer optimization frameworks for multihop wireless networks using cooperative diversity[J]. IEEE Transactions on Wireless Communications,2008, 7(7):2592-2602.
    [61]V.Kawadia, P.R.Kumar. A cautionary perspective on cross-layer design [J]. IEEE Wireless Communication Magazine,2005,12(1):3-11.
    [62]Weilian Su, Tat L. Lim. Cross-layer design and optimisation for wireless sensor networks[J]. International Journal of Sensor Networks,2009,6(1):3-12.
    [63]R. Negi, A. Rajeswaran. Physical layer effect on mac performance in ad-hoc wireless networks [C]. In Proc. of Communication, Internet and Information Technoogy,2003, 406-411.
    [64]A. Chan, S. C. Liew. Merit of phy-mac cross-layer carrier sensing:A mac-address-based physical carrier sensing scheme for solving hiddennode and exposed-node problems in large-scale wi-fi networks[C]. In:Proc. of 6th IEEE Workshop on Wireless Local Networks,2006,871-878.
    [65]H. Gossain, C. Cordeiro, D. P. Agrawal. Cross-layer directional antenna mac protocol for wireless ad hoc networks [J]. Wireless Communications and Mobile Computing, 2006,6(2):171-182.
    [66]Aman Arora, Marwan Krunz. Power-controlled medium access for ad hoc networks with directional antennas [J]. Ad Hoc Networks,2007,5(2):145-161.
    [67]Doss Robin, L. Pan. A case for cross layer design:the impact of physical layer properties on routing protocol performance in MANETs[C]. Australian Telecommunication Networks & Applications Conference, ATNAC,2006,409-413.
    [68]Ferrari G., Malvassori S.A., Tonguz O.K. On physical layer-oriented routing with power control in ad hoc wireless networks [J]. IET Communications,2008,2(2):306-319.
    [69]M. Chiang. To layer or not to layer:Balancing transport and physical layers in wireless multihop networks [J]. IEEE Journal on Selected Areas in Communications,2005, 23(1):104-116.
    [70]C. Barrett, M. Drozda, A. Marathe. Charactering the interaction between routing and mac protocols in ad-hoc networks [C]. In Proc. of MOBIHOC 2002, Lausanne, Switzerland,2002, pages 92-103.
    [71]S. Roy, D. Saha. A network-aware mac and routing protocol for effective load balancing in ad hoc wireless networks with directional antenna [C]. In Proc. of ACM Symposium on Mobile Ad Hoc Networking. Annapolis, USA,2003,88-97.
    [72]L. Bononi, M. Di Felice. Performance analysis of cross-layered multipath routing and mac layer solutions for multi-hop ad hoc networks [C]. In Proc. ACM MobiWAC, Torremolinos, Spain, Oct.2006,190-197.
    [73]L. Bononi, M. Di Felice. Cross-layered mac and multipath routing protocols in multi-hop wireless mobile networks [J]. Journal of Interconnection Networks (JOIN), 2008,9(3):177-203.
    [74]Rung-Shiang Cheng, Hui-Tang Lin. A cross-layer design for TCP end-to-end performance improvement in multi-hop wireless networks [J]. Computer Communications,2008,31(14):3145-3152.
    [75]Lianghui Ding, Xinbing Wang, Youyun Xu, Wenjun Zhang. Improve throughput of TCP-Vegas in multihop ad hoc networks [J]. Computer Communications,2008,31(10): 2581-2588.
    [76]G. Holland and N. Vaidya. Analysis of tcp performance over mobile ad hoc networks[J]. ACM Wireless Networks,2002,8(2):275-288.
    [77]J. Liu, S. Singh. Atcp:Tcp for mobile ad hoc networks [J]. IEEE Journal on Selected Areas in Communications,2001,19(7):1300-1315.
    [78]Jose Villalon, Pedro Cuenca, Luis Orozco-Barbosa, et al. B-EDCA:A QoS mechanism for multimedia communications over heterogeneous 802.11/802.11e WLANs[J]. Computer Communications,2008,31(17):3905-3921.
    [79]Byung Joon Oh, Chang Wen Chen. A Cross-Layer Approach to Multichannel MAC Protocol Design for Video Streaming Over Wireless Ad Hoc Networks [J]. IEEE Transactions on Multimedia,2009, 11(6):1052-1061.
    [80]Madan R., Mehta N.B., Molisch A.F., Jin Zhang. Energy-Efficient Decentralized Cooperative Routing in Wireless Networks [J]. IEEE Transactions on Automatic Control, 2009,54(3):512-527.
    [81]Galiotos P. Security-Aware Topology Control for Wireless Ad-Hoc Networks[C].2008 Global Telecommunications Conference, IEEE GLOBECOM 2008,1-6.
    [82]Djahel S., Nait-Abdesselam F., Khokhar A. A cross layer framework to mitigate a joint MAC and routing attack in multihop wireless networks [C]. IEEE 34th Conference on Computer Networks,2009. LCN 2009,730-737.
    [83]郑少仁,王海涛,赵志峰等Ad Hoc网络技术[M].北京:人民邮电出版社,2005.
    [84]H Luo, S Lu, V Bharghavan. A New Model for Packet Scheduling in Multihop Wireless Networks[C]. Proc. ACM Mobicom Conf.,2000. USA,2000:76-86.
    [85]Jen-Hung Huang, Yu-Fen Kao. Price-Based Resource Allocation Strategies for Wireless Ad Hoc Networks with Transmission Rate and Energy Constraints [C]. Proceedings of 16th International Conference on Computer Communications and Networks, ICCCN 2007,1065-1070.
    [86]Saul A. Wireless resource allocation with perceived quality fairness[J].2008 42nd Asilomar Conference on Signals, Systems and Computers,2008,1557-1561.
    [87]S H Shah, K Chen, K Nahrstedt. Dynamic Bandwidth Management for Single-Hop Ad Hoc Wireless Networks [J]. ACM/Kluwer Mobile Networks and Applications (MONET) Journal,2005,10(1):199-217.
    [88]Network Simulator(NS-2) [EB/OL]. http://www.isi.edu/nsnam/ns, University of California at Berkley,2008.
    [89]陈剑,闻英友,赵大哲,刘积仁.VBR视频流量的小波包分解及其长时预测[J].通信学报,2008,29(6):34-42.
    [90]S. Mallet,扬力华等译.信号处理的小波导引[M].北京,机械工业出版,2002.
    [91]黄捷,任宏滨,简金蕾.小波包变换结合最小均方自适应滤波算法[J].探测与控制学报,2008,30(3):77-80.
    [92]C. Perkins, E. Royer. Ad hoc On-Demand Distance Vector Routing[C]. In 2nd IEEE Workshop on Mobile Computing Systems and Applications, New Orleans, LA, February 1999, pp.90-100.
    [93]Clausen T, Jacquet P. Optimized link state routing protocol (OLSR) [EB/OL]. RFC 3626, October 2003. http://www.ietf.org/rfc/rfc3626.txt
    [94]Clausen T. The Optimized Link State Routing Protocol version 2 (OLSRv2). IETF Internet Draft. http://datatracker.ietf.org/doc/draft-ietf-manet-olsrv2-mib/[EB/OL], Nov. 2009.
    [95]Ogier R, Templin F, Lewis M. Topology dissemination based on reverse-path forwarding (TBRPF) [EB/OL]. RFC 3684,2004. http://www.ietf.org/rfc/rfc3684.txt
    [96]Murthy S and Garcia Luna Aceves J J. An Efficient Routing Protocol for Wireless Networks[J]. ACM Mobile Networks and App. J., Special Issue on Routing in Mobile Communication Networks, Oct.1996, pp.183-97
    [97]E. M. Royer and C. K. Toh. A review of current routing protocols for ad hoc mobile wireless networks [J]. IEEE Pers. Comm., Apr.1999, pp.46-55.
    [98]Johnson DB, Maltz DA. Dynamic source routing in ad hoc wireless networks. Imielinski T, Korth H, eds. Mobile Computing. Boston,1996,153-181.
    [99]Johnson DB, Maltz DA, Hu YC. The Dynamic Source Routing Protocol (DSR) for Mobile Ad Hoc Networks for IPv4. Internet Draft, draft-ietf-manet-dsr, IETF MANET Working Group. http://datatracker.ietf.org/doc/rfc4728/,2007.
    [100]Park VD, Scott Corson M. A highly adaptive distributed routing algorithm for mobile wireless networks[C]. Proc of the IEEE INFOCOM'97. Los Alamitos:IEEE Computer Society Press,1997:1405-1413.
    [101]Chakeres I, Perkins C. Dynamic MANET on-demand (DYMO) routing. Internet Draft, draft-ietf-manet-dymo-19.txt [EB/OL], IETF MANET Working Group, http://tools.ietf.org/html/draft-ietf-manet-dymo-19, March,2010.
    [102]The IETF MANET working group charter website [EB/OL]. Available: http://www. ietf.org/html. charters/manet-charter.html
    [103]韩冰青,陈伟,张宏.一种新的QoS感知的Ad Hoc网络多径DYMO路由协议[J]计算机科学,2010,37(3):79-82.
    [104]韩冰青,张宏,陈伟.一种基于价格感知的Ad Hoc网络按需路由协议[J].计算机科学,2009,36(6):63-67.
    [105]AODV-UU [EB/OL]. http://core.it.uu.se/core/index.php/AODV-UU
    [106]M. K. Marina and S. R. Das. On-demand multipath distance vector routing in ad hoc networks[C]. Proc. IEEE International Conference on Network Protocols (ICNP), Mission Inn, Riverside, California.2001,14-23.
    [107]Rafael Guimaraes, Llorenc Cerda, Jose M, et al. Quality of service through bandwidth reservation on multirate ad hoc wireless networks[J]. Ad Hoc Networks,2009,7(2): 388-400.
    [108]于宏毅.无线移动自组织网[M],北京,人民邮电出版社,2005:301-302.
    [109]Lei Chen, Heinzelman W.B. A Survey of Routing Protocols that Support QoS in Mobile Ad Hoc Networks[J]. IEEE Network,2007,21(6):30-38.
    [110]Macharla P., Kumar R., Sarje A.K., Misra M. A QoS routing protocol for delay-sensitive applications in mobile ad hoc networks[C].3rd International Conference on Communication Systems Software and Middleware and Workshops, COMSWA.2008,720-727.
    [111]Ming Yu, Leung K.K. A Trustworthiness-based QoS routing protocol for wireless ad hoc networks [J]. IEEE Transactions on Wireless Communications,2009,8(4): 1888-1898.
    [112]Berrayana W., Youssef H., Langar R., Pujolle G. QoS-PAR:a routing protocol for wireless ad hoc networks using a cross-layer autonomic architecture [C]. Global Information Infrastructure Symposium, GIIS'09,2009:1-8.
    [113]Chauhan G., Nandi S. QoS Aware Stable path Routing (QASR) Protocol for MANETs[C]. First International Conference on Emerging Trends in Engineering and Technology, ICETET'08,2008:202-207.
    [114]Sommer C, Dressier, F. The DYMO Routing Protocol in VANET Scenarios[C]. Vehicular Technology Conference,2007. IEEE 66th Volume,2007:16-20.
    [115]Azzedine Boukerche, Horacio A.B.F. Oliveira, et al. Vehicular Ad Hoc Networks:A New Challenge for Localization-Based Systems[J]. Computer Communications,2008, 31(12):2838-2849.
    [116]Chakeres I D, Belding Royer E M. PAC:perceptive admission control for mobile wireless networks[C]. Quality of Service in Heterogeneous Wired/Wireless Networks. Piscataway:IEEE Press,2004:18-26.
    [117]IEEE Standard 802.11. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications [S].1999.
    [118]Kiran Anna, Mostafa Bassiouni. A new framework for QoS provisioning in WLANS using p-persistent 802.11 MAC [J]. Computer Communications,2008,31(17): 4035-4048.
    [119]BONINI L, CONTI M, GREGORI E. Run-time optimization of IEEE 802.11 wireless LAN performance[J]. IEEE Transactions on PDS,2004,15(1):66-80.
    [120]YOUN GGOO K, YU GUANG F, HANIPH L. A novel MAC protocol with fast collision resolution for wireless LANs [C]. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies. USA:IEEE,2003:853-862.
    [121]YANG Xiao, YI Pan. Differentiation, QoS guarantee, and Optimization for Real-time Traffic over One-hop Ad Hoc Networks [J]. IEEE Transactions on Parallel and Distributed Systems,2005,16(6):538-549.
    [122]YANG Yaling, Kravets R. Distributed QoS Guarantees for Realtime Traffic in Ad Hoc Networks [C]. Proc. Sensor and Ad Hoc Communications and Networks (IEEE SECON), California:IEEE,2004:118-127.
    [123]IEEE Standard 802.11:Wireless LAN medium access control (MAC) and physical layer (PHY) specifications:Medium access control (MAC) Quality of Service Enhancements [S]. IEEE 802.11e Std.,2005.
    [124]A. Nafaa, A. Ksentini. SCW:Sliding Contention Window For Efficient Service Differentiation in IEEE 802.11 Networks[C]. In:Proc. IEEE WCNC, March 2005, 1626-1631.
    [125]Bianchi G. Performance analysis of the IEEE 802.11 distributed coordination function[J]. IEEE Journal on Selected Areas in Communications,2000,18(3):535-547.
    [126]Malone D, Duffy K, Leith DJ. Modeling the 802.11 Distributed Coordination Function in Non-saturated Conditions [J]. IEEE/ACM Transactions on Networking,2007, 15(1):159-172.
    [127]H. Alazemi, A. Margolis, J. Choi, et al. Stochastic modelling and analysis of 802.11 DCF with heterogeneous non-saturated nodes[J]. Computer Communications,2007, 30(18):3652-3661.
    [128]YANG Xiao. Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e wireless LANs[J]. IEEE transactions on wireless communications,2005, 4(4):1506-1515.
    [129]杨卫东,马建峰,李亚辉.基于分组到达率的802.11 DCF性能分析[J].软件学报,2008,19(10):2762-2769.
    [130]E. Ziouva, T. Antonakopoulos. CSMA/CA performance under high traffic conditions: Throughput and delay analysis [J]. Computer Communications,2002,25(3):313-321.
    [131]Li J.H., Peng W., Levy R., Staikos A., et al. On systematic cross-layer design for ad hoc networks [C]. IEEE Military Communications Conference,2008. MILCOM 2008,1-7.
    [132]王卫疆,陈芳信,石福印,李光明Ad Hoc网络协议栈跨层设计研究[J].空军雷达 学院学报,2008,22(2):120-124.
    [133]M. Conti, G. Maselli, G. Turi. Design of a flexible cross-layer interface for ad hoc .networks[C]. In Proc. of Med-Hoc-Net 2005, Porquerolles, France, June 2005, 189-198.
    [134]R. Braden, T. Faber, M. Handley. From protocol stack to protocol heap-role based architecture[J]. ACM SIGCOMM Computer Communications Review, January 2003, 33(1):17-22.
    [135]EventHelix. Eventhelix project website [EB/OL]. http://www.eventhelix.com
    [136]张伟IEEE 802.11e的网络性能、容量评估与资源分配策略研究[博士学位论文].上海:上海交通大学,2008.
    [137]M. El-Kadi, S. Olariu, H. Abdel-Wahab. A rate-based borrowing scheme for qos provisioning in multimedia wireless networks [J]. IEEE Transactions on Parallel and Distributed Systems,2002,13(2):156-167.
    [138]M. Zukermana, M. Mammadovb, et al. To be fair or efficient or a bit of both[J]. Computers & Operations Research,2008,35(12):3787-3806.
    [139]Tobias Harks, Tobias Poschwatta. Congestion control in utility fair networks[J]. Computer Networks,2008,52(15):2947-2960.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700