用户名: 密码: 验证码:
大型燃煤发电机组能耗时空分布与节能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是社会发展的物质基础,是国家的经济命脉,长期以来,中国火力发电消耗煤炭占煤炭消费总量的50%左右,300MW及以上大型火电机组在我国发电能源结构中占有举足轻重的低位,对我国电力行业乃至整个工业领域的节能降耗具有重要意义。
     火电机组的实际能耗受环境与资源条件、运行工况及外部负荷变化等因素的影响,能耗水平具有鲜明的时变特征;针对上述特点,本文以大型燃煤发电机组汽轮机热力系统为研究对象,考虑复杂多变外部因素和负荷条件影响,综合应用热力学第一、第二定律和汽轮机组变工况理论,从全工况角度研究机组能耗在整个汽轮机热力系统中的分布特性;从过程、单元及系统等不同层面,研究设备间、系统间的性能耦合机制;研究机组能耗对主要决策变量的动态响应规律;开展综合考虑外部复杂条件的大型燃煤发电机组能耗状态的节能诊断研究,进一步完善大型燃煤发电机组的节能诊断方法,以指导大型燃煤机组的深层次节能降耗,论文研究成果具有重要的应用价值。
     采用详实的数据对我国火力发电机组的能耗状况进行深入研究,并进行国内外对比分析,摸清了目前我国火力发电机组的能耗水平,指出火电机组构成差异是导致我国火电机组整体效率水平偏低的主要原因;并以2010年的数据为基础,预测2015年和2020年我国火力发电的能耗水平,为我国火力发电装备的节能对策研究和节能政策的制定奠定基础。
     考虑燃煤发电机组的环境条件和负荷条件,综合应用热力学第一、第二定律,将汽轮机变工况与凝汽器变工况相结合,研究大型燃煤发电机组汽轮机热力系统的全工况能耗分布特性,得到大型燃煤发电机组在不同环境温度、不同负荷工况下汽轮机热力系统的能耗时空分布规律。
     提出以低压缸末级组压力比与末级组效率的变化关系确定汽轮机排汽焓的方法,为全工况条件下整个汽轮机热力系统基准态的能耗分布准确评价提供可靠的分析方法,在此基础上研究大型燃煤发电机组汽轮机热力系统主要决策变量的能耗敏度特性,以1000MW超超临界燃煤发电湿冷机组与直接空冷机组为研究对象,得到不同决策变量在不同负荷时的能耗敏度规律,为在役机组准确进行节能潜力诊断提供保障。
     将基于热力学第二定律的单耗分析引入大型燃煤机组的节能诊断,针对在役燃煤发电机组,通过相同边界条件下基准态能耗分布与实际运行状态能耗分布的对比,揭示机组能量损失的部位和相应的节能潜力,并给出对应的具体节能措施与对策,进一步完善了大型燃煤发电机组的节能诊断理论与方法。
Energy, the civilization basis of society development, is undoubtedly one lifeline of China's economy. Coal consumption for power generation has long been more or less half of its total consumption amount. Additionally, large-scale coal-fired power generation units with a capacity of300MW or above have already played a decisive role in the overall energy structure. Thus, further improving these systems can contribute significantly to the reduction of fuel consumption of power generation or even the whole industry area.
     In general, fuel consumption rate of a real coal-fired power generation unit depends highly on many factors, such as environment-and-resource situation, operation condition and external load change, which make it vary largely with time. Corresponding to these features and on the basis of the first and second laws of thermodynamics and the off-design prediction of steam turbine performance, detailed distribution characteristic from the perspective of all operating conditions, the coupling mechanism of thermodynamic performances among components and system at the process, component and system levels, dynamic response principles of fuel consumption rate with main decision variables were comprehensively and thoroughly investigated. Energy-saving diagnosis of unit states considering complicated external factors was also studied in a penetrating manner and further improved to guide deep reduction of their fuel consumption. From these viewpoints, this research is expected to be of significant practical value.
     According to the deep and detailed data investigation of the fuel consumption conditions of existing coal-fired power plants in China and comparisons with the situation in developed countries, current fuel consumption levels of different units were clarified. It is, thus, pointed out that the contribution differences of various coal-fired power plants are the key reasons, leading to the high-level fuel consumption rate of the whole coal power generation industry. In this context, the overall fuel consumption levels in2015and2020are reasonably predicted based on the data of2010, which is necessary for the development of energy-saving policy and solution of thermal power plants.
     Considering the environment and load conditions, off-design performance predictions of turbine and condenser were effectively combined to reveal the spatial distribution of fuel consumption in one specified unit for all load conditions, from the1st and2nd laws of thermodynamics. Thus, the spatial-temporal distribution principle of fuel consumption within turbine thermal system at different environmental temperatures and loads is concluded.
     New calculation method of turbine exhausted steam in accordance with the relationship between pressure ratio and efficiency of the final stage group was proposed, which provided a reliable analysis approach to accurately evaluate the energy consumption distribution of one unit at its reference state. Then, the sensitivities of fuel consumptions of1000MW ultra-supercritical coal-fired power plants with wet and dry cooling systems on main decision variables were obtained separately at different load factors. These form solid basis for the accurate energy-saving diagnosis of existing units.
     The specific fuel consumption analysis, a variant of2nd law of thermodynamics, was successfully introduced to the energy-saving diagnosis of power plants. Focusing on the existing power generation units, the comparisons of fuel consumption distribution between reference state and the real operating state at the same boundary conditions can reveal the sites and magnitudes of additional fuel consumption rates and corresponding energy-saving potential, provide certain specific energy-saving measure and solution, and further improve the method and approach for the energy-saving diagnosis of large-scale coal-fired power generation units.
引文
[1]中国电力企业联合会.中国电力工业统计数据分析,2009
    [2]中国电力企业联合会.中国电力工业年度发展报告,2009
    [3]王志轩.中外电力工业发展比较(三).《中国能源报》2010.6.28(第18版)
    [4]中国电力企业联合会科技开发中心,全国发电机组技术协作会.2009年度全国火电机组300MW级机组能效对标及竞赛资料,2010
    [5]中国电力企业联合会科技开发中心,全国发电机组技术协作会.2009年度全国火电机组600MW级机组能效对标及竞赛资料,2010
    [6]中国电力企业联合会科技开发中心,全国发电机组技术协作会.2010年度全国火电机组300MW级机组能效对标及竞赛资料,2011
    [7]中国电力企业联合会科技开发中心,全国发电机组技术协作会.2010年度全国火电机组600MW级机组能效对标及竞赛资料,2011
    [8]张国宝.科学发展:电力工业赢得挑战的根本路径[J].求实杂志,2009,7:25-27‘
    [9]朱成章.我国能源结构的另类解读[J].电力技术经济,2008,20(1):8-14
    [10]顾燕萍,赵文杰,吴占松.基于最小二乘支持向量机的电站锅炉燃烧优化[J],中国电机工程学报,2010,30(17):91-96
    [11]刘福国,郝卫东,杨建柱,等.电厂锅炉变氧量运行经济性分析及经济氧量的优化确定[J].中国电机工程学报,2003,23(2):172-176
    [12]王玮,曾德良,杨婷婷,等.基于凝汽器压力估计算法的循环水泵最优运行[J],中国电机工程学报,2010,30(14):7-12
    [13]夏季,彭鹏,华志刚,等.燃煤电厂分磨掺烧方式下磨煤机组合优化模型及应用[J],中国电机工程学报,2011,31(29):1-8
    [14]杨文生.动力电煤的洗选加工[J],洁净煤技术,2011,4:13-15
    [15]李建强,刘吉臻,张栾英,等.基于数据挖掘的电站运行优化应用研究[J].中国电机工程学报,2006,26(20):118-123
    [16]杨立军,杜小泽,杨勇平.空冷凝汽器全工况运行特性分析[J],中国电机工程学报,2008,28(8):24-28
    [17]曾德良,杨婷婷,程晓,刘吉臻.数据挖掘方法在实时厂级负荷优化分配中的应用[J],中国电机工程学报,2010,30(11):109-113
    [18]李修平,李博.日本火电机组热效率高的原因分析[J].能源技术经济.2011,23(11):65-69
    [19]张晓鲁,汪建平,孙锐,等.火电机组直接空冷系统优化设计方法研究[J],中国电机工程学报,2011,31(11):1-5
    [20]Yang Yongping, Cui Yinghong, Hou hongjuan. Research on solar aided coal-fired power generation system and performance analysis[J]. Science in China Series E: Technological Sciences,2008,51(8):1211-1221
    [21]崔映红,杨勇平,张明智.太阳能-煤炭互补的发电系统与互补方式[J],中国电机工程学报,2008,28(5):102-107
    [22]崔映红,杨勇平,杨志平,等.太阳能辅助燃煤一体化热发电系统耦合机理[J],中国电机工程学报,2008,28(29):99-103
    [23]冯伟忠.1000MW超超临界汽轮机综合优化及成效[J].电力建设,2009,30(5):42-47
    [24]郑体宽.热力发电厂[M].北京:水利电力出版社,2001
    [25]马芳礼.电力热力系统节能分析原理[M].北京:水利电力出版社,1992
    [26]闫水保.电站热力系统节能原理与方法[M].北京:中国电力出版社,2007
    [27]阎水保,阎留保著.电厂热力系统节能分析原理及应用[M].郑州:黄河水利出版社,2000
    [28]林万超.火电厂热系统定量分析[M].西安:西安交通大学出版社,1985
    [29]林万超.火电厂热系统节能理论[M].西安:西安交通大学出版社,1994
    [30]严俊杰,邢秦安,等.火电厂热力系统经济性诊断理论及应用[M].西安:西安交通大学出版社,2000
    [31]江峰,王培红,等.效焓降局部定量修正模型的算法研究[J].汽轮机技术,2008(02):122-125
    [32]陈海平,张树芳,张春发,等.火电厂热力系统热力单元矩阵分析法[J].动力工程,1992,19(1):38-40
    [33]阎顺林,张春发,李永华,等.火电机组热力系统汽水分布通用矩阵方程[J].中国电机工程学报,2000,20(8):69-73
    [34]陈国年等.电厂热力系统分析的新方法-矩阵法[J].电力技术,1991,(8)
    [35]郭民臣等.电厂热力系统矩阵分析方法的改进[J].热能动力工程,1997,(2):103-106
    [36]郭民臣等.电厂热力系统的定功率方程与热效率[J].现代电力,1997,(2):11-16
    [37]郭民臣,魏楠,杨勇平.热耗变系数、抽汽效率与主循环效率[J].中国电机工程学报,2001,21(10):83-87
    [38]民臣等.热(汽)耗变换系数法—分析电厂热力系统的新方法[J].中国电机工程学报,1997,17(4):227-229
    [39]杨勇平,杨昆.火电机组节能潜力诊断理论与应用[J].中国电机工程学报,1998,18(2):131-134
    [40]朱宝田.汽轮机级效率等参数对功率热耗率影响的分析与计算[J].中国电力,1987,20(4):10-17
    [41]刘武峰.汽轮机各缸相对内效率变化对机组热耗率的影响分析[J].热力透平,2008,37(2):121-123
    [42]杨立军,杜小泽,杨勇平.空冷凝汽器全工况运行特性分析[J],中国电机工程学报,2008,28(8):24-28
    [43]闫顺林,胡三高,徐鸿,等.火电机组热经济性分析的统一物理模型和数学模型[J].中国电机工程学报,2008,28(23):37-40
    [44]郭民臣,刘强,叶江明,等.定功率下加热器端差对机组热经济性的影响[J].中国电机工程学报,2008,28(23):4245
    [45]张学镭,王松龄,陈海平,等.加热器端差对机组热经济性影响的通用计算模型[J].中国电机工程学报,2005,25(4):166-171
    [46]陈海平,刘吉臻,张春发,等.火电机组辅助汽水系统定量分析的通用模型[J].中国电机工程学报,2005,25(12):98-102
    [47]陈海平,张春发,张树芳,等.火电厂热力系统经济运行在线监测系统[J].动力工程,1999,19(2):54-57
    [48]杨勇平,郭民臣,李文祝.锦州发电厂6号机组性能在线监测系统[J].东北电力技术,1999,12:34-37
    [49]张春发,张宝,孙伟,等.基于C/S模式的火电机组耗差分析系统[J].汽轮机技术,2002,44(4):193-195
    [50]张建.大型汽轮机性能在线监测.东南大学博士论文,1991
    [51]胡华进.火电机组性能监测问题的研究.东南大学博士论文,1998
    [52]Komandur S. Sunder Raj. Analysis of turbine cycle performance losses using entropy balance techniques. Proceedings of ASME POWER 2005. PWR2005-50004
    [53]宋之平,王加璇.节能原理[M].北京:水利电力出版社,1985
    [54]杨东华等.火用分析和能级分析[M].北京:科学出版社,1986
    [55]朱明善.能量系统的(?)分析[M].北京:清华大学出版社,1988
    [56]王加璇,张树芳.(?)方法及其在火电厂中的应用[M].北京:水利电力出版社,1993
    [57]吴存真,张诗针,孙志坚.热力过程(?)分析基础[M].杭州:浙江大学出版社,2000
    [58]J. H. Horlock, J. B. Young, G. Manfrida. Exergy Analysis of Modern Fossil-Fuel Power Plants[J]. Journal of Engineering for Gas Turbines and Power. JANUARY 2000, Vol.122:1-7
    [59]Tapan K. Ray, Pankaj Ekbote, Ranjan Ganguly, Amitava Gupta. Second-law analysis in a steam power plant for minimization of avoidable exergy destrction[J]. Proceedings of the ASME 2010 4th International Conference on Energy Sustainability. ES2010-90144
    [60]S. Kelly, G. Tsatsaronis, T. Morosuk. Advanced exergetic analysis:Approaches for splitting the exergy destruction into endogenous and exogenous parts[J]. Energy, 2009,34:384-391
    [61]Isam H. Aljundi. Energy and exergy analysis of a steam power plant in Jordan[J]. Applied Thermal Engineering,2009,29:324-328
    [62]Hong Yue Wang, Ling Ling Zhao, Qiang Tai Zhou, et al. Exergy analysis on the irreversibility of rotary air preheater in thermal power plant[J]. Energy,2008,33: 647-656
    [63]H. Struchtrup, M. A. Rosen. How much work is lost in an irreversible turbine[J]. Exergy,2002,2:152-158
    [64]M. Yilmaz, O. N. Sara, S. Karsli. Performance evaluation criteria for heat exchangers based on second law analysis[J]. Exergy Int. J,2001,1(4):278-294
    [65]Hsuan Chang, Shang-Chih Chuang. Process analysis using the concept of intrinsic and extrinsic exergy losses[J]. Energy,2003,28:1203-1228
    [66]H. IBRAHIM ACAR. Second Law Analysis of the Reheat-regenerative Rankine Cycle[J]. Energy Concers. Mgmt,38(7):647-657
    [67]Noam Lior, Na Zhang. Energy, exergy, and Second Law performance criteria[J]. Energy,2007,32:281-296
    [68]G. P. Verkhivker, B. V. Kosoy. On the exergy analysis of power plants[J]. Energy Conversion and Management,2001,42:2053-2059
    [69]Jan Szargut. Sequence method of determination of partial exergy losses in thermal systems[J]. Exergy Int. J,2001,1(2):85-90
    [70]王加璇,张恒良.动力工程热经济学[M].北京水利电力出版社,1995
    [71]杨勇平,王加璇.确定供热机组成本的热经济学法[J].热能动力工程,1995,10(2):84-89
    [72]王加璇,王清照,等.热力学分析与经济理论结合的新探讨——从热力学定律中揭示其内涵的经济理论[J].热能动力工程,2002,17(6):561-564
    [73]Valero A, Srra L, Lozano. Structural theory of thermoeconomics. Winter Annual Meeting Symposium on thermodynamics and the design, analysis and improvement of energy systems,1993:876-775
    [74]G.Negri, Montengro, A. Peretto, E. Mantino. Thermoeconomic analysis of combined cycle units with intercooled gas turbine, derived from exsting steam power plants. Proceedings of the ASME Advanced Energy Systems Division,1998,38:345-367
    [75]Luis Correas, Angel Martinez, Antonio Valero. Operation diagnosis of a combined cycle based on the structural theory of thermoeconomic. Proceedings of the ASME Advanced Energy Systems Division,1999,39:547-581
    [76]Alejandro Zaleta~Aguilar, Antonio Valero, Javier Royo. Improvement of the exergoeconomic FUEL~IMPACT analysis for acceptance tests in power plants. Proceedings of the ASME Advanced Energy Systems Division,1999,39:594-612
    [77]Beri, Erlach, Valero. Structural Theory as Standard for Thermoeconomics. Energy Conversion&Management, Elsevcer,1999:1627-1649
    [78]C_esar Torres, Antonio Valero, Luis Serra, Javier Royo. Structural theory and thermoeconomic diagnosis Part I. On malfunction and dysfunction analysis. Energy Conversion and Management,2002,43:1503-1518
    [79]Valero, A., et al. Structural theory and thermoeconomic diagnosis:Part II: Application to an actual power plant[J]. Energy Conversion and Management,2002, 43(9-12):1519-1535
    [80]Valero, A., et al. On the thermoeconomic approach to the diagnosis of energy system malfunctions:Part 1:the TADEUS problem[J]. Energy,2004,29(12-15): 1875-1887
    [81]Valero, A., et al. On the thermoeconomic approach to the diagnosis of energy system malfunctions:Part 2:Malfunction definitions and assessmen[J]. Energy,2004. 29(12-15):1889-1907
    [82]宋之平.单耗分析的理论和实施[J].中国电机工程学报,1992,12(4):15-21
    [83]宋之平,等.能量系统的单耗分析[J].热力学分析与节能论文集.北京:科学出版社,1993
    [84]宋之平.“单耗分析”中经济因素的处理[J].热能动力工程,1995,10(2):78-83
    [85]宋之平.供热系统“单耗分析”模型[J].热能动力工程,1996,11(5):305-310
    [86]宋之平,李洪涛.单耗分析案例[J].工程热物理学报,1996,17(4):397-399
    [87]Hongtao Li. Performance diagnostics of pulverized coal fuelled power generation plant using exergy~based specific consumption analysis[J]. Proceedings of POWER2007. POWER2007-22028
    [88]钱进,李润林,鲍平.耗差分析法在火电厂节能和指标管理技术中的应用[J].科技促进发展,2009,12:408-409
    [89]杨志平,杨勇平.1000MW燃煤机组能耗及其分布[J].华北电力大学学报(自然科学版),2012,01:76-80
    [90]Yang Yongping, Yang Zhiping, Yang Chenyao. Energy-saving Analysis Based on the Specific Consumption Theory for Large Coal-fired Power Units[J]. ower and Energy Engineering Conference(APPEEC),2010,:1-4
    [91]杨辰曜.600MW火电机组单耗分布及敏度分析研究[D].北京:华北电力大学,2011
    [92]Yang Zhiping, Wang Ningling, Yang Yongping. Energy-Saving Analysis for a 600MW Coal-Fired Supercritical Power Plant[J].Computational Intelligence and Software Engineering 2009(CISE),2009,:1-4
    [93]武宇.大型燃煤机组能耗分布与回热系统优化分析[D].北京:华北电力大学,2011
    [94]杨志平,杨勇平,王宁玲.1000MW汽轮机缸效率能耗敏度分析.中国电机工程学报,2012,3(26):1-9
    [95]杨志平,杨勇平.1000MW机组加热器端差能耗敏度分析,华北电力大学学报,2012,39(6):71-75
    [96]杨志平,杨勇平.1000MW汽轮机初参数能耗敏度分析,华东电力,2012,40(6):1067-1070
    [97]杨志平,杨勇平.1000MW汽轮机排汽压力能耗敏度分析,华东电力,2011,39(12):2064-2067
    [98]王运民.汽轮机变工况时各监视段压力与温度的定量计算[J].汽轮机技术,2007,49(6):458-460
    [99]曹祖庆.汽轮机变工况特性[M].北京:水利电力出版社,1991:30-52
    [100]李维特,黄保海.汽轮机变工况热力计算[M].北京:中国电力出版社,2001:134-227
    [101]沈士一.汽轮机原理[M].北京:中国电力出版社,1998:130-143
    [102]R. Senthil Murugan and P. M. V. Subbarao. Off-design performance prediction of steam turbines[J]. Proceedings of IMECE2007.2007 ASME International Mechanical Engineering Congress, IMECE2007-43999
    [103]Lindsey L. Dziuba, Robert J. Stakenborghs. Thermal cycle evaluation for feedwater heater out of service condition[J]. Proceedings of the 16th International Conference on Nuclear Engineering, ICONE16-48187
    [104]Phillip J. Kearney, Simon I. Hogg and Robert D. Brown. Performance guarantee and testing of steam turbine retrofits[J]. Proceedings of ASME POWER 2004. POW E R2004-52116
    [105]David A. T. Rodgers, P. E. Performance and operational issues at the Boardman coal plant[J]. Proceedings of the ASME 2009 Power Conference. POWER2009-81079
    [106]Shane E. Powers, William C. Wood. Performance testing of coal fired power plant[J]. Proceedings of POWER2007. POWER2007-22132.
    [107]杨辰曜,杨志平,杨勇平,等.600MW亚临界燃煤机组单耗分析[J].华北电力大学学报(自然科学版),2010,01:45-48&52
    [108]王宁玲,杨志平,武宇.大型燃煤火电机组节能评价与系统优化[J].华北电力大学学报(自然科学版),2010,03:5-58
    [109]西安热工研究院有限公司.华电邹县发电有限公司#7超超临界1000MW机组调门优化研究与应用报告,2010,12
    [110]东方汽轮机有限公司.华电邹县发电有限公司#7超超临界1000MW机组调门优化研究报告,2011,2
    [111]孟林辉.1000MW超超临界机组冷端优化技术研究与实施[D].北京:华北电力大学,2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700