纯电动大客车复合电源系统能量管理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文将针对纯电动大客车只使用单一能源所带来起步慢、电池能量损耗大、电池寿命短、制动能量回收不充分的问题,将动力电池和超级电容器有机结合,组成复合电源加以解决。主要研究内容有:
     (1)复合电源性能分析、建模及参数辨识
     动力电池性能分析、SOC估算、建模及参数辨识。动力电池性能测试包括模块电池和模块电池组性能测试,含常温放电性能、低温放电性能、高温放电性能、和常温放电倍率放电性能测试。通过测试,得到模块电池和模块电池组的放电容量与温度、放电倍率之间的关系。基于PID神经网络估算电池的SOC,建立模块电池模型。通过模块电池性能试验对电池模型进行参数辨识。
     超级电容器性能分析、建模及参数辨识。分析了超级电容器性能,建立一种改进型的超级电容动态等效电路模型。分别在不同的放电电流下,进行测试记录了放电时间和电压数据后,计算超级电容器模型中理想电容值和等效串联电阻值,实现超级电容器参数辨识。
     (2)复合电源功率能量比参数匹配设计与优化
     为了更好地匹配由动力电池和超级电容器组成的复合电源参数,提出一种基于功率能量比参数匹配方法。根据复合电源中电池的能量要求和4种典型工况中对超级电容器的功率和能量要求,得到3条约束方程式。建立优化目标函数,优化设计方案,使复合电源的功率能量比达到车辆性能要求。
     (3)复合电源能量均衡管理
     非耗散性电池组或超级电容器组能量均衡是将高能模块电池或超级电容器的能量转移到中间储能体上,再将转移的能量转移到低能模块电池上,这种方式可以最大限度地减少能量的损耗。本课题设计出的电池组和超级电容器组能量均衡电路,通过控制电路控制开关管的导通和关断,将高能量电池或超级电容器上的能量存储在电感或电容上,再通过控制电路将电感或电容上能量转移到低能量的电池或超级电容器上。设计的电路能够实现任意2组电池或超级电容器进行能量均衡,均衡效率高,能量损耗低。
     (4)复合电源能量控制策略设计
     根据车辆需求功率和复合电源当前的容量状态,设计出合理、科学的复合电源功率分配控制策略。分别考虑模糊控制和NSGA-Ⅱ控制算法建立相应的控制策略,仿真得到2种控制方案的结果。比较2种控制策略的结果,得出采用NSGA-Ⅱ算法控制复合电源能量流动效果更好,但其控制算法复杂,工程应用困难,而模糊控制在工程应用上较易实现的结论。
     (5)台架与整车试验
     在复合电源台架上进行复合电源充放电试验、充放电均衡测试和简单工况模拟试验。通过整车进行车辆加速性能、最高车速和制动能量回收试验。数据表明车辆在动力性能和续驶里程方面都能达到设计要求,验证了复合电源参数匹配方法正确,能量控制策略有效。
     本论文的创新之处在于:
     (1)电池是高度非线性系统,目前没有能在所有工作范围内都能描述电池特性的数学模型。基于PID神经网络估算磷酸铁锂电池的SOC值,设定电池的电压、放电电流、电池累积放电容量和电池电极温度4个变量为模型输入量,电池剩余容量为模型输出量,建立动力电池SOC的PID神经网络模型。
     (2)提出一种基于典型工况下,考虑动力电池组能量、超级电容器组功率和超级电容器能量的复合电源系统功率能量比参数匹配方法。
     (3)通过控制电路控制开关管的导通和关断,将高能量电池或超级电容器上的能量存储在中间储能体上,再通过控制电路将中间储能体上能量转移到低能量的电池或超电容器上。设计的电路能够实现任意2组电池或超级电容器进行能量均衡,均衡效果好。
     (4)提出2种复合电源能量分配控制策略。第1种是根据车辆需求功率、动力电池组SOC和超级电容器组SOC状态,基于模糊控制理论,控制复合电源中的能量分配。第2种是以电池组能量消耗最小和大客车实际输出功率最大为优化目标函数,以电池组SOC和超级电容器的SOC、电池输出最大电流、加速踏板开度及其变化率为约束项,设计基于NSGA-Ⅱ控制算法,控制复合电源能量分配。
If the vehicle drived with single power, it caused many problems, such as slow start, battery loss much, life cycles reduce and no-efficiency recycling. The paper aimed to solve above problems by using dual-power supply composed by battery and ultracapacitor. The paper included the following main studies.
     1. Dual-power supply performance analyzing, modeling and parameters identification
     Battery performance tests invloved normal temperature discharge performance, lower temperature discharge performance, higher temperature discharge performance and discharge rate discharge performance at room temperature. The relationship between capacitor, discharge rate and temperature was obtained based on the process of performance tests. Battery model was built and parameters of battery were identified.
     Ultracapacitor performance was analyzied and a new improved ultracapacitor model was proposed. Values of Ideal capacitor and equal equivalent series resistance in ultracapacitor model were culculated after various ultracapacitor performance tests.
     2. Designing and optimizing power energy rate for dual-power supply
     A series inequations were obtained according to the energy reqirement, connection style of dual-power supply, voltage constraint, power reqirement and power energy rate requirement for dual-power supply. After objective functions were built, desigen schemes were optimized to make the power energy rate reach vehicle performance requirement.
     3. Energy balancing design for dual-power supply
     Higher energy cell transferred its additional energy to a intermediate energy storage element. Additional energy of the intermediate energy storage element was transfered to lower energy cell. The energy transfer formation saved additional energy and had high transfer efficiency with lower energy waste. Energy balancing circuits for battery packs and capacitor packs respectively were designed to realize two random batteries or capacitors to transfer their additional energy with high transfer efficiency and ower energy waste.
     4. Dual-power supply energy distribution strategy design
     Reasonable and scientifical energy distribution strategys were designed according to vehicle power requirement and state of charge for dual-power supply. Corresponding control strategies were designed and simulated based on fuzzy control theory and NSGA-II algorithm. By comparing the two results, the conclusion was drawn that the results using NSGA-Ⅱ algorithm preceded the results using fuzzy control theory. However dual-power supply energy distribution strategy using fuzzy theory was applied to engineering application more suited than using NSGA-Ⅱ algorithm.
     5. Experimentalizing with electric vehicle
     Dual-power supply change and discharge test, energy balanceing test and driving cycle simulation test were done on dual-power supply test bench. Vehicle accelerating test, the highest vehicle speed test and brake energy recovery test were done on sample vehicle. The results showed that vehicle driving performace met design requirements for dual-power supply electric vehicle and power energy rate for dual-power supply and dual-power supply energy distribution strategy were valide.
     The paper included the following four innovations.
     1. The PID neural network theory is applied to evaluate state of charge (SOC) for battery. Simulation results showed that the maximum estimation error was less than3.66%and the new method was validated effectively.
     2. A new design method was developed to design power energy rate for dual-power supply composed of battery packs and ultracapacitor packs according to4typical drving cycles.
     3. Energy balancing circuits for dual-power supply respectively were designed. Energy balancing circuits for battery packs and capacitor packs respectively were designed to realize two random batteries or capacitors to transfer their additional energy with high transfer efficiency and ower energy waste by using switches'on or off to control.
     4. Dual-power supply energy distribution strategys were developed according to vehicle power requirement and SOC for dual-power supply based on fuzzy theory. Dual-power supply energy was distributed based on NSGA-Ⅱ algorithm with the minimum energy consumption of the battery pack and the minimum energy consumption of dual-power supply as optimal objective.
引文
[1]章桐,贾永轩.电动汽车技术革命[M].北京:机械工业出版社,2010.
    [2][日]日本太阳能学会编,康龙云,胡习之译.生态能源电动汽车的构造原理与设计制作[M].西安:西安交通大学出版社,2010.
    [3](美)Mehrdad Ehsani,Yimin Gao, Sebastien E.Gay著.现代电动汽车、混合动力电动汽车和燃料电池车-基本原理、理论和设计[M].北京:机械工业出版社,2008.
    [4]王震坡,贾永轩.电动汽车蓝图[M].北京:机械工业出版社,2010.
    [5]陈全世,朱家琏,田光宇.先进电动汽车技术[M].北京:化学工业出版社2009.
    [6]周苏.电动汽车简史[M].上海:同济大学出版社,2010.
    [7]国务院发展研究中心产业经济研究部大众汽车集团(中国).中国汽车产业发展报告2009[M].北京:社会科学文献出版社,2009.
    [8]国家发展改革委员会.节能与新能源汽车技术政策研究[R].北京,2008.
    [9]欧阳明高.我国节能与新能源汽车发展战略与对策[J].汽车工程,2006,28(4):317-321.
    [10]中国新能源汽车技术发展报告-2007[R].北京:科技部863计划办公室,2008.
    [11]2009-2012年中国新能源汽车产业发展态势与投资前景分析报告[R].北京:2008.
    [12]国家“863”计划,国家高技术研究发展计划(863)现代交通技术领域“节能与新能源汽车”重大项目2008年度课题中请指南.http://www.863.org.cn,2006.
    [13]国家高技术研究发展计划(863计划)现代交通技术领域电动汽车关键技术与系统集成(一期)重大项目2010课题中请指南.http://www.863.org.cn,2010.
    [14]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社,2002
    [15]李秀芬,雷跃峰.电动汽车关键技术发展综述[J].上海汽车,2006,1:8-10.
    [16]梅小安,张乃平.世界电动汽车技术发展状况及趋势[J].汽车研究与开发,2004,2:19-23.
    [17]Deb A., Chigullapalli A. K., ChouC. C..A practical approach for cross-functional vehicle body weight optimization[C].SAE 2011 World Congress and Exhibition.
    [18]Hanschke A., Paas M., Hilmann J. The use of simplified geometrical and mechanical surrogate models for body and total vehicle optimization[J]. VDI Berichte,2004, n 1833:115-136,411.
    [19]Qalikan M., Ucar, V..ahdet. Structural optimization with CADO method for a three-dimensional sheet-metal vehicle body[J]. Computers in Industry,2011,62(1):p 78-85.
    [20]Tuncay R N, Ustun O, Yilmaz M,et,al. Design and implementation of an electric drive system for in-wheel motor electric vehicle applications[C],2011 IEEE Vehicle Power and Propulsion Conference, VPPC 2011.
    [21]Abdelli A, Berr F. Analytical Approach to Model a Saturated Interior Permanent Magnet Synchronous Motor for a Hybrid Electric Vehicle[J]. SAE International Journal of Engines,2011,4(1):301-313.
    [22]Sato Y, Ishikawa S, Okubo T, et al. Development of high response motor and inverter system for the nissan LEAF electric vehicle[C]. SAE 2011 World Congress and Exhibition,2011.
    [23]Bekkouche D,Hakiki K, Bouhamida M,et al. A non-linear control of electric vehicle driven by induction motors[C].2011 18th IEEE International Conference on Electronics, Circuits, and Systems, ICECS 2011,669-672.
    [24]Xu Bin, Li Ming, Yang, Shichun, et al. Design and simulation of fuzzy control strategy for parallel hybrid electric vehicle[C].2010 International Conference on Intelligent System Design and Engineering Application, ISDEA 2010,539-543.
    [25]Amjadi Z., Williamson S. Review of alternate energy storage systems for hybrid electric vehicles[C].2009 IEEE Electrical Power and Energy Conference, EPEC 2009.
    [26]Doucette R T, McCulloch M D. A comparison of high-speed flywheels, batteries, and ultracapacitors on the bases of cost and fuel economy as the energy storage system in a fuel cell based hybrid electric vehicle[J]. Journal of Power Sources,2011,196(3)-1163-1170.
    [27]Gauchia L, Bouscayrol A, Sanz J, et al. Fuel cell, battery and supercapacitor hybrid system for electric vehicle:Modeling and control via energetic macroscopic representation[C],2011 IEEE Vehicle Power and Propulsion Conference, VPPC 2011.
    [28]Burke A, Miller M. The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications[J]. Journal of Power Sources,2011,196(1):514-522.
    [29]Joshi A. M. Ezzat H., Bucknor N.. Optimizing battery sizing and vehicle lightweighting for an extended range electric vehicle[C]. SAE 2011 World Congress and Exhibition.
    [30]Abdelli A, le Berr F, Global methodology to integrate innovative models for electric motors in complete vehicle simulators[J]. Oil and Gas Science and Technology,2011,66(5):877-888.
    [31]Gladwin D,Stewart P,Stewart J. A novel genetic programming approach to the design of engine control systems for the voltage stabilization of hybrid electric vehicle generator outputs[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2011,225(10)-1334-1346.
    [32]Smith A, Bucknor N, Yang, Hong,et al. Controls development for clutch-assisted engine starts in a parallel hybrid electric vehicle[C]. SAE 2011 World Congress and Exhibition,2011.
    [33]Dost P, Sourkounis C. Mechanical and electrical behaviour of an electric vehicles drive train due to the choice of the control-system[C].37th Annual Conference of the IEEE Industrial Electronics Society, IECON 2011,1426-1431.
    [34]Kaja M S, Mohamed S M, Ashwini G V, et al. A novel intelligent application of Arduino processor in automated vehicle speed control system[J]. Advanced Materials Research,2012,403:5088-5091.
    [35]Kim J, Kim T, Min B,et,al. Mode control strategy for a two-mode hybrid electric vehicle using electrically variable transmission (EVT) and fixed-gear mode[J]. IEEE Transactions on Vehicular Technology,2011,60(3):793-803.
    [36]Gorantla S R, Rao G K, Siva N R S, et al. Design and implementation of micro controller based four Level converter for Energy storage system used in Electric/Hybrid Electric Vehicle[C]. IEEE Recent Advances in Intelligent Computational Systems, RAICS 2011:41-44.
    [37]Dorri M, Shamekhi A H. Design and optimization of a new control strategy in a parallel hybrid electric vehicle in order to improve fuel economy[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2011,225(6):747-759.
    [38]Fox, Gary H. Getting ready for electric vehicle charging stations[C].2011 IEEE Industry Applications Society Annual Meeting, IAS 2011.
    [39]Frade Ines, Ribeiro Anabela, Goncalves Goncalo et al. Optimal location of charging stations for electric vehicles in a neighborhood in Lisbon, Portugal[J]. Transportation Research Record,2011,2252:91-98.
    [40]Li Zhe,Ouyang, Minggao. The pricing of charging for electric vehicles in China-Dilemma and solution[J]. Energy,2011,36(9):5765-5778.
    [41]Hoke A, Brissette A; Maksimovic D. Electric vehicle charge optimization including effects of lithium-ion battery degradation[C].2011 IEEE Vehicle Power and Propulsion Conference, VPPC 2011.
    [42]Neves A, Sousa D M, Roque A, et al. Analysis of an inductive charging system for a commercial electric vehicle[C]. Proceedings of the 2011 14th European Conference on Power Electronics and Applications, EPE 2011.
    [43]Mohrehkesh S, Nadeem T, Toward a wireless charging for battery electric vehicles at traffic intersections[C]. IEEE Conference on Intelligent Transportation Systems, ITSC 2011:113-118
    [44]Nietschke W, Fickel F, Kiimmell S. Inductive energy transfer for electric vehicles[J]. AutoTechnology,2011, 11(2):42-47.
    [45]Melo P, Araujo R E, De C R. Overview on energy management strategies for electric vehicles -Modelling, trends and research perspectives[C].3rd International Youth Conference on Energetics, IYCE 2011.
    [46]Serrao L, Onori S, Rizzoni G. A comparative analysis of energy management strategies for hybrid electric vehicles[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,2011,133(3).
    [47]崔伯雄,隋欣,赵景焕.电池管理系统重点技术专利分布[J].电工知识产权,2010(6)62-66.
    [48]曾晶,郭勇,张大庆等.液压挖掘机中超级电容单元的性能试验及SOC估算[J].中南林业科技大学学报,2011,31(1):129-135.
    [49]唐西胜,齐智平.基于超级电容器储能的独立光伏系统[J].太阳能学报,2006,26(11):1097-1101.
    [50]王善磊.电梯系统中超级电容储能的研究[D].浙江大学硕十学位论文,2008.
    [51]徐立.应用超级电容的工程机械混合动力系统仿真研究[D].武汉理工大学博士学位论文,2008.
    [52]沈克宇,周超,李志俊.基于超级电容的混合动力起重机能量控制系统的研究[J].起重运输机械,2010(11):65-68.
    [53]Faggioli E, Rena P, Danel V et al. Supercapacitors for the energy manaement of eletric vehicles[J].Journal of Power Sources.1999,84:261-269.
    [54]R.M.Schupbach, J.C.Balda, M.Zolot, B.Kramer. Design methodology of a combined Battery-ultracapacitor energy storage unit or vehicle power management[C]. Power Electronics Specialists Conference, Acapulco, Mexico,2003:15-19.
    [55]Burke A., Ultracapacitor technologies and application in hybrid and electric vehicles[J]. International Journal of Energy Research,2010,34(2):133-151.
    [56]Wood E, Alexander M, Bradley Thomas H. Investigation of battery end-of-life conditions for plug-in hybrid electric vehicles[J]. Journal of Power Sources,2011,196(11):5147-5154.
    [57]Kuperman Alon, Aharon Ilan, Kara Avi. A frequenc y domain approach to analyzing passive battery-ultracapacitor hybrids supplying periodic pulsed current loads[J]. Energy Conversion and Management,2011,52(12):3433-3438.
    [58]Giuliano M R, Advani S G, Prasad A K. Thermal analysis and management of lithium-titanate batteries[J]. Journal of Power Sources,2011,196 (15):6517-6524.
    [59]Niemoeller B A., Krein, P T. Battery-ultracapacitor active parallel interface with indirect control of battery current[C]. Proceedings of the 2010 Power and Energy Conference at Illinois, PECI 2010:12-19.
    [60]Pesaran. Factors and Conditions for Widespread Use of Ultracapacitors in automotive Applications [C]. Advanced Capacitor world summit. USA,,2007,23-25.
    [61]Lijun Gao, Roger A.Dougal, Shengyi Liu. Power Enhancement of an Actively Controlled Battery-Ultracapacitor Hybrid[J]. IEEE Transactions on components and packaging technologies,2005,20 (1):112-117.
    [62]Henson W. Optimal battery/ultracapacitor storage combination [J]. Journal of Power Sources, 2008,179(1):417-423.
    [63]王鑫.超级电容器在汽车启动中的应用[J].国外电子元件,2006,(5):57-59.
    [64]田立坤,孔治国,崔淑梅,等.超级电容及其在电动车中的应用.微电机,2008,41(8):63-65.
    [65]曹秉刚,曹建波,李军伟,等.超级电容在电动车中的应用研究[J].西安交通大学学报,2008,42(11):1317-1322.
    [66]刘春娜.超级电容器及其在新能源汽车中的应用[J].电源技术,2010,34(12):1223-1225.
    [67]Gualous H, Berthon A, Kauffmann J M. Experimental study of supercapacitor serial resistance and capacitance variations with temperature[J].Power Souuces, 2003,123(1):86-93.
    [68]Windarko N, Choi J, Chung G. SOC estimation of LiPB batteries using Extended Kalman Filter based on high accuracy electrical model[C].8th International Conference on Power Electronics, ICPE 2011:2015-2022.
    [68]Ranjbar A H, Banaei A, Khoobroo A.Online estimation of state of charge in lion batteries using impulse response concept[J]. IEEE Transactions on Smart Grid.2012,3(1):360-367.
    [70]李哲,卢兰光,欧阳明高.提高安时积分法估算电池SOC精度的方法比较[J].清华大学学 报(自然科学版),2010,50(8):1293-1296,1301.
    [71]李蓓,王耀南,吴亮红,等.端电压模糊估算动力电池SOC的新方法[J].湖南大学学报(自然科学版),2009,36(9):47-50
    [72]李国洪,吴静臻,刘鲁源.基于RC等效电路的动力电池SOC估计算法[J].天津大学学报,2007,40(12):1453-1457.
    [73]吴红杰,齐铂金,郑敏信,等.基于Kalman滤波的镍氢动力电池SOC估算方法[J].北京航空航天大学学报,2007,33(8):945-948.
    [74]戴海峰,孙泽昌,魏学哲.利用双卡尔曼滤波算法估计电动汽车用锂离子动力电池的内部状态[J].机械工程学报,2009,45(6):95-101.
    [75]王军平,曹秉刚.基于自适应滤波的电动汽车动力电池荷电状态估计方法[J].机械工程学报,2008,44(5):76-79.
    [76]Jeong Jin-Beom, Shin, Dong-Hyun, Lee Baek-Haeng et al. Dynamic SOC compensation of an ultracapacitor module for a hybrid energy storage system[J]. Journal of Power Electronics, 2010,10(6):769-776.
    [77]Iannuzzi D, Tricoli P. Supercapacitor state of charge control based on changeover finite state controller for metro-train applications[C].3rd International Conference on Clean Electrical Power: Renewable Energy Resources Impact, ICCEP 2011,550-556.
    [78]A. Di Napoli, F. Crescimbini, L. Solero,et.al. Multiple-input DC-DC power converter for power-flow management in hybrid vehicles[C].IEEE Industry Applications Society 37th annual meeting,Pittsburgh, PA:IEEE,2002:1578-1585.
    [79]李军求,孙逢春,张承宁,等.纯电动大客车超级电容器参数匹配与实验[J].电源技术,2004,28(8):483-486,507.
    [80]闵海涛,刘杰,于远彬,等.混合动力汽车复合电源参数优化与试验研究[J].汽车工程,2011,33(12):1078-1083.
    [81]王熠.插电式混合动力汽车复合电源系统设计与硬件在环仿真[D].北京理工大学博十学位论文,2010.
    [82]W·A·彼得森自动电池均衡电路:中国,ZJ00117927.6[P].2000-05-29.
    [83]Baughman A., Ferdowsi M.. Analysis of the double-tiered three-battery switched capacitor battery balancing system[C].2006 IEEE Vehicle Power and Propulsion Conference, VPPC 2006:6-8.
    [84]Kimball J. W., Kuhn B. T.,Krein P. T.. Increased performance of battery packs by active equalization[C] Proceedings of the 2007 IEEE Vehicle Power and Propulsion Conference,VPPC 2007:323-327
    [85]Cassani P. A.. Significance of battery cell equalization and monitoring for practical commercialization of plug-In hybrid electric vehicles[C].24th Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2009:465-471.
    [86]文东国,张逸成,梁海泉.一种快速低损耗超级电容均压策略的研究[J].电力电子技术, 2008,42(9):65-67.
    [87]邓欢欢.改进的串联超级电容器组充电均压方法的研究[J].电力电容器与无功补偿,2010,31(2):43-47
    [88]Vazquez N., Hernandez M.A., Lopez H, et al. Capacitor balancing method for neutral point clamped three-level inverter[C].12th IEEE International Power Electronics Congress, CIEP 2010:175-179
    [89]Choi S., Saeedifard M. Capacitor voltage balancing of flying capacitor multilevel converters by space vector PWM[J]. IEEE Transactions on Power Delivery,2012,27(3):1154-1161.
    [90]Ahmadkhanlou F, Goodarzi A.Hybrid Lithium-ion/ultracap energy storage systems for plug-in hybrid electric vehicles[C].2011 IEEE Vehicle Power and Propulsion Conference, VPPC 2011.
    [91]Kumar S, Ikkurti H.P. Design and control of novel power electronics interface for battery-ultracapacitor hybrid energy storage system[[C]. International Conference on Sustainable Energy and Intelligent Systems, SEISCON 2011:236-241.
    [92]Cezar B, Onea A. A rule-based energy management strategy for parallel hybrid vehicles with supercapacitors[C].15th International Conference on System Theory, Control and Computing, ICSTCC 2011.
    [93]Cao Jian, Emadi Ali.A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles[J]. IEEE Transactions on Power Electronics,2012,27(1):122-132.
    [94]Schaltz E., Khaligh A., Rasmussen P. O.. Influence of battery/ultracapacitor energy-storage sizing on battery lifetime in a fuel cell hybrid electric vehicle[J]. IEEE Transactions on Vehicular Technology,2009,58(8):3882-3891.
    [95]Rotenberg D, Vahidi A, Kolmanovsky I. Ultracapacitor assisted powertrains:Modeling, control, sizing, and the impact on fuel economy[C]. American Control Conference,2008:981-987.
    [96]Jenn H W, Idris N R N, Anwari M. Parallel configuration in energy management control for the fuel cell-battery-ultracapacitor hybrid vehicles[C].2011 IEEE Applied Power Electronics Colloquium, IAPEC 2011,69-74.
    [97]Garcia F S, Ferreira A A, Pomilio J A.. Control strategy for battery-ultracapacitor hybrid energy storage system[C].2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition(APEC):Washington, DC, USA.2009.
    [98]Amjadi, Z, Williamson, S. Prototype design and controller implementation for a battery ultracapacitor hybrid electric vehicle energy storage system[J]. IEEE Transactions on Smart Grid,2012,3(1):332-340.
    [99]Baisden Andrew C, Emadi Ali. ADVISOR-based model of a battery and an ultra capacitor energy source for hybrid vehicles[J]. IEEE Transactions on Vehicular Technology,2004, 53(1):199-205.
    [100]Cao Jianbo, Cao Bo; Bai Zhifeng. Energy-regenerative fuzzy sliding mode controller design for ultracapacitor-battery hybrid power of electric vehicle[C]. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, ICMA 2007:1570-1575.
    [101]孙立清,陈伟,孙逢春,等.纯电池电动客车超级电容器系统匹配和控制策略研究[c].2002中国电动汽车研究与发展,101-108.
    [102]王志福,陈伟,叶辉萍,等.加装超级电容纯电动汽车的性能分析[J].机械工程学报,2005,41(12):82-86.
    [103]李军求,孙逢春,张承宁,等.纯电动大客车超级电容器参数匹配与实验[J].电源技术,2004,28(8):483-507.
    [104]王熠.插电式混合动力汽车复合电源系统设计与硬件在环仿真[D].北京理工大学博十学位论文,2010.
    [105]靳添絮,陈杰,白永强,等.基于超级电容器的混合动力装置设计与应用[J].北京理工大学学报,2009,29(5):406-409,459.
    [106]于远彬.混合动力汽车用复合电源参数匹配与控制策略研究[D].吉林大学硕士学位论文,2003.
    [107]李福文.复合电源的参数匹配与控制策略研究[D].吉林大学硕十学位,2005.
    [108]叶华明.复合电源混合动力汽车电池SOC的估算研究[D].吉林大学硕十学位论文,2006.
    [109]张倩.混合动力车用复合电源模型参数辨识及试验验证[D].吉林大学硕十学位论文,2007.
    [110]于远彬.车载复合电源设计理论与控制策略研究[D].吉林大学博十学位论文,2008.
    [111]倪颖倩.电动汽车关键技术[D].南京理工大学硕士学位论文,2008.
    [112]陆建康,杨正林,何小明,等.纯电动汽车复合电源系统仿真研究[J].汽车科技,2011(5):37-41.
    [113]张臣,陈杰.车用超级电容器应用设计[J].电源技术,2006,30(9):740-743.
    [114]张靖.超级电容蓄电池复合电源的研究与仿真[D].武汉理工大学硕十学位论文,2005.
    [115]张杜腊,欧阳海,胡欢.超级电容器在电动汽车上的应用[J].汽车工程师2009(6):56-58.
    [116]汗江卫.HEV车载复合电源系统的控制策略优化研究[D].武汉理工大学硕十学位论文,2011.
    [117]张冰站,赵韩,张炳力,等.超级电容与燃料电池发动机混合动力系统测试研究[J].汽车技术,2008(4):44-47.
    [118]张辉,尹安东,赵韩.基于超级电容的并联式混合动力公交车研究[J].汽车科技,2010(3):38-41.
    [119]张好明PHEV复合电源及Halbach永磁同步电机驱动技术的研究[D].江苏大学博十论文,2009.
    [120]周远.基于混合动力汽车复合电源及能量回馈研究[D].江苏大学硕十学位论文,2010.
    [121]王婷.混合动力电动汽车控制策略的优化研究[D].北京交通大学硕十学位论文,2009.
    [122]Liu Xiaofei, Zhang Qianfan; Zhu Chunbo. Design of battery and ultracapacitor multiple energy storage in hybrid electric vehicle[C].5th IEEE Vehicle Power and Propulsion Conference, VPPC 2009:1395-1398.
    [123]南金瑞,王建群,孙逢春.电动汽车能量管理系统的研究[J].北京理大学学报,2005,25(5):384-389.
    [124]石庆生,张承慧,崔纳新.新型双能量源纯电动汽车能量管理问题的优化控制[J].电工技术学报,2008,23(8):137-142.
    [125]李世豪.中国客车[M].北京:人民交通出版社,2008.
    [126]A.T.科尔尼.[日]川原英司等.电动汽车时代的企业战略革新[M].上海:上海交通大学出版社,2011.
    [127](波兰)安东尼·所左曼诺夫斯基.混合动力城市公交车系统设计[M].北京:北京理工大学出版社,2007.
    [128]Takahashi M, Tobishima S I,Takei K,et al. Research behavior of LiFePO4 as a cathode material for rechargeable lithium batteries [J]. Solid State Ionics,2002,148(3):283-289.
    [129]齐鲁.电动汽车用锂离子二次电池[M].北京:科学出版社,2009.
    [130]李湘哲,苏芳,林道勇.电动汽车动力电源系统[M]北京:化学工业出版社,2011.
    [131]Simon Haykin.叶世伟译神经网络原理[M].北京:机械工业出版社,2004.
    [132]葛哲学,孙志强编著.神经网络理论与MATLAB R2007实现[M].北京:电子工业出版社,2007.
    [133]张德丰编著.MATLAB神经网络仿真与应用[M].北京:电子工业出版社,2009.
    [134]杨伟编著.容错飞行控制系统[M].西安:西北工业大学,2007.
    [135]王福利,张颖伟.容错控制[M].沈阳:东北大学出版社,2003.
    [136]王仲生.智能故障诊断与容错控制[M].西安:西北工业大学出版社,2005.
    [137]王德军.故障诊断与容错控制方法研究[D].吉林大学博十学位论文,2003.
    [138]Nader Meskin, Khorasani K. Fault detection and isolation of actuator fault in overactuated system[C]. Proceedings of 2007 American Control Conference, New York, USA,2007: 2527-2532.
    [139]袁小宏,屈梁生.故障诊断中多传感器信息冗余的研究[J].振动、测试与诊断,2003,23(1):59-65.
    [140]Ding Shifei, Ma Gang, XuXinzheng. A rough RBF neural networks optimized by the genetic algorithm[J]. Advances in Information Sciences and Service Sciences,2011,3(7):332-339.
    [141]Wen XuLin,Wang HuiTao, Wang Hua. Prediction model of flow boiling heat transfer for R407C inside horizontal smooth tubes based on RBF neural network[J]. Procedia Engineering, 2012, (31),233-239.
    [142]Lambert Simon, Picker Volker, Li, Wuhua. Overview of supercapacitor voltage equalisation circuits for an electric vehicle charging application[C].2010 IEEE Vehicle Power and Propulsion Conference.
    [143]Al Sakka, Monzer,; Gualous, Hamid, Culcu, Hasan. Thermal modeling and heat management of supercapacitor modules for vehicle applications[J]. Journal of Power Sources,2009, 194(2):581-587.
    [144]QC/T 741-2006.车用超级电容器.
    [145]QC/T 838-2010超级电容电动城市客车.
    [146]余志生.汽车理论(第五版)[M].北京:机械工业出版社,2009.
    [147]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005.
    [148]何仁,舒昌洪.汽车行驶工况的统计分析[J].江苏理工大学学报,1998,19(6):1-4.
    [149]张俊智,卢青春,王丽芳.驾驶循环对车辆能量经济性影响到研究[J].汽车工程,2000,22(5):320-323.
    [150]李孟良,张建伟,张富兴,等.中国城市乘用车实际行驶工况的研究[J].汽车工程,2006,28(6):554-557.
    [151]骆元,王杰,王犹松.武汉城市公交车工况测定及分析[J].机械工程学报,2005,41(12):96-100.
    [152]刘明辉,赵子亮,李骏等.北京城市公交客车行驶工况的开发[J].汽车工程,2005,27(6):687-690.
    [153]杨延相,蔡晓林,杜青,等.天津市道路汽车行驶工况的研究.[J].汽车工程,2002,24(3):200-204.
    [154]郑金华著.多目标进化算法及其应用[M].北京:科学出版社,2007.
    [155]崔逊学著.多目标进化算法及其应用[M].北京:国防工业出版社,2006.
    [156]Srinivas N, Deb K. Multi-objective Optimization using non-dominated sorting in genetic algorithms, Evolutionary Computation,1994,2:221-248.
    [157]Deb K, Agrawal S, Pratap A and Meyarivan T, A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGA-Ⅱ [C]. Parallel Problem Solving from Nature (PPSN VI), Berlin,2000
    [158]Deb K, Pratap A, Agrawal S, et al. A Fast and Elitist Multi-objective Genetic Algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation,2002,6 (2): 182-197.
    [159]Ramesh S,Kannan S, Baskar, S. Application of modified NSGA-II algorithm to reactive power optimization[J]. Communications in Computer and Information Science,2011, 344-354.
    [160]Jeyadevi S, Baskar S, Babulal C K, et al. Solving multiobjective optimal reactive power dispatch using modified NSGA-II[J]. International Journal of Electrical Power and Energy Systems,2011,33(2):219-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700