基于循环工况的城市公交客车动力传动系统参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车动力传动系统参数是影响汽车动力性和燃油经济性最重要的因素,而循环工况是汽车动力传动系统参数设计重要的参考依据。本文对城市公交循环工况的试验和开发方法进行研究,并根据循环工况对汽车的动力传动系统参数进行优化设计。
     提出了基于PV(特征值)的城市公交循环工况开发方法。根据车流量在主要商业区或工业区与居民区之间选择测试线路进行数据采集,以公交各站点间的行程作为短行程,根据工况时间比例由短行程构建城市公交循环工况,并应用特征参数偏差平方和均值选择典型城市公交循环工况。以某城市为例,对城市公交循环工况进行开发,并对开发的循环工况进行模拟计算和试验验证,对基于PV的城市公交循环工况开发方法的有效性,以及应用该方法合成的城市公交循环工况的真实性进行了验证。
     提出了基于DOE(试验设计)的汽车动力传动系统参数优化设计的方法。对城市公交客车的动力系统参数进行研究,利用燃油经济性-动力性曲线,对某城市公交客车的动力传动系统匹配方案进行分析和对比。以动力传动系统参数为设计变量,以参数设计要求和动力性为约束条件,以循环工况下的油耗为目标函数,对动力传动系统参数进行优化计算,并对比了不同循环工况下的优化设计结果,实现了基于循环工况的汽车动力传动系统参数优化设计。对动力传动系统参数进行试验方案设计,对试验方案进行动力性和基于循环工况的燃油经济性模拟计算,采用回归分析的方法对试验结果进行处理,研究了试验因子及其交互对试验指标的影响,并对参数进行了预测和优化。
     提出了改进的汽车动力传动系统参数评价的方法。提出动力性和燃油经济性影响因子,利用综合性能因数对汽车动力传动系统匹配的合理性进行评价。以某客车为例,应用上述评价方法对不同的客车动力传动的匹配方案进行评价,结果表明该方法具有很强的实用性。
Parameters of power train have great affection on the performance of power and fuel economy according to driving cycles. The tests and methods on driving cycle are studied in this paper. The parameters of power train for urban bus are optimized based on driving cycles.
     A method of driving cycle construction based on performance value (PV) is developed for urban bus. Driving condition data is collected on the representative routes which are selected between the major residential areas and commercial or industrial areas according to the traffic flow. The micro-trip is defined as a trip between two bus stops. A driving cycle is then constructed with the randomly selected micro-trips according to the proportion of the driving condition. The representative urban bus driving cycle is selected by the deviation of the parameter mean value. The improved method of urban bus driving cycle construction and the synthesized Dalian urban bus driving cycle are both verified with the case study of urban bus in Dalian.
     A method of drive train parameter optimization design based on design of experiment (DOE) is developed. The parameters are analyzed for the match of power train according to the curves of power and fuel economy performance. The parameters of power train are also optimized with the restraints of power performance for the objective of minimum fuel consumption in driving cycles. The fuel consumption is reduced with the normal power performance through the optimization of power train. The method of orthogonal design is applied in the DOE, and the experiments are simulated. The results are analyzed with the analysis of regression to study the effect of the drive and fuel economy performance by the factor of drive train parameters. The parameters of drive train are also designed with the method of optimization to provide the reference of the design of drive train.
     An improved methodology of matching and evaluation for automotive power transmission is developed with the integer performance factor based on the weighted sum of power effect factor and fuel economy effect factor. The evaluation of the power transmission matching of a bus with the improved methodology shows that the methodology is practiced based on the result of the simulation calculation and test verify.
引文
[1] Kuhler M, Karsten D. Improved driving cycle for testing automotive exhaust emissions. SAE Paper, 1978,No.780650.
    [2] Lin J, Niemeier D A. Estimating regional air quality vehicle emission inventories: constructing robust driving cycles. Transportation Science. 2003, 37: 330-346.
    [3] Ergeneman M, Sorusbay C, Goktan A. Development of a driving cycle for the prediction of pollutant emissions and fuel consumption. International Journal of Vehicle Design. 1997, 18: 391-399.
    [4] Esteves-Booth A, Muneer T, Kubie J et al. A review of vehicular emission models and driving cycles. Proceedings of the Institution of Mechanical Engineers. Part C: Journal of Mechanical Engineering Science. 2002,216:777-797.
    
    [5] Simanaitis D J. Emission test cycles around the world. Automotive Engineering. 1977, 85: 34-43.
    [6] Austin T C, DiGenova F J, Carlson T R et al. Characterization of driving patterns and emissions from light-duty vehicles in California. The final report, Contract No. A932-185, California Air Resources Board, Sacremento. 1993.
    [7] Lin J, Niemeier D A. An exploratory analysis comparing a stochastic driving cycle to California's regulatory cycle. Atmospheric Environment. 2002, 36: 5759-5770.
    
    [8] Kruse R E, Huls T A. Development for the federal urban driving cycle. SAE Paper, 1973, No.730553.
    
    [9] Niemeier D A, Limanond, Thirayoot et al. Data collection for driving cycle development: evaluation of data collection protocols, Department of Civil and Environmental Engineering, Institute of Transportation Studies, University of California, Davis. 1999.
    [10] Andre M. The ARTEMIS European driving cycles for measuring car pollutant emissions. Science of the Total Environment. 2004, 334-335:73-84.
    [11] Andre M, Joumard R, Vidon R et al. Real-world European driving cycles for measuring pollutant emissions from high- and low-powered cars. Atmospheric Environment. 2006,40: 5944-5953.
    [12] Esteves-Booth A, Muneer T, Kirby H et al. The measurement of vehicular driving cycle within the city of Edinburgh. Transportation Research Part D. 2001, 209-220.
    [13] Lyons T J, Kenworthy J R, Austin P I et al. The development of a driving cycle for fuel consumption and emissions evaluation. Transportation Research A. 1986,20: 447-462.
    [14] Bullock K J. Driving cycles. Presented to Joint SAE-A/ARRB Second Conference on Tra□c, Energy and Emissions. Melbourne. 1982.
    [15] Kent J H, Allen G H, Rule G. A driving cycle for Sydney. Transportation Research. 1978, 12: 147-152.
    [16] Kenworthy J R, Newman P W G., Lyons T J. A Driving Cycle for Perth. Report to National Energy Research Development and Demonstration Council, NeERDDP/EG/83/129. 1983.
    [17] Watson H C, Milkins E E, Braunsteins J. The development of Melbourne peak cycle, SAE-A and ARRB TraDc Energy and Emissions Conference Paper 82148, Melbourne. 1982.
    [18] Tong H Y, Hung W T. Development of a driving cycle for Hong Kong. Atmospheric Environment. 1999, 33 (14): 2323-2335.
    
    [19] Hung W T, Tong H Y, Lee C P et al. Development of a practical driving cycle construction methodology: A case study in Hong Kong. Transportation Research D. 2007, 12:115-128.
    [20]李孟良,张富兴,李宏光等.不同采样间隔对车辆行驶车辆工况测定影响的研究.汽车工程.2007,27(3):316-318.
    [21]陈欣,项昌乐,郑慕侨.车辆传动系多工况随机载荷谱的统计处理方法.汽车工程,1999,21(4):232-237.
    [22]朱西产,李孟良,马志雄等.车辆行驶工况开发方法.江苏大学学报,2005,26(2):110-113.
    [23]张建伟,李孟良,艾国和等.车辆行驶工况与特征的研究.汽车工程.2005,27(2):220-224.
    [24]李孟良,朱西产,张建伟等.典型城市车辆行驶工况构成的研究.汽车工程.2005,27(5):557-560.
    [25]张俊智,卢青春,王丽芳.驾驶循环对车辆能量经济性影响的研究.汽车工程,2000,22(5):320-323.
    [26]刘明辉,赵子亮,李俊等.北京城市公交客车循环工况开发.汽车工程,2005,27(6):687-690.
    [27]杜爱民,步曦,陈礼璠等.上海市车辆实际运行工况的调查与分析.同济大学学报.2005,33(1):52-57.
    [28]石坚,卓斌,李伟华.汽车加速工况的仿真实验.上海交通大学学报.2000,34(4):437-440.
    [29]杨延相,蔡晓林,杜青等.天津道路汽车行驶工况的研究.汽车工程.2002,24(3):200-204.
    [30]张全,靳文舟.大城市公交车行驶工况研究中的实验路线选择.华南理工大学学报.2005,33(4):59-62.
    [31]马志雄,李孟良,朱西产等.乘用车实际行驶工况开发方法的研究.武汉理工大学学报.2004,26(3):182-184.
    [32]李孟良,李洧,方茂东.道路车辆实际行驶工况解析方法研究.武汉理工大学学报.2003,27(1):69-72.
    [33]马志雄,李孟良,朱西产等.公交车行驶工况开发过程中试验线路的提取研究.武汉理工大学学报.2004,28(4):515-517.
    [34]吴其伟,吕林,锁国涛.城市发动机循环工况的试验研究与建立.内燃机工程.2006,27(3):73-76.
    [35]俞明,孙国斌,蔡锐彬等.15工况法中发动机运转状况的分析.华南理工大学学报.2002,30(5):25-28.
    [36]石坚,卓斌,李伟华.车用发动机道路行驶工况的模拟实验研究.小型内燃机.2000,29(1):13-16.
    [37]窦慧莉,李骏,刘忠长等.欧Ⅲ排放法规在中国城市公共汽车上应用的合理性研究.内燃机工程.2005,26(2):50-53.
    [38]许允,刘忠长,刘巽俊等.评价重型车用柴油机排放的13工况测试循环和欧洲稳态测试循环的对比.汽车工程.2003,25(1):46-48.
    [39]阎伟,李国祥,徐秀兰等.小型直喷柴油机循环变动工况分析.农业机械学报.2004,35(1):170-172.
    [40]张俊智,卢青春.AT汽车动力传动系动态工况模拟.汽车工程.2000,22(1):10-12.
    [41]刘忠长,王忠恕,李骏等.CA6DE1221K柴油机瞬态工况下的烟度排放特性.燃烧科学与技术.2004,10(6):484-488.
    [42]杨殿勇,王忠,历宝录等.VNT增压柴油机与整车速度瞬态响应的试验分析.车用发动机.2005,159(5):41-44.
    [43]江发潮,陈全世,曹正清.发动机过渡工况特性仿真的研究.车用发动机.2005,156(2):26-27.
    [44]GB/T 12545.2-2001.2001.
    [45]GB/T 19754-2005.2005.
    [46]Sheu K B.Analysis and evaluation of hybrid scooter transmission systems.Applied Energy.2007,84:1289-1304.
    [47]Corbo P,Migliardini F,Veneri O.An experimental study of a PEM fuel cell power train for urban bus application.Journal of Power Sources.in press.
    [48]Corbo P,Corcione F E,Migliardini F et al.Experimental study of a fuel cell power train for road transport application.Journal of Power Sources.2005,145:610-619.
    [49]Mizsery P,Newson E.Comparison of different vehicle power trains.Journal of Power Source.2001,102:205-209.
    [50]韦海燕,陈琳,陈祥烨等.城市公共汽车发动机与传动系合理匹配分析.农机化研究.2004,3(5):262-264.
    [51]汪超.汽车动力传动系参数化的改进遗传算法.河北理工学院学报.2005,27(1):36-42.
    [52]詹樟松,杨正军,刘兴春.汽车动力传动系统参数优化设计和匹配研究.汽车设计.2007,3:17-20.
    [53]文孝霞,杜子学,栾延龙.汽车动力传动系统匹配研究.重庆交通学院学报.2006,25(1):138-141.
    [54]葛安林,吴锦秋,林明芳.汽车动力传动系统参数的最佳匹配.汽车工程,1991,1:35-42.
    [55]刘惟信,戈平,李伟.汽车发动机与传动系参数最优匹配的研究.汽车工程,1991,2:65-72.
    [56]何仁,刘星荣,何泽民.汽车动力传动系统最优匹配的研究和发展.江苏理工大学学报,1997,1:37-41.
    [57]何仁,王建峰.汽车动力传动系统合理匹配的实用方法.中国公路学报.2000,13(1):100-103.
    [58]岳惊涛,廖苓平,彭莫.汽车动力系统的合理匹配评价.汽车工程.2004,26(1):102-106.
    [59]Hambli R.Design of Experiment Based Analysis for Sheet Metal Blanking Processes Optimization.The international Journal of Advanced Manufacture Technology.2004,19(6):402-409.
    [60]Shuaeib F M,etc al.A New Motorcycle Helmet Liner Material:The Finite Element Simulation and Design of Experiment Optimization.Material and Design,2007,28:182-195.
    [61]李学修,黄虎,刘长虹.基于试验设计分析方法的轻卡车身结构优化.上海工程技术大学学报.2007,21(2):104-108.
    [62]于昌阳,马力.驾驶室悬置隔振改进设计中DOE技术的研究应用.机械研究与应用.2006,19(2):40-42.
    [63]余志生.汽车理论.北京:机械工业出版社,2003
    [64]GT-Drive Manual.CDAJ.2007.
    [65]王万中.试验设计与分析.高等教育出版社.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700