基于瞬时优化的混合动力汽车控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合动力汽车在传统汽车驱动系统基础上增加一套电驱动系统,为提高燃油经济性和降低尾气排放提供了广阔的整车设计和控制空间,是当前新能源汽车技术中最具产业化前景的技术。本文以国家“863”电动汽车重大专项为依托,对混合动力汽车开发中的行驶工况、参数匹配与优化和控制策略设计与优化等关键技术环节,以及这些环节之间的相互影响与作用进行研究。
     汽车混合动力化使汽车具有提高燃油经济性和降低尾气排放的潜力,但是其节能和降低排放潜力的发挥相对于传统汽车则更加依赖于目标行驶工况的选取,总成参数的匹配与优化,以及能量管理控制策略的设计与参数优化。混合动力汽车技术这3个环节的相互关系,以及如何对各技术环节对整车性能的影响进行独立客观地评价,是认识混合动力汽车节能机理的本质和发挥其节能和降低排放的重要途径,这是本文的主要研究方向,也是本文的主要创新点。
     本文提出一个以基于瞬时等效油耗最低控制策略(ECMS, Instantaneous Equivalent Consumption Minimization Strategy)的瞬时优化控制策略为核心的系统研究方法,对混合动力汽车参数匹配方案的节能潜力和控制策略对参数匹配方案节能潜力的发挥程度进行研究,并根据获得的瞬时优化控制策略的控制规则建立新的实时控制策略。
     首先,以瞬时优化控制策略为评价策略,获得参数匹配方案在目标行驶工况下的最高燃油经济性,将其作为该参数匹配方案在目标行驶工况下能够获得的节能潜力。然后,对相同的目标行驶工况和参数匹配方案采用逻辑门限控制策略,研究采用逻辑门限控制策略能够获得的最佳燃油经济性,将其作为控制策略对参数匹配方案节能潜力的发挥,即以参数匹配方案节能潜力发挥度对控制策略的控制效能进行评价。最后,根据获得的瞬时优化控制策略的控制规则开发一种新的能够应用于实车控制的实时控制策略,并对其控制效能进行验证。
     本文的研究内容是混合动力汽车理论研究和方案设计的重要理论基础,对认识混合动力汽车技术的机理,发挥混合动力汽车的技术优势,将会具有重要的指导意义。
Facing the two serious problems of oil shortage and air pollution, which are against the sustainable development of the global automotive industry, hybrid electric vehicles (HEVs) have been accepted world wide as one of the most feasible solutions to the problems. Because of incorporating the advantages of both the battery electric vehicle and the conventional internal combustion engine (ICE) vehicle, it is of high fuel efficiency, low emissions, long driving range, and affordable price. In some west countries that have advanced automotive industry, governments and automobile manufacturers have invested a lot for the development of HEVs. The Ministry of Science and Technology of China has also set the development of HEVs and HEV components as one of the most important sub-projects in the 863 Program.
     The driving cycle, parameter design and control strategy are the key technologies of HEVs, they interact. Driving cycle is the base of parameter design, control strategy development and vehicle performance evaluation; parameter design determines the most energy-saving potential of design proposal in the target driving cycle; the characteristic of control strategy will determine degree that the control strategy brings into play the energy-saving potential of design proposal. How to evaluate the energy-saving potential of certain design proposal and development degree of certain control strategy is an important study aspect of HEVs. With the hybrid drive train parameter optimization design and control strategy study and application project of the national 863 Program as its background, the main topic of this study is the evaluation of parameter design energy-saving potential and the control impact of control strategy and the development of control strategy based on instantaneous optimization control strategy.
     First of all, hybrid electric vehicle instantaneous optimization control strategy was built based on the Instantaneous Equivalent Consumption Minimization Strategy (ECMS). Energy flow routes of basic operating mode and efficiency characteristics of hybrid electric vehicle drive train main components were analyzed. The use of electric energy of battery at the present time was divided into electric energy future compensation and future consumption mode, to represent complex operating modes of battery during the driving cycle of HEV. The equivalent fuel consumption of battery electric energy in the two modes is calculated based on Energy Saving Mechanism and the efficiency characteristic of HEV. After taking into account battery SOC sustaining and, the free energy receiving from regeneration brake, the expression of equivalent instantaneous fuel consumption was built.
     Based on ADVISOR and modeFRONTIER joint simulation and optimization platform, energy-saving potential of certain parameter design of HEV bus was study. Instantaneous optimization control strategy worked as evaluating control strategy, battery energy future compensation equivalent fuel consumption conversion factor f eq _dis and future consumption equivalent fuel consumption conversion factor f eq _chg worked as control optimizing parameters. The energy-saving potential of the parameter design in the Beijing city bus driving cycle was obtained, it was on the level of present HEV energy management control strategy.
     Based on the joint simulation and optimization platform, the control parameters of logic threshold control strategy were optimized, to obtain the best fuel economy of parameter design in the Beijing city bus driving cycle. This value was the real fuel economy of the energy-saving potential of the parameter design exerted by logic threshold control strategy. The ratio of this value and the energy-saving potential was regarded as benchmark an index to evaluate the control efficiency of HEV control strategy.
     Real time control strategy that could be used for real vehicle was developed based the control rules from instantaneous optimization control strategy. By assuming SOC was always target value and not taking into account free energy from regeneration braking, simplifying the instantaneous optimization control strategy, the engine driving torque was attained at each required driving speed and torque.
     The developed new HEV control strategy determined engine driving torque based on present required driving speed and torque by looking up table. Then, the control strategy adjusted engine output torque based on the difference of present battery SOC and target SOC, to sustain the balance of battery energy. At last, the performance of the developed new HEV control strategy were validated, it could improve the fuel economy of HEV.
     The thesis is about the key technologies of HEV from the 863-project, which provides the foundation for the parameters design and control of HEV. At the same time the research achievement is the basis for the acceleration and grasp of independent development, and is also the embodiment of the significance for this thesis.
引文
[1] Powers W F, Nicastri P R. Automotive vehicle control challenges in the 21st century. Control Engineering Practice 2000, 8(6): 605-618
    [2] Jefferson C M, Barnard R H. Hybrid vehicle propulsion. Southampton, UK: WIT Press, 2002
    [3] Maine Department of Environmental Protection Bureau of Air Quality. Zero Emission Vehicle Study. Technical Report, 2001
    [4] Wouk V.The hybrid are coming!. Proceedings of the 17th International Electric Vehicle Symposium, Montreal, Canada, 2000
    [5] Morita K.Automotive power source in 21st century. JSAE Review, 2003, 24(1): 3-7
    [6] Okamoto K. Overview of current and future hybrid technology. Proc of the Symposium on Advanced Automotive Powerplants and Energy Resources, Beijing: China SAE, 2002. 89-94
    [7] Santini D J, Vyas A D, Moore J, et al. Comparing cost estimates for US fuel economy improvement by advanced electric drive vehicles. Proceedings of the 19th International Electric Vehicle Symposium, Busan, Korea, 2002. 474-493
    [8] Maggetto G, Mierlo J V. Electric vehicles, hybrid electric vehicles and fuel cell electric vehicles: state of the art and perspectives. Ann. Chim. Sci. Mat, 2001, 26(4): 9-26
    [9] Chau K T, Wong Y S. Overview of power management in hybrid electric vehicles. Energy Conversion and Management 2002, 43(15): 1953-1968
    [10]浦金欢.混合动力汽车能量优化管理与控制策略研究[D].上海:上海交通大学,2004
    [11]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社,2002
    [12] Mehrdad Ehsani, Yimin Gao et al.现代电动汽车、混合动力电动汽车和燃油电池车-基本原理、理论和设计[M].北京:机械工业出版社,2008
    [13]何洪文.混合动力车辆驱动系研究和控制策略分析[D].北京:北京理工大学,2004
    [14]孙逢春,何洪文.混合动力车辆的归类方法研究[J].北京理工大学学报,2002, 22(1):40-44
    [15]刘明辉.混合动力客车整车控制策略及总成参数匹配研究[D].长春:吉林大学,2005
    [16] Richard W. Carlson, Michael J. Duoba et al. Testing and Analysis of Three Plug-in Hybrid Electric Vehicles. SAE Paper 2007-01-0283, 2007
    [17] Jeffrey Gonder, Tony Markel. Energy Management Strategies for Plug-In Hybrid. SAE Paper 2007-01-0290, 2007
    [18] Markel, T. and Simpson, A.“Plug-In Hybrid Electric Vehicle Energy Storage System Design.”Advanced Automotive Battery Conference (AABC). May 2006. Baltimore, MD.
    [19] Simpson, A.“Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology.“22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium (EVS-22). October 2006. Yokohama, Japan.
    [20] O’Keefe, M. P. and Markel, T.“Dynamic Programming Applied to Investigate Energy Management Strategies for a Plug-In HEV.”22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium (EVS-22). October 2006. Yokohama, Japan.
    [21] Thomas H. Bradleya, Andrew A. Frankb. Design, demonstrations and sustainability impact assessments for plug-in hybrid electric vehicles. Renewable and Sustainable Energy Reviews
    [22] Ahmad Pesaran, Tony Markel. Battery Requirements and Cost-Benefit Analysis for Plug-In Hybrid Vehicles. THE 24th INTERNATIONAL BATTERY SEMINAR & EXHIBIT March19-22, 2007, Fort Lauderdale
    [23]李忠剑,张俊智,卢青春等.运用特征参数对汽车驾驶循环的研究[J].汽车技术,2001,7:13-16
    [24]李孟良,张建伟,张富兴等.中国城市乘用车实际行驶工况的研究[J].汽车工程,2006,28(6):554-557
    [25]杨延相,蔡晓林,杜青等.天津市道路汽车行驶工况的研究[J].汽车工程,2002, 24(3):200-204
    [26]骆元,王杰,王犹松.武汉城市公交车工况测定及分析[J].机械工程学报,2005,41(12):96-100
    [27]杜爱民,步曦,陈礼璠等.上海市公交车行驶工况的调查与分析[J].同济大学学报(自然科学版),2006,34(7):943-946
    [28]刘明辉,赵子亮,李骏等.北京城市公交客车行驶工况开发[J].汽车工程,2005,27(6):687-690
    [29]李孟良,朱西产,张建伟等.典型城市车辆行驶工况构成的研究[J].汽车工程,2005,27(5):557-560
    [30]朱西产,李孟良,马志雄等.车辆行驶工况开发方法[J].江苏大学学报(自然科学版).2005,26(2):110-113
    [31]李孟良,张建伟,张富兴等.中国城市乘用车实际行驶工况的研究[J].汽车工程,2006,28(6):554-557
    [32]艾国和,乔维高,李孟良等.车辆行驶运动学参数构成分析[J].公路交通科技,2006,23(2):154-157
    [33]张俊智,卢青春,王丽芳.驾驶循环对车辆能量经济性影响的研究[J].汽车工程,2000,22(5):320-323
    [34]李孟良,张富兴,李宏光等.不同采样间隔对车辆行驶工况测定影响的研究[J].汽车工程,2005,27(3):316-318
    [35] Michael P. O’Keefe, Andrew Simpson et al. Duty Cycle Characterization and Evaluation Towards Heavy Hybrid Vehicle Applications. SAE Paper 2007-01-0302, 2007
    [36]窦慧莉,李骏,刘忠长等.欧-III排放法规在中国城市公共汽车上应用的合理性研究[J].内燃机工程,2005,26(2):50-53
    [37] H?kan Johansson. Test approval based on real world driving. Swedish National Road Administration
    [38]阮廷勇,张开斌.北京工况、重庆工况及欧洲工况特征参数比较与分析.重庆工学院学报(自然科学版),2007,21(10):18-22
    [39] Stephen Baker, Paul Jennings, Chris Mellors. Quantification of Variations in Real-World Drive Cycles for Hybrid Bus Optimisation. SAE Paper 2004-01-2606, 2004
    [40]孙立清,白文杰,王仁贞等.工况分析法在电动车辆设计中的应用[J].中国电动汽车研究与开发,2002,27-34
    [41]张富兴,李孟良,乔维高等.车辆行驶工况运动学水平的研究[J].武汉理工大学学报(交通科学与工程版)2005,29(5):667-670
    [42]何仁,舒昌洪.汽车行驶工况的统计分析[J].江苏理工大学学报,1998,19(6):1-4
    [43] Feng An, Matthew Barth, George Scora. Impacts of Diverse Driving Cycles on Electric and Hybrid Electric Vehicle Performance, SAE Paper 972646, 1997
    [44] R. Joumard, M. AndreH , R. Vidon et al. Influence of driving cycles on unit emissions from passenger cars. Atmospheric Environment, 34 (2000), 4621-4628
    [45] Luc Pelkmans, Dirk De Keukeleere, Hans Bruneel et al. Lenaers Influence of Vehicle Test Cycle Characteristics on Fuel Consumption and Emissions of City Buses. SAE Paper 01FL-308, 2001
    [46]初亮.混合动力总成的控制算法和参数匹配研究[D].长春:吉林大学,2002
    [47]熊伟威,舒杰,张勇等.一种混联式混合动力客车动力系统参数匹配[J].上海交通大学学报,2008,42(8):1324-1328
    [48]黄援军,殷承良,张建武等.并联式混合动力城市公交车动力系统参数匹配[J]. 2007,41(2):272-277
    [49]彭涛,陈全世,田光宇等.并联混合动力电动汽车动力系统的参数匹配[J].机械工程学报,2003,39(2):69-73
    [50]曾小华.混合动力客车节能机理与参数设计方法研究[D].长春:吉林大学,2006
    [51] Feng An, Danilo J. Santini. Mass Impacts on Fuel Economies of Conventional vs. Hybrid Electric Vehicles, SAE 2004-01-0572
    [52] Jefferson C M, Barnard R H. Hybrid vehicle propulsion. Southampton, UK: WIT Press, 2002
    [53] National Research Council, 2002, Effectiveness and Impact of Corporate Average Fuel Economy Standards, National Academy Press, Washington D.C
    [54] Bernd M.Baumann et al. Mechatronic Design and Control of Hybrid Electric Vehicles. IEEE/ASME TRANSACTION ON MECHATRONICS. VOL.5, NO.1, MARCH 2000
    [55] Ryan Fellini, Nestor Michelena, Panos Papalambros et al. Optimal Design of Automotive Hybrid Powertrain Systems
    [56] Troy Miller, Giorgio Rizzoni and Qingyuan Li. Simulation-based hybrid-electric vehicle design search. SAE Paper 1999-01-1150
    [57] Liang Chu, Qingnian Wang, Minghui Liu et al. Control Algorithm Development for Parallel Hybrid Transit Bus. IEEE, 2005
    [58] Jalil N, Kheir N A, Salman M. A rule-based energy management strategy for a series hybrid vehicle. Proc of the American Control Conference, Albuquerque, New Mexico, USA, 1997: 689-693
    [59] Theo Hofman, Maarten Steinbuch. Rule-based energy management strategies for hybrid vehicles. Int. J. Electric and Hybrid Vehicles, 2007, 1(1),
    [60] Ehsani M, Gao Yimin, Butler K L. Application of electrically peaking hybrid (ELPH) propulsion system to a full-size passenger car with simulated design verification. IEEE Transactions on Vehicular Technology, 1999, 48(6): 1779-1787
    [61] Johnson V H, Wipke K B, Rausen D J. HEV control strategy for real-time optimization of fuel economy and emissions. SAE Paper 2000-01-1543, 2000
    [62] Bruno Jeanneret, Tony Markel. Adaptive Energy Management Strategy for Fuel Cell Hybrid Vehicles. SAE Paper 2004-01-1298, 2004
    [63] Joonyoung Park, Youngkug Park, Jahng-Hyon Park. Real-Time Powertrain Control Strategy for Series-Parallel Hybrid Electric Vehicles. SAE Paper 2007-01-3472, 2007
    [64] Joonyoung Park, Youngkug Park, Jahng-Hyon Park. Model Based Optimization of Supervisory Control Parameters for Hybrid Electric Vehicles. SAE Paper 2008-01-1453,2008
    [65] Paganelli G, Ercole G, Brahma A, et al. General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles. JSAE Review, 2001, 22(4): 511-518
    [66] Wagener A., Korner C., Seger P. et al. Cost function based adaptive energy management in hybrid drivetrains. Proceedings of the 18th International Electric Vehicle Symposium, Berlin, Germany, 2001
    [67] Paganelli G, Santin J-J, Guerra T M, et al. Conception and control of parallel hybrid car powertrain. Proc of the 15th International Electric Vehicle Symposium, Brussels, Belgium, 1998
    [68]胡红斐,黄向东,罗玉涛等.HEV实时等效能量消耗最小控制策略[J].汽车工程,2006,28(6):516-521
    [69] Gino Paganelli, Gabriele Ercole, Avra Brahma et al. A General Formulation for the Instantaneous Control of the Power Split in Charge-Sustaining Hybrid Electric Vehicles. Proceedings of AVEC 2000 5th Int’l Symposium on Advanced Vehicle Control, August 22-24, 2000, Ann Arbor, Michigan
    [70] Pierluigi Pisu, Giorgio Rizzoni. A Comparative Study Of Supervisory Control Strategies for Hybrid Electric Vehicles. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 3, MAY 2007
    [71] Cristian Musardo, Giorgio Rizzoni, Benedetto Staccia. A-ECMS: An Adaptive Algorithm for Hybrid Electric Vehicle Energy Management. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005 Seville, Spain, December 12-15, 2005
    [72] Baumann B M, Washington G, Glenn B C, et al. Mechatronic design and control of hybrid electric vehicles. IEEE/ASME Transactions on Mechatronics, 2000, 5(1): 58-72
    [73] Brahma A, Glenn B, Guezennec B, et al. Modeling, performance analysis and control design of a hybrid sport-utility vehicle. Proc of IEEE International Conference on Control Applications, Hawaii, USA, 1999. 448-453
    [74] Salman M A, Schouten N J, Kheir N A. Control strategies for parallel hybrid vehicles. Proc American Control Conference, Chicago, USA, 2000. 524-528
    [75] Lee H-D, Sul S-K. Fuzzy-logic-based torque control strategy for parallel-type hybrid electric vehicle. IEEE Transactions on Industrial Electronics, 1998, 45(4): 625-632
    [76] Wang A, Chen Y, Zhang R. A novel design of energy management system for hybrid electric vehicles using evolutionary computation. Proc of the 18th International Electric Vehicle Symposium, Berlin, Germany, 2001
    [77] Niels J. Schoutena, Mutasim A. Salmanb, Naim A. Kheira. Energy management strategies for parallel hybrid vehicles using fuzzy logic. Control Engineering Practice, 11(2003), 171–177
    [78] H. Hannoun, D. Diallo et al. Energy Management Strategy for a parallel Hybrid Electric Vehicle Using Fuzzy Logic. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2006
    [79] Niels J. Schouten, Mutasim A. Salman, and Naim A. Kheir. Fuzzy Logic Control for Parallel Hybrid Vehicles. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 10, NO. 3, MAY 2002
    [80] Naim A. Kheir a, Mutasim A. Salman b, Niels J. Schouten. Emissions and fuel economy trade-off for hybrid vehicles using fuzzy logic. Mathematics and Computers in Simulation 66 (2004) 155-172
    [81]殷承良,浦金欢,张建武.并联混合动力汽车的模糊转矩控制策略[J].上海交通大学学报,2006,40(1):157-162
    [82] S. M. Mehdi Ansarey M, Mohsen Mohammadian, S. M. Taghi Bathaee. Power Flow Distribution For Hybrid Fuel Cell Vehicle Via Genetic Algorithm Method. SAE Paper 2004-01-3040, 2004
    [83] Amir Poursamad, Morteza Montazeri. Design of genetic-fuzzy control strategy for parallel hybrid electric vehicles. Control Engineering Practice 16 (2008) 861-873
    [84]欧阳易时,金达锋,罗禹贡.并联混合动力汽车功率分配最优控制及其动态规划性能指标的研究[J].汽车工程,2006,28(2):117-121
    [85]浦金欢,殷承良,张建武.并联型混合动力汽车燃油经济性最优控制[J].上海交通大学学报,2006,40(6):947-957
    [86] Chan-Chiao Lin, Huei Peng, Jessy W. Grizzle et al. Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck. SAE Paper 2003-01-3369, 2003
    [87] Zhengmao Ye. Automotive Hybrid System Optimization using Dynamic Programming. SAE Paper 2003-01-0847, 2003
    [88] Michele Anatone, Roberto Cipollone et al. Control-Oriented Modeling and Fuel Optimal Control of a Series Hybrid Bus. SAE Paper 2005-01-1163, 2005
    [89] Bin Wu, Chan-Chiao Lin, Zoran Filipi et al. Optimization of Power Management Strategies for a Hydraulic Hybrid Medium Truck. Proceedings of the 2002 Advanced Vehicle Control Conference, Hiroshima, Japan, September 2002
    [90] Chan-Chiao Lin, Jun-Mo Kang, J.W. Grizzle et al. Energy Management Strategy for a Parallel Hybrid Electric Truck. Proceedings of the American Control Conference. Arlington, VA June 25-27, 2001
    [91] Chan-Chiao Lin, Zoran Filipi et al. Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies. SAE Paper 2001-01-1334, 2001
    [92] Laura V. P′erez, Guillermo R. Bossio et al. Optimization of power management in an hybrid electric vehicle using dynamic programming. Mathematics and Computers in Simulation 73 (2006) 244–254
    [93] Sebastien Delprat, Jimmy Lauber, Thierry Marie Guerra et al. Control of a Parallel Hybrid Powertrain: Optimal Control. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 53, NO. 3, MAY 2004
    [94] Antonio Sciarretta, Michael Back, Lino Guzzella. Optimal Control of Parallel Hybrid Electric Vehicles. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 3, MAY 2004
    [95] Delprat S, Guerra M T, Rimaux J. Optimal control of a parallel powertrain: From global optimization to real time control strategy. Berlin: Technical Paper of EVS18, 2001
    [96] Amir Poursamad, Morteza Montazeri. Design of genetic-fuzzy control strategy for parallel hybrid electric vehicles. Control Engineering Practice 16 (2008) 861-873
    [97]金启前.混合动力客车试验与评价问题研究[D].长春:吉林大学,2006
    [98]余志生.汽车理论(第3版)[M].北京:机械工业出版社,2001
    [99]董敬.汽车拖拉机发动机(第3版).北京:机械工业出版社,1995
    [100]石英乔,何彬,曹桂军等.燃油电池混合动力瞬时优化能量管理策略研究[J].汽车工程,2008,30(1):30-35
    [101] Gino Paganelli, Yann Guezennec, Giorgio Rizzoni. Optimizing Control Strategy for Hybrid Fuel Cell Vehicle. SAE Paper 2002-01-0102
    [102] Cristian Musardo, Giorgio Rizzoni, Benedetto Staccia. A-ECMS: An Adaptive Algorithm for Hybrid Electric Vehicle Energy Management. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005
    [103] Volkan Sezer, Varlk Kl?, Murat Yldrm. Maximizing Overall Efficiency Strategy (MOES) for Power Split Control of a Parallel Hybrid Electric Vehicle. SAE Paper 2008-01-2682
    [104] Bruno Jeanneret, Tony Markel. Adaptive Energy Management Strategy for Fuel Cell Hybrid Vehicles. SAE Paper 2004-01-1298
    [105] G. Paganelli, S. Delprat, T.M Guerra etc. Equivalent Consumption Minimization Strategy for Parallel Hybrid Powertrains
    [106] Gino Paganelli, Yann Guezennec, Giorgio Rizzoni. Optimizing Control Strategy for Hybrid Fuel Cell Vehicle. SAE Technical Paper 2002-01-0102, 2002
    [107] Gino Paganelli, Gabriele Ercole, Avra Brahma et al. General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles. JSAE Review 22 (2001) 511-518
    [108] Antonio Sciarretta, Michael Back, Lino Guzzella. Optimal Control of Parallel Hybrid Electric Vehicles. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 3, MAY 2004
    [109] Desikan Bharathan, Steve Burch, Mathew Cuddy, Dave Rausen. ADVANCED VEHICLE SIMULATOR. National Renewable Energy Laboratory of USA
    [110]曾小华,王庆年,李骏等.基于ADVISOR2002混合动力汽车控制策略模块开发[J].汽车工程,2004,26(40:394-396
    [111]王伟华.并联混合动力汽车的控制[D].长春:吉林大学,2006
    [112]周勇有.基于马尔可夫预测的混合动力汽车控制策略[D].长春:吉林大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700