轮式驱动电动车控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对轮式驱动电动车的控制系统进行了相关的系列关键技术的研究。首先,将由Utkin.V.I等学者提出的滑模变结构的优化器应用到车辆防抱制动系统(ABS)和牵引控制(TC)的最佳滑移率寻优控制中,所构造的优化器不需要路面型式的先验知识,寻优目标函数取决于车体的行驶速度。该优化器在不同路面条件下的最佳滑移率辨识效果相当理想,且具有一定的自适应性和实时性。
     其次,本文构建了基于最佳滑移率控制的ABS控制器(包含二阶滑模防抱制动控制器、滑移率滑模优化器、滑模观测器以及消减颤振的设计)。与通常的基于开关控制的ABS控制器相比,该新型控制器具有相当强的鲁棒性,对目标滑移率跟随性能好,无抱死现象,且制动时间短。
     同时,本文基于滑模变结构和计算智能相融合的控制技术,还分别设计了基于固定滑移率控制的ABS、TC系统。这类低造价、高性能的新型控制器不仅保证了被控系统的运动状态能跟踪理想的运动轨迹,消除了常规滑模控制中存在的颤振现象,而且加强了控制器对系统不确定参数的适应性,从而进一步提高了ABS、TC系统的鲁棒性。
     再次,本文独立提出了基于滑移率控制的新颖的电子差速控制算法。该新算法保证了更好的车辆操作性能和响应控制特性,其主要技术指标明显优于传统机械差速控制,具有现实的工程应用价值。同时,基于实效、低成本的控制技术的设计思想,本文还构建了低速行驶时的简化电子差速算法。本文制作的基于DSP2407的双轮毂电机的全新电子差速控制系统,在样车上的实验证明设计合理,实现了良好的差速控制。此外,本文还构建了基于CAN总线和串行通讯总线的轮式驱动电动车通讯系统设计方案,以实现对车辆运行状态的监测、控制以及故障排除。并通过试运行完成了相应的设计功能测试。
     在附录中,本文给出了用于电动车的一种新的二相永磁无刷直流轮毂电机的设计,样机的仿真和实验测试的一致性,验证了该电机系统设计的正确和实用性。
A comprehensive study of the key techniques of the control system for in-wheel driven Electric Vehicles (EV) is conducted in this dissertation.Firstly, a sliding mode based optimizer is introduced. The proposed optimizer requires neither a prior knowledge of the surface type nor the relationship between the coefficients of the adhesion and the wheel slips since the objective function is related only to the vehicle velocity, leading an improvement in both adaptive and real-time adjusting abilities. Therefore, its identification results of the optimal sliding rate for different road surface conditions are more promising.Secondly, a novel optimal slip based antilock braking system (ABS) is proposed. The braking system includes mainly a sliding mode based wheel slip optimizer, a sliding mode based nonlinear observer, and a sliding mode based ABS controller. The function of the sliding mode based wheel slip optimizer is to maintain the optimization wheel slip, that of the sliding mode based nonlinear observer to estimate the vehicle velocity from the output of the system, and that of the sliding mode based ABS controller to regulate the wheel slip to reach its optimal value. The salient advantages of the proposed braking system are (1) its robustness, (2) its excellent ability to response the wheel slip, and (3) its high time-efficiency for decelerations.Also, based on the combination of the computational intelligence and the sliding mode control, an ABS and a traction control (TC) systems are, respectively, developed. This low-cost but high performance controller can guarantee that the to-be controlled system can response exactly the ideal moving trace, avoid the drawback of the control chattering occurred in the classical sliding mode control, and therefore improves significantly the robustness of the systems.Thirdly, a novel electric differential algorithm is independently developed. Compared with the traditional mechanism differential ones, the turning performance and the controllability of the response of the proposed algorithm are enhanced. Based on an efficient and low cost design methodology, a simplified electric differential strategy for low speed EVs is also developed. To validate the proposed work, the electric differential control system based on TMS320F2407 DSP is implemented on a prototype vehicle, and the experimental results demonstrate its feasibility in engineering applications. In addition, a communication system based on CAN and RS232 buses for In-wheel motor driven EV is built to realize the real time monitoring and fault diagnosing of the running
    states of a vehicle.In the appendix of this dissertation, the details about a new designed 2-phase Permanent Magnet Brushless in-wheel Motor are summarized. Also, the performance comparisons of computer simulation and tested results are given to demonstrate their good agreements.
引文
[1] Okyay Kaynak, Kemalettin Erbatur, Meliksah Ertugrul, The Fusion of Computationally Intelligent Methodologies and Sliding-Mode Control-A Survey, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2001, 48(2):4-17.
    [2] M. Onder Efe, Okyay Kaynak, and Bogdan M. Wilamowski, Stable training of computationally intelligent systems by using variable structure systems technique, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2000, 47(4):487-496.
    [3] Mehmet Onder Efe, Cem Unsal, Okyay Kaynak, Xinghuo Yu, Variable structure control of a class of uncertain systems, Proceedings of 2003 IEEE Conference on Control Applications, 2003,1:78-82.
    [4] Cem Unsal, Pushkin Kachroo, Sliding Mode Measurement Feedback Control for Antilock Braking Systems, IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 1999,7(3) :271-181.
    [5] Mehmet Onder Efe, Okyay Kaynak, Variable structure systems theory based training strategies for computationally intelligent systems, Proceedings of 2001 Industrial Electronics Society, 2001,3:1563-1576.
    [6] A.B. Will, S. Hui, S.h.Zak, Sliding mode wheel slip controller for an antilock braking system, Int.J. of Vehicle Design, 1998, 19(4):523-539.
    [7] Pavel A. Shavrin, Control of independent rear wheel drive vehicle, Proceeding of the 34th Conference on Decision & Control, 1995:4380-4385.
    [8] J.Guldner, V.I.Utkin, The chattering problem in sliding mode systems, the copyright.
    [9] Manabu OMAE, Hiroshi SHIMIZU, Traction-force-distribution control of EV with in-wheel motors for lane keeping, EVS' 18, Berlin, 2001.
    [10] D.Foito, A. Roque, J. Esteves, J. Maia, Electric vehicle with two independent wheel drives-improving the performance with a traction control system, EVS'17, 2000.
    [11] R. PUSCA, AIT AMIRAT, A. BERTHON, Slip control strategy of an electrical four wheel drive vehicle, EVS'18, Berlin, 2001.
    [12] Fredrik Gustafsson, Monitoring tire-road friction using the wheel slip, IEEE Control Systems, 1998, (8) :42-49.
    [13] Shin-ichiro, Hideo Sado, and Yoichi Hori, Motion control in an electric vehicle with four independently driven in-wheel motors, IEEE/ASAM TRANSACTIONS ON MECHATRONICS, 1999,4 (1) :9-16.
    [14] Ju-Sang Lee, Young-Jae Ryoo, Young-Cheol Lim, Peter Freere et al. Neural network model of electric differential system for electric vehicle, 26th Annual Conference of the IEEE, 2000, 1:83-87.
    [15] Kiyoshi Ohishi, Ken Nakano, Ichiro Miyashita, and Shinobu Yasukawa, Anti-slip control of electric motor coach based on disturbance observer, In Proc. 5th Advance Motor Control, Coimbra, 1998:580-585.
    [16] Hiroshi Shimizu, Junji Harada, Colby Bland, and Kiyomoto Kawakami et al. Advanced concepts in electric vehicle design, IEEE TRANSACTIONS INDUSTRIAL ELECTONICS, 1997,44 (1) : 14-18.
    [17] U-sok Chong, Eok Namgoong, Seung-Ki Sul, Torque steering control of 4-wheel drive electric vehicle, IEEE Power Electronics in transportation, 1996, (5) : 159-164.
    [18] S. Gair, Motor drives and propulsion systems for EVs, IEE Colloguium on Electric Vehicles-A Technology Roadmap for the Future, 1998, (3) :311 -316.
    [19] B. Ewers, J. Bordeneuve-Guibe, J.-P. Garcia, and J. Piquin, Expert supervision of an anti-skid control system of a commercial aircraft, Proceedings of the 1996 IEEE international symposium on intelligent control, 1996:420-425.
    [20] B. Hredzak, P. S. M. Chin, S. Gair, Latest developments in direct EV wheel drives, Energy Management and Power Delivery, Proceedings of International Conference on , 1998, 2:714-717.
    [21] Branislav Hredzak, Philip S. M. Chin,Design of electronic differential and sliding mode controller for a direct electric vehicle wheel drive, 16th ELECTRIC VEHICLE SYMPOSIUM, 1999.
    [22] Fredrik Gustafsson, Monitoring tire-road friction using the wheel slip, IEEE Control Systems, Control Systems Magazine, IEEE , 1998 , 18 (4) :42-49.
    [23] P. Khatun, C. M. Bingham, P.H.Mellor, and N. Schofield, Discrete-time ABS/TC test facility for electric vehicles, EVS 16,1999.
    [24] S. K. Korovin, V. I. Utkin, Using sliding models in static optimization and nonlinear programming, Automatica, 1974, 10:525-532.
    [25] Kenneth R. Buckholtz, Reference input wheel slip tracking using sliding mode control, copyright of 2002 Society of Automotive Engineers,Inc.
    [26] Atsuo Kawamura, Keiichi Takeuchi, Takemasa Furuya, and Yosuke Takaoka et al. Measurement of the tractive force and the new adhesion control by the newly developed tractive force measurement equipment, Proceedings of Power Conversion Conference, 2002, (2) :879-884.
    [27] Motoki Shino, Naoya Miyamoto, YuQing Wang, and Masao Nagai, Traction control of electric vehicles considering vehicle stability, Advanced Motion Control, Proceedings. 6th International Workshop on , 2000:311-316.
    [28] Jung-Woo Park, Dae-Hyun Koo, Jong-Moo Kim, and Heung-Geun Kim, High performance drive unit for 2-motor driven electric vehicle, Fourteenth Annual Applied Power Electronics Conference and Exposition, 1999, 1: 443-449.
    [29] Kiyoshi Ohishi, Yasuaki Ogawa, Ichiro Miyashita, and Shinobu Yasukawa, Adhesion control of electric motor coach based on force control using disturbance observer, Proceedings 6th International Workshop on Advanced Motion Control, 2000: 323-328.
    [30] Y. Shibahata, K. Shimada, T. Tomari, Improvement of vehicle maneuverability by direct yaw moment control, Vehicle System Dynamics, 1993: 465-481.
    [31] 赵治国,万宗德,李杰,防抱制动系统参数自适应滑模变结构控制器的研究,机械科学与技术,2002,21(1)。
    [32] 程军,车辆防抱系统鲁棒控制的研究,汽车工程,1998,20(1):17—23。
    [33] 张昌凡,王耀南,滑模变结构的智能控制及其应用,中国电机工程学报,2001,21(3):237—29。
    [34] 周锐,韩曾晋,一类非线性系统的自适应控制方法,自动化学报,1999,25(2):152—161。
    [35] 程军,防抱制动系统不同控制方法的模拟研究,汽车技术,1998,(8):1—7。
    [36] 韩曾晋,自适应控制,北京:清华大学出版社,1995。
    [37] 张成宝,徐信明,汽车动力学控制系统的初步研究,汽车研究与开发,2001,(2):40-43。
    [38] 鹿笑冬,童毅,欧阳明高,汽车动力系统的滑模控制,汽车工程,2001,23(5):344—348。
    [39] 许美坤,唐新蓬,汽车防抱制动系统中最佳滑移率的识别方法,湖北汽车,2001,(4):17-21。
    [40] 程军,徐光辉,崔继波,一种新型的车辆速度及加速度测量办法,汽车研究与开发,1999,(3):41-43。
    [41] 林贵军,朱伟,新型差速器的研究与分析,湖北航天科技,2001,(1):39-44。
    [42] 郭平辉,差力差速器设计,机械设计,1998,(9):36-37。
    [43] 钱立军,赵韩,高立新,电动汽车开发的关键技术及技术路线,合肥工业大学学报(自然科学版),2002,25(1):14-18。
    [44] 陈勇,孙逢春,电动汽车续驶里程及其影响因素的研究,北京理工大学学报,2001,21(5):578-582。
    [45] 张宇,胡雄文,汽车电磁制动器的变结构控制及其仿真,汽车科技,2002,(4):12-14。
    [46] 巢凯年,汽车动力学仿真中的车轮滑动计算,汽车技术,1994,(10):6-9。
    [47] 郭平辉,一种既能差速又能差力的差速器,矿山机械,1998,(11):70-71。
    [48] 赵治国,方宗德,傅卫平,胡飞,防抱制动系统滑模状态观测和控制系统仿真,计算机仿真,2002,19(1):69—75。
    [49] 程军,车轮最佳滑移率控制的研究,汽车研究与开发,2000,(1):36-39.
    [50] 程军,袁金光,王西山,高跃奎,自行研制的防滑控制系统的道路实验及分析,重型汽车,1996,33(2):9-12。
    [51] Pushkin Kachroo, Masayoshi Tomizuka, Chatting reduction and error convergence in the sliding-mode control of a class of nonlinear systems, IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41: 1063-1068.
    [52] Stephane Brisset, Gerard Odoux, Pascal Brochet, Brushless DC wheel motor for electric vehicle, EVS 18, Berlin, 2001.
    [53] B. Hredzak, S. Gair, J. F. Eastham, Elimination of torque pulsations in a direct drive EV wheel motor, IEEE TRANSACTIONS ON MAGNETICS, 1996, 32(5): 5010-5012.
    [54] Prof. H. Kabza, C. Koerner, E Seger, and A. Wagener, A versatile simulator for drivetrain modelling and analysis, EVS 17, 2000.
    [55] D. Johnston, TM4 motor-wheel drive and control system: performance, benefits and advantages, EVS 17, 2000.
    [56] Katsuhiko Kamiya, Junichi Okuse, kazufumi Ooishi, and Takeshi Ko et al. Development of in-wheel motor system for mocro EV, EVS 18, Berlin, 2001.
    [57] King-Jet Tseng, G. H. Chen, Computer-aided design and analysis of direct-driven whel motor drive, IEEE TRANSACTIONS ON POWER ELECTRONICS, 1997, 12(3): 517-527.
    [58] Masayuki Terashima, Tadashi Ashikaga, Takayuki Mizuno, and Kazuo Natori et al. Novel motors and controllers for high-performance electric vehicle with four in-wheel motors, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1997, 44(1): 28-38.
    [59] Shin-ichiro Sakai, Hideo Sado, Yoichi Hori, New skid avoidance method for electric vehicle with independently controlled 4 in-wheel motors, Proceeding of ISIE'99, 1999.
    [60] Shin-ichiro Sakai, Hideo Sado, Yoichi Hori, Novel wheel skid detection method for electic vehicles, EVS 16, 1999.
    [61] Laura R. Ray, Experimental determination of tire forces and road friction, Proceedings of the American Control Conference, 1998: 1843—1847.
    [62] Juergen Ackermann, Robush control prevents car skidding, IEEE Control Systems, 1997, (6): 23-31.
    [63] Katsuhiko Kamiya, Junichi Okuse, kazufumi Ooishi, and Takeshi Ko et al. Development of the micro EV car "COMS", EVS 18, Berlin, 2001.
    [64] B. Hredzak, S. Gair, J. F. Eastham, Control of an EV drive with reduced unsprung mass, IEEE Proc.-Electr. PowerAppl., 1998, 145(6): 600-606.
    [65] Shin-ichiro Sakai, Kentaro Kitagawa, Yoichi Hori, Lateral motion stabilization of 4 wheel-motored EV based on wheel skid prevention, EVS 17, 2000.
    [66] Laura R. Ray, Nonlinear state and tire force estimation for advanced vehicle control, IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 1995, 3(1): 117-124.
    [67] Y. Dote, H. Kobayashi, J. Fujikawa, and A. Syitno, Disturbance observer-based robush and fast speed controller for induction motors, Industry Applications Society Annual Meeting, 1990, 1: 653—662.
    [68] Kiyoshi Ohishi, Masato Nakao, Kouhei Ohnishi, and Kunio Miyachi, Microprocessor-controlled DC motor for loaded-insensitive position servo system, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1987, IE-34(1): 44-49.
    [69] Domenico Villacci, Alfredo Vaccaro, A MATLAB based simulation tool for dynamic modeling and performances evaluation of hybrid electric vehicles, EVS 18, Berlin, 2001.
    [70] 宋慧,胡骅,电动汽车的现状及发展,汽车电器,2000,(1):51-55。
    [71] 陈清泉,论电动车驱动的关键技术,江苏机械制造与自动化,1998,(2):2-6。
    [72] 李玉香,高性能电动汽车的开发,汽车杂志,1997,(7):4-5。
    [73] 丁志刚,电动车电驱动技术评述,微电机,1996,29(4):32-35。
    [74] 王宗培,陈敏祥,二相四绕组小容量无刷直流电动机稳态运行的分析模型,电工技术学报,1997,12(4):20-24。
    [75] C. C. Chan, J. Z. Jing, G. H. Chen, A Novel High Power Density Permanent Magnet Variable-speed Motor, IEEE Trans. on Energy Conversion, 1993, 8(2): 297-303.
    [76] C. C. Chan, J. Z. Jing, G. H. Chen, X. Y. Wang et al., A Novel Polyphase Multipole Square-wave Permanent Magnet Motor Drive for Electric Vehicles, IEEE Trans. on Industry Application, 1994, 30(5): 1258-1266.
    [77] Chris French, Paul Acarnley, Direct Torque Control of Permanent Magnet Drives, IEEE Trans. on Industrial Applications, 1996, 32(5): 1080-1087.
    [78] 刘健,EQ6690EV电动客车动力性、能量经济性实验研究,中国电动车研究与开发,1997:67—76。
    [79] 刘丁,余志平,杨延西,基于DSP的无刷直流电机无传感器控制系统设计,电机与控制学报,2002,6(1):29-33。
    [80] Jochen Langheim, et al. Driving Behavior of a Vehicle with Two Induction Motors for the Rear Wheels, Proc. Of the 11~(th) International Electric Vehicle Symposium, Florence, 1992: 5-10.
    [81] Liu Jun, Hu Guangyan, Wen Xuhui, DSP and CAN Bus based Induction Motor Control in Electrical Vehicle Application, Proceedings of the sixth international conference on electrical machines and systems, 2003, 2: 585-587.
    [82] 邬宽明,CAN总线原理和应用系统设计,北京,北京航空航天大学出版社,1996。
    [83] 万沛霖,电动汽车的关键技术,北京,北京理工大学出版社,1998。
    [84] 乔静秋,电动车用矩形波永磁电动机的优化设计研究,博士论文,杭州:浙江大学,2002。
    [85] Qian Ming, Sliding Mode Controller Design for ABS System[D], Virginia, Virginia Polytechnic Institute and State University, 1997.
    [86] H. Peng, M. Tomizuka, Vehicle lateral control for highway automation, Proc. Amer. Contr. Conf., San Diego, 1990: 788-794.
    [87] 唐任远,现代永磁电机理论与设计,第一版,北京,机械工业出版社,1997。
    [88] 饶运涛等,现场总线CAN原理与应用技术,第1版,北京,北京航空航天大学出版社,2003。
    [89] 刘和平等,TMS320LF240X DSP结构、原理及应用,第1版,北京,北京航空航天大学出版社,2002。
    [90] 黄海等,DSP控制原理及其在运动控制系统中的应用,第2版,北京,北京航空航天大学出版社,2003年。
    [91] 赵德等,LabVIEW6.1编程技术实用教程,第1版,中国铁道出版社,2002年。
    [92] 杨成林,工控机市场发展现状分析,国内外机电一体化技术,1998年。
    [93] 孙增圻,智能控制理论与技术,第1版,清华大学出版社,广西科学技术出版社,2000。
    [94] 刘君华,贾惠芹,丁晖等,虚拟仪器图形化编程语言LabVIEW教程,西安:西安电子科技大学出版社,2001。
    [95] 赵红茹,电动汽车电子差速控制及驱动系统的研究,硕士论文,哈尔滨:哈尔滨工业大学。
    [96] 谢军,四轮驱动全方位自主转向电动车系统研究,博士论文,杭州:浙江大学,1996。
    [97] 赵辉,轮式无刷直流电动机驱动的电动车系统的研究,博士论文,哈尔滨:哈尔滨工业大学,1999年12月。
    [98] 李春生,双轮独立驱动电动车驱动系统的研究,硕士论文,杭州:浙江大学,2003。
    [99] 薛定宇,陈阳泉,基于MATLAB/Simulink的系统仿真技术与应用,北京,清华大学出版社,2002年。
    [100] 胡跃明,变结构控制理论与应用,第2版,北京,科学出版社,2003。
    [101] 褚蕾蕾,陈绥阳,周梦,计算智能的数学基础,第1版,北京,科学出版社,2002。
    [102] 王丰尧,滑模变结构控制,北京,机械工业出版社,2001。
    [103] 刘豹,现代控制理论,第2版,北京,机械工业出版社,2000。
    [104] TMS320LF/LC240X DSP Controllers System and Peripherals Reference Guide, TI DSP SOLUTION Literature Number: SPRU357, 2000.
    [105] TMS320LF/LC240X DSP Controllers CPU and Instruction Reference Guide, TI DSP SOLUTION Literature Number: SPRS064B, 1997.
    [106] 李序葆,赵永健,电力电子器件及其应用,第1版,北京,机械工业出版社,2000。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700