透明OLED器件及全彩PMOLEDs显示系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机发光二极管(organic light-emitting diode,OLED)或称有机电致发光器件,由于具有自发光、响应快、全固态、宽视角、超薄、耐高低温等优点,在平板显示技术领域是目前国内外研究的热点之一。
     本论文在透明OLED器件的制备、无源矩阵OLEDs(Passive matrix OLEDs,PMOLEDs)屏和全彩高分辨率PMOLEDs显示系统的研究、掺杂型绿色器件的结构优化和工艺方面进行了一系列的探索性和创新性的工作,具体包括:
     1.使用低功函数和高稳定性的六硼化镧(LaB_6)材料作为透明阴极,制作了LaB_6/Alq_3/NPD/Au和ITO/TPD/Alq_3/LaB_6两种OLED器件。LaB_6薄膜是使用电子束蒸镀工艺来制备的,当LaB_6薄膜厚度1800(?)时,薄膜透过率约为70%,方阻约为35Ω/□。LaB_6/Alq_3/NPD/Au器件发光面为LaB_6阴极,开启电压大约为2.4V,器件的最大电流效率为2.46cd/A,此时对应的驱动电压为2.6V。在驱动电压15V时,电致发光光谱峰值波长为534nm,色度坐标为(0.287,0.652)。ITO/TPD/Alq_3/LaB_6为透明OLED器件,器件的开启电压大约为2.8V,17V时器件亮度可达5650cd/m~2。电压5.0V时得到最大电流效率4.36cd/A。LaB_6阴极一侧的发光光谱与ITO阳极一侧相比,峰值波长红移了约8nm,部分原因可能是微腔效应。
     2.采用矩阵网络分析方法,建立了PMOLEDs屏的简化和准确等效电路,可系统、简化地分析PMOL正Ds屏的交叉串扰现象,如OLEDs具有良好的整流特性,采用逐行寻址驱动技术时,交叉串扰影响较小。仿真计算了OLEDs行、列电极的电压降,因为OLEDs是电流型器件,必须采用恒流源驱动,如用恒压源驱动,在行、列电极上产生的电压降将会严重影响图象亮度的均匀性。建立了计算PMOLEDs功耗的数学模型,模型表明采用双屏驱动的OLEDs与单屏相比,随着屏的尺寸的增加,器件的功耗可得到显著的降低。制作了两个绿色小分子无源矩阵OLEDs,器件的尺寸为2.5″,分辨率为128×64。测试结果验证了功耗模型,当二者工作亮度均为100cd/m~2时,采用双屏驱动的OLEDs的功耗比单屏的降低了25%。
     3.利用AutoCAD软件包设计了128×160高分辨率全彩OLEDs屏的基板、以及与基板配套的4张光掩模、2张机械掩模图案以及FPC和COF。
     4、利用分立元件设计了全彩PMOLEDs屏的驱动电路,驱动电路采用了预充电技术,首先用一电压源对OLED的寄生电容充电将其电压充到启亮电压附近,再用一程控电流源驱动OLED使之发光,R、G、B三色OLED像素的预充电电压分别被设定为3.0V、2.0V和2.9V;设计了全彩PMOLEDs屏的显示系统,显示系统使用DVI接口将显示数据从微机传输到FPGA进行数据处理,FPGA将1 8位的显示数据和时钟信号传输给驱动电路。OLEDs屏能实现262144种颜色。当屏平均工作亮度为40cd/m~2时,寿命预计超过5000小时,功耗约为300mW。
     5.研究了两种不同空穴材料(2-TNATA和CuPc)对掺杂型OLED器件性能的影响。器件的电流-电压-亮度关系的测试结果,两种器件在低电压情况下(<5.7V),电极和有机层为欧姆接触;而在较大的电压情况下,满足陷阱电荷限制传导机制。测试结果表明作为空穴注入材料,2-TNATA的性能优于CuPc。以2-TNATA为空穴注入层,研究了其厚度对器件光电性能的影响。结果表明,当2-TNATA厚度为35nm时,器件的性能最优。当驱动电压分别为13V时,器件的亮度和电流效率分别为3280cd/m~2、1.377cd/A。在有机发光器件中的微腔效应并没有对器件的发光光谱带来很大的影响,因此基本可以忽略。
     6.研究了绿色荧光染料C-545T掺杂在Alq_3发光层对OLED器件性能的影响,并优化了掺杂浓度。当C-545T掺杂浓度为1.5 wt%时,器件的效率最高;当掺杂浓度大于1.5 wt%时,有较明显的浓度猝灭现象。外加电压19.5V时,器件的亮度达到了10650cd/m~2,最大电流效率为6.16cd/A。C-545T掺杂对器件的发光光谱影响较大,掺杂1.0 wt%和2.5 wt%的峰值波长差为26nm,有明显的红移现象。
Organic light-emitting diode (OLED) is also named as organic electroluminescencedevice.The OLED technology develops very quickly because of its advantages,suchas self-emission,fast response,full solid device,large viewing angle,ultra-thinstructure,and wide-temperature operating range.
     1.Two kinds of OLED with Lanthanum hexaborides (LaB_6) as transparent cathodewere fabricated.The structures of two kinds of OLED are LaB_6/Alq_3/NPD/Au andITO/TPD/Alq_3/LaB_6,respectively.LaB_6 film,with transparency of~70% and sheetresistance of 35Ω/□when the thickness of film is about 1800(?),was prepared by theelectrons-beam evaporation.Turn-on voltage of LaB_6/Alq_3/NPD/Au is 2.4V,andmaximum current efficiency is 2.46cd/A at 2.6V.Peak wavelength of EL spectrum is534nm at 15V,and chromaticity coordinates is (0.287,0.652).The device with thestructure of ITO/TPD/Alq_3/LaB_6 is a transparent OLED,whose turn-on voltage is 2.8V,maximum current efficiency is 4.36cd/A at 5.0V and luminance reach 5650cd/m~2 at 17V.Compared to the peak wavelength of spectra emitted from anode,the peak of spectraemitted from LaB_6 transparent cathode shifts~8nm to longer wavelength,due in part tomicrocave effect.
     2.A systematic and numerical analysis of the simple equivalent and exact equivalentcircuit of PMOLEDS was presented,and the crosstalk of PMOLEDS was analyzed.IfOLEDs have a good rectification,the crosstalk will have a very minor impact on theimage non-uniformity of PMOLEDs.Voltage drop on the electrode was quantitativelyanalyzed.Because the current dependence of voltage of OLED must meet the powerrelation,the minor voltage applied to each pixel will enable relative difference ofcurrent.So current-source is usually used to drive PMOLEDs.A mathematical model tocalculate the power consumption of PMOLEDs was presented.The models demonstratethat the power of dual-panel PMOLEDs can be significantly reduced compared withthat of single-panel PMOLEDs.Two 2.5-in.128×64-pixel green small moleculePMOLEDs was fabricated.One is single-panel,and the other is dual-panel.Comparedthe power consumption of single-panel with that of dual-panel PMOLEDs,the latter device show a reduction of 25% when both are operated at the average luminance of100cd/m~2.
     3.The pattern of substrate of full-color PMOLEDs (128×160),four kinds of photomask and two kinds of shadow mask,FPC and COF was designed.
     4.Driving circuits using pre-charge technology of full-color PMOLEDs wasdesigned.By applying pre-charge,the pixel voltage reaches the target level quickly,andthe diode current flow at the corresponding desired level.The charged level of red,green and blue OLED was set to 3.0V,2.0V and 2.9V,respectively.The displayfeatures that control circuit can transform 18 bits gray-scale data from a PC to theOLED panel via a DVI channel.The lifetime of panel was estimated over 5000hbecause of the use of dual-scan driving technology,and the power consumption of thedisplay was about 300mw at the average luminance of 40cd/m~2.
     5.Green doped OLED with two different HIL,2-TNATA and CuPc were studied.Measurement of I-V-L curves two kinds of OLED show a ohmic contact betweenorganic layer and the electrode interface under low forward bias voltage (<5.7V),andI-V in agreement with trap-charge limited conduction under high forward bias (>5.7V).The efficiency of OLED using 2-TNATA as HIL is better than that of CuPc.Moreover,device with the different thickness of 2-TNATA was studied.The performance ofdevice with the 35nm thickness of 2-TNATA is the best.The luminance and currentefficiency is 3280cd/m~2 and 1.377cd/A at 13V.The thicknesses of HIL have a minorimpact on EL spectrum of device.
     6.Influences of different doping concentration of C-545T on OLED were studied.The device with 1.5 wt% doping concentration shows a maximum power efficiency of6.16cd/A,and a luminance of 10650cd/m~2 at 19.5V.Doping concentration of C-545Thas a great impact on EL spectrum,and there is a~26nm red-shift of the spectral peak.
引文
[1]C.W.Tang,S.A.VanSlyke.Organic electroluminescent diodes.Applied Physics Letter,1987,51:913-915
    [2]M.Pope,H.P.Kallmann,P.J.Magnante.Electroluminescence in organic crystals.Journal of Chemical Physics,1963,38:2042-2049
    [3]W.Helfrich,W.G.Schneider.Recombination radiation in athracene crystals.Physics Review Letter,1965,14:229-231
    [4]J.Dresner.Double injection electroluminescence in anthracene.RCA Review,1969,30:322-334
    [5]N.V.Vityuk,V.U.Mikho.Electroluminescence of anthracene excited by π-shaped voltage pulses.Soviet.Phys.Semicond,1973,6:1479~1499
    [6]P.S.Vincett,W.A.Barlow,R.A.Hann,et al.Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films.Thin Solid Films,1982,94:171-183
    [7]C.Adachi,S.Tokito,T.Tsutsui,et al.Electroluminescence in organic films with three-layer structure.Japanese Journal of Applied physics,1988,27:L269-L271
    [8]C.Adachi,T.Tsutsui,S.Saito.Organic electroluminescent device having a hole conductor as an emitting layer.Appl.Phys.Lett,1989,Vol.55,No.15:1489~1491
    [9]C.Adachi,T.Tsutsui,S.Saito.Blue light-emitting organic electroluminescent devices.Appl.Phys.Lett.,1990,56:779-781
    [10]J.H.Burroughes,D.D.C.Bardley,A.R.Brown,et al.Light emitting diodes based on conjugated polymers.Nature,1990,347:539-541
    [11]N.C.Greenham,S.C.Moratti,D.D.C.Bradley,et al.Efficient light-emitting diodes based on polymers with high electron affinities.Nature,1993,Vol.365,No.6293:628~630
    [12]G.He,O.Schneider,D.n Qin,et al.Very high-efficiency and low voltage phosphorescent organic light-emitting diodes based on a p-i-n junction.J.Appl.Phys.,2004,95:5773-5777
    [13]G.He,D.Gebeyehu,A.Wemer,et al.High efficiency and low voltage p-i-n electrophosphorescent OLEDs with double-doping emission layers.Proceedings of SPIE,Vol.5464:26-31
    [14]S.Murano,M.Burghart,J.Birnstock,et al.Highly efficient white OLEDs for lighting applications.Proc.of SPIE,Vol.5937:59370H:1-8
    [15]B.W.D'Andrade,S,R.Forrest.Effects of exciton and charge confinement on the performance of white organic p-i-n electrophosphorescent emissive excimer devices.J.Appl.Phys.,2003,94:3101-3109
    [16]M.Pfeiffer,S.R.Forrest,K.Leo,et al.Electrophosphorescent p-i-n organic light-emitting devices for very-high-efficiency fiat-panel displays.Adv.Mater.,2002,14:1633-1636
    [17]Gufeng He,Martin Pfeiffer,Karl Leo,et al.High-efficiency and low-voltage p- i- n electrophosphorescent organic light-emitting diodes with double-emission layers.Appl.Phys.Lett,2004,85:3911-3913
    [18]Aparna Misra,Pankaj Kumar,M N Kamalasanan,et al.White organic LEDs and their recent advancements.Semicond.Sci.Technol.2006,21:R35-R47
    [19]J.Staudigel,M.Sto¨βel,F.Steuber,et al.A quantitative numerical model of multilayer vapor-deposited organic light emitting diodes.Journal of Applied Physics,1999,86:3895-3910
    [20]Beat Ruhstaller,Tilman Beierlein,Heike Riel,et al.Simulating Electronic and Optical Processes in Multilayer Organic Light-Emitting Devices.IEEE Journal of selected topics in quantum electronics,2003,9:723-731
    [21]D.Wang,J.Shen.A theoretical model for cartier transport in disordered organic materials.Synthetic Metals,2000,111:349-351
    [22]Beat Ruhstaller,Tilman Beierlein,Heike Riel,et al.Simulating Electronic and Optical Processes in Multilayer Organic Light-Emitting Devices.IEEE J.Sel.Topics Quantum Electron,2003,9:723-731
    [23]J.Bisquert,G.Garcia-Belmonte,(?).Pitarch,et al.Negative capacitance caused by electron injection through interracial states in organic light-emitting diodes.Chemical Physics Letters,2006,422:184-191
    [24]P.E.Burrows,S.R.Forrest.Electroluminescence from trap-limited current transport in vacuum deposited organic light emitting devices.Appl.Phys.Lett.,1994,64:2285-2287
    [25]W.Brütting,E.Buchwald,G.Egerer,et al.Charge carrier injection and transport in PPV light emitting devices.Synthetic Metals,1997,84:677-678
    [26]J.Chen,D.Ma.Investigation of charge-carrier injection characteristics in NPD/Alq3 heterojunction devices.Chemical Physics,2006,325:225-230
    [27]T.Ogawa,D.Cho,K.Kaneko,et al.Numerical analysis of the carrier behavior of organic light-emitting diode:comparing a hopping conduction model with a SCLC model.Thin Solid Films,2003,438-439:171-176
    [28] H. Riel, W. Brutting, T. Beierlein, et al. Influence of space charges on the current-voltage characteristic of organic light-emitting devices. Synthetic Metals, 2000,111-112:303-306
    [29] H. Houili, E. Tuti(?), L. Zuppiroli, et al. Charge transport across organic-organic interfaces in organic light-emitting diodes. Synthetic Metals, 2006, 156:1256-1261
    [30] B. K. Crone, I. H. Campbell, P. S. Davids, et al. Device physics of single layer organic light-emitting diodes. Journal of Applied Physics, 1999, 86:5767-5774
    [31] M. Cocchi, D. Virgili, C. Sabatini, et al. Highly efficient organic electroluminescent devices based on cyclometallated platinum complexes as new phosphorescent emitters. Synthetic Metals, 2004,147:253-256
    [32] G. Y. Park, Y. S. Kim, Y. K. Ha. Efficient red-emitting phosphorescent iridium complexes of fluorinated 2,4-diphenylquinolines. Thin Solid Finns, 2007, 51:5090-5094
    [33] M. Ikai, F. Ishikawa, N. Aratani, et al. Enhancement of External Quantum Efficiency of Red Phosphorescent Organic Light-Emitting Devices with Facially Encumbered and Bulky PtⅡ Porphyrin Complexes. Adv. Funct. Mater, 2006, 16:515-519
    [34] S. J. Yeh, M. F. Wu, C. T. Chen, et al. New dopant and host materials for blue-light-emitting phosphorescent organic electroluminescent devices. Adv. Mater., 2005, 17:285-289
    [35] M. Ikai, S. Tokito, Y. Sakamoto, et al. Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer. Appl. Phys. Lett., 2001, 79:156-158
    [36] S. Lamansky, P. Djurovich, D. Murphy, et al. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes. J. Am. Chem. Soc. 2001,123:4304-4312
    [37] J. X. Sun, X. L. Zhu, H. J. Peng, et al. Bright and efficient stacked white organic light-emitting diodes. Proceedings of the Second Americas Display Engineering and Applications Conference, 2005:397-399
    [38] H. Kanno, N. C. Giebink, Y. Sun, et al. Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters. Appl. Phys. Lett., 2006, 89:023503 1-3
    [39] J. X. Sun, X. L. Zhu, H. J. Peng, et al. Effective intermediate layers for highly efficient stacked organic light-emitting devices. Appl. Phys. Lett., 2005, 87:093504 1-3
    [40] G. He, D. Gebeyehu, A. Werner, et al. High efficiency and low voltage p-i-n electrophosphorescent OLEDs with double-doping emission layers. Proceedings of SPIE, Vol. 5464:26-31
    [41]Adaehi C,Tokito S,Tsutsui T,et al.,Organic electroluminescent device with three-layer strueture.JPn.J.appi.phys,1988,27(4):L713-L715
    [42]高观志,黄维.固体中的电输运.北京:科学出版社,1991,75-332
    [43]I.H.Campbell,P.S.Davids,D.L.Smith,et al.The Schottky Energy Barrier Dependence of Charge Injection in Organic Light-Emitting Diodes.Appl.Phys.Lett.,1998,72:1863-1865
    [44]I.D.Parker.Carrier tunneling and device characteristics in polymer light-emitting diodes.J.Appl.Phys.,75 (3):1656-1666
    [45]H.Vestweber,J.Pommerehne,R.Sander,et al.Majority carrier injection from ITO anodes into organic light emitting diodes based upon polymer blends.Synthetic Metals,1995,68:263-268
    [46]Kalinowski J.Organic electroluminescent materials and devices.S.Miyata and H.S.Nalwa,Eds.,Gordon & Breach,Amsterdam,1997,chap.1
    [47]Fowler R.H.,Nordheimi L.Proc.R.Soc.(London),1928,A119-173
    [48]承欢、江剑平.阴极电子学.西安:西安电讯工程学院出版社,1986,90-102
    [49]Godlewski J,Kalinowski J.Organic electroluminescent devices.JPn.J.appi.phys,1989,28:24-29
    [50]N.F.Mort and R.W.Gurney.Electronic Processes in Ionic Crystals.Oxford,London,1940
    [51]D.R.Lamb.Electrical Conduction Mechanisms in Thin Insulating Films.Methuen,London,1967
    [52]M.A.Lampert and P.Mark b.Current Injection in Solids.Academic Press,New York,1970
    [53]Helfrich W.In physical and chemistry of organic solid state.Inter science,New York,1967
    [54]R.H.Parmenter and W.Ruppel.Two-carrier space-charge-limited current in a trap-free insulator.J Appl.Phys,1959,58:1548-1553
    [55]O.Prache.Active matrix molecular OLED microdisplays.Displays,2001,22:49-56
    [56]Stephen R.Fortes.Active Optoelectronics Using Thin-Film Organic Semiconductors.IEEE Journal of selected topics in Quantum Electronics,2000,vol.6,NO.6:1072-1083
    [57]Bulovic V,Gu G,Burrows PE,Thompson ME,Forrest SR.Transparent light-emitting devices.Nature,1996,380:29-33
    [58]Gu G,Bulovic V,Burrows PE,Forrest SR.Transparent organic light emitting devices,Appl.Phys.Lett,1996,68:2606-2608
    [59]L.S.Hung,C.W.Tang,M.G.Mason,P.Raychaudhuri,J.Madathil.Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes Appl.Phys.Lett,2001,78:544-546
    [60]S.L.Lai,M.Y.Chan,M.K.Fung,C.S.Lee,et al.Applications of Ytterbium in organic light-emitting devices as high performance and transparent electrodes.Chemical Physics Letters,2002,366:128-133
    [61]G.Parthasarathy,P.E.Burrows,V.Khalfin,et al.A metal-free cathode for organic semiconductor devices.Appl.Phys.Lett,1998,72:2138-2140
    [62]Haiying Chen,Chengfeng Qiu,Man Wong,et al.DC Sputtered Indium-Tin Oxide Transparent Cathode for Organic Light-Emitting Diode.IEEE Electron Device Letters,2003,24:315-317
    [63]L.S.Hung,C.W.Tang.Interface engineering in preparation of organic surface-emitting diodes.Appl.Phys.Lett.,1999,72:3209-3211
    [64]黄再生.利用LaB_6制作有机电致发光器件的半透明阴极:[硕士学位论文].成都:电子科技大学,2003
    [65]成建波,冉其军.六硼化镧阴极(译).成都:成都电讯工程学院出版社,1988,1-31
    [66]承欢,江剑平.阴极电子学.西安:西安电讯工程学院出版社,1986,84-86
    [67]蒋泉,成建波,李军建.YAG投影管光谱测试系统.仪器仪表学报,2004,04:432435
    [68]Jiang Quan,Cheng Jian-bo,Ran Qi-jun,et al.Optical constants measurement system for α:H silicon film.Proceedings of SPIE,2007,6723:67235W1-67235W7
    [69]Cheng Jian-bo,Jiang Quan,Li Jun-jian.Chromatic property measurement system for LED.Proceedings of SPIE,2005,5941:59411J1-59411J10
    [70]邓建芳.低温ITO膜的制备及性能研究:[硕士学位论文].成都:电子科技大学,2006
    [71]E.I.Haskai,A.Curioni,P.F.Seidler,et al.Lithium-aluminum contacts for organic light-emitting devices.Appl.Phys.Lett.,1997,71:1151-1153
    [72]吴继宗,叶光荣.光辐射测量.北京:机械电子工业出版社,1992,185-21 1
    [73]蒋泉,成建波,林祖伦.应用LaB_6透明阴极的有机发光二极管器件.光电子激光,2005,08:793-796
    [74]G.Gu,Setphen R.Forrest.Design of flat-panel displays based on organic light-emitting devices.IEEE Journal of selected topics in Quantum Electronics,1998,1/2,4:3-99
    [75]D.Braun.Crosstalk in passive matrix polymer LED displays.Synthetic Metals,1998,92:107-113
    [76]D.Braun,J.Rowe,G.Yu.Crosstalk and image uniformity in passive matrix polymer LED displays.Synthetic Metals,1999,102:920-921
    [77]Aad Sempel,Michael Büchel.Design aspects of low power polymer/OLED passive-matrix displays.Organic Electronic,2002,3:89-92
    [78]Tannas,Lawrence E.Flat-panel displays and CRTs.Van Nostrand Reinhold,1985,28-76
    [79]Jiang Quan,Cheng Jian-bo,Lin Zu-lun,et al.Design of passive matrix organic light-emitting diodes.Proceedings of SPIE,2004,5519:242-249
    [80]George Landsbrug,Drivers for novel displays.Society of Information Display,2002,vol.8:18-21
    [81]成建波,蒋泉,林祖伦,等.无源OLEDs器件的设计与制作.光电子激光,2004,11:1315-1319
    [82]Zhang Bu-xin,Zhang Zhi-lin,Zhu Wen-qing,et al.Organic thin film electroluminescent passive matrix display,Chinese Journal of Luminesce,2000,21:276-278
    [83]Sun Woong Kim,Byong Hoon Hwang,Joo Hyeon Lee,et al.2.4-in.monochrome small molecular OLED display for mobile application.Current Applied Physics,2002,2:335-338
    [84]Young-sun Na,Oh-Kyong Kwon.A single chip driver system for 1.2-inch organic electro-luminescent display.IEEE Trans.On Consume Electronics,2002,vol.48,No.2:220-228
    [85]Y.Kijima,N.Asai,S.Tamura.RGB Luminescence form Passive-Matrix Organic LED's.IEEE Trans.Electron Devices,1997,vol.44,No.8:1222-1228
    [86].Yoshinori Fukuda,Teruichi Watanabe,Takeo Wakimoto,et al.An organic LED display exhibiting pure RGB colors.Synthetic Metals,2000,111-112:1-6
    [87]K.Mori,Y.Sakaguchi,Y.Ikestu,J.Suzuki.Full-color passive-matrix organic EL displays.Display,2001,22:43-47
    [88]Hirofumi Kubota,Satoshi Miyaguchi,Shinichi Ishizuka,et al.Organic LED full color passive-matrix display.Journal of Luminescence,2000,87-89:56-60
    [89]Zakya H.Kafafi.Organic electroluminescence.CRC press,Taylor & Francis Group,2005,312-315
    [90]P.E.Burrows,G.Gu,V.Bulovic,et al.Achieving full-color organic light-emitting devices for lightweight,flat panel displays.IEEE Trans.Electron Devices,1997,vol.44:1188-1203
    [91]P.F.Tian,P.E.Burrows,S.R.Forrest.Photolithographic patterning of vacuum-deposited organic light emitting devices.Appl.Phys.Lett,1997,vol.71:3197-3199
    [92]王军.有机电致发光器件制备工艺与高效磷光器件性能的研究:[博士学位论文].成都:电子科技大学,2008
    [93]Christophe Py,Marie D'Iorio,Ye Tao,et al.A passive matrix addressed organic electroluminescent display using a stack of insulators as row separators.Synthetic Metals,2000,113:155-159
    [94]Digital Display Working Group.Digital Visual Interface,V 1.0.1999,http://www.ddwg.org
    [95]蒋兆林.DVI数字显示接口标准.电子产品世界,2005,8:59-60
    [96]Jiang Quan,Cheng Jian-bo,He Qi-rui,et al.Driving circuit of full color OLEDs.Proceedings of SPIE,2005,5937:59371C 1-59371 C8
    [97]Aad Sempel,Michael Büchel.Design aspects of low power polymer/OLED passive-matrix displays.Organic Electronics,2002,3:89-92
    [98]吴援明,蒋泉,陈文彬,张磊.显示器件驱动技术.成都:电子科技大学出版社,2008,89-96
    [99]Ricky Ng.Design and Application of OLED Drivers.2006,www.solomon-systech.com
    [100]R.M.A.Dawson,Z.Shen,D.A.Furst,et al.The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays.2003,Sarnoff Corporation[101]Yoshiyuki Okuda,Hideo Ochi,Masami Tsuchida.Driving circuits for organic dot-matrix display .IEEE invited paper,1997,362-363
    [102]www.claremicronix.com.Precharging with the MXED 102 and MXED202.2001
    [103]Barry Young.Status of OLED manufacturing & the search for new applications.OLEDs 2003
    [104]David Fyfe.The key success factors for the adoption of PLED as a display technology.OLEDs 2003
    [105]Christophe Py,Marie D'Iorio,Ye Tao,et al.A passive matrix addressed organic electroluminescenparators.Synthetic Metals,2000,113:155-159
    [106]蒋泉,成建波,何其锐等.全彩OLED屏显示系统的设计.光电子激光,2008,01:26-30
    [107]T.M.Brown,R.H.Friend,I.S.Millard,et al.Efficient electron injection in blue-emitting polymer light-emitting diodes with LiF/Ca/A1 cathodes.Appl.Phys.Lett.,2001,79:174-176
    [108]T.M.Brown,F.Cacialli.Energy level line-up in polymer light-emitting diodes via electroabsorption spectroscopy.IEE Proc.Optoelectron.,2001,vol.148:74-80
    [109]T.M.Brown,R.H.Friend,I.S.Millard,et al.LiF/A1 cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light-emitting diodes,Appl.Phys.Lett.,2001,77:3096-3098
    [110]J.Yoon,J.Kim,T.Lee,et al.Evidence of band bending observed by electroabsorption studies in polymer light emitting device with ionomer/A1 or LiF/Al cathode.Appl.Phys.Lett.,2000,76:2152-2154
    [111]L.S.Hung,C.W.Tang,M.G.Mason.Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode.Appl.Phys.Lett.,1997,70:152-154
    [112]M.Stobel,J.Staudigel,F.Steuber,et al.Space-charge-limited electron currents in 8-hydroxyquinoline aluminum.Appl.Phys.Lett.,2000,76:115-117
    [113] S. E. Shaheen, G. E. Jabbour, M. M. Morelli, et al. Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode. J. Appl. Phys, 1998, 84:2324-2327
    [114] T. Mori, H. Fujikawa, S. Tokito. Electronic structure of 8-hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy. Appl. Phys. Lett, 1998, 73:2763-2765
    [115] G. E. Jabbour, Y. Kawabe, S. E. Shaheen, et al. Highly efficient and bright organic electroluminescent devices with an aluminum cathode. Appl. Phys.Lett, 1997, 71:1762-1764
    [116] P. Piromreun, H. Oh, Y. Shen, et al. Role of CsF on electron injection into a conjugated polymer. Appl. Phys. Lett., 2000, 77:2403-2405
    [117] G. E. Jabbour, B. Kippelen, N. R. Armstrong, et al. Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices. Appl. Phys. Lett., 1998, 73:1185-1187
    [118] H. Fujikawa, T. Mori, K. Noda, et al. Organic electroluminescent devices using alkaline-earth fluorides as an electron injection layer. J. of Lumin., 2000, 87-89:1177-1179
    [119] H. Heil, J. Steiger, S. Karg, et al. Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode. J. Appl. Phys, 2001, 89:420-424
    [120] A. Andersson, N. Johansson, P. Br(?)ms, et al. Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs. Adv. Mat. 1998, 10:859-863
    [121] F. Zhu, K. Zhang, C. H. Huan, et al. Effect of ITO carrier concentration in the performance of organic light-emitting diodes. Mat. Res. Soc. Symp. Proc., 2000,598:111-123
    [122] L. S. Hung, L. R. Zheng, M. G. Mason. Anode modification in organic light-emitting diodes by low-frequency plasma polymerization of CHF_3. Appl. Phys. Lett., 2001,78:673-675
    [123] D. J. Milliron, I. G. Hill, C. Shen, et al. Surface oxidation activates indium tin oxide for hole injection. J. Appl. Phys, 2000,87:572-576
    [124] A. J. Heeger, I. D. Parker, Y. Yang. Carrier injection into semiconducting polymers: Fowler-Nordheim field-emission tunneling. Synthetic metals, 1994, 67:23-29
    [125] Y. Scott, SA Carter, S Karg, et al. Polymeric anodes for organic light-emitting diodes. Synthetic metals, 1997, 85:1197-1207
    [126] A. Elschner, F. Bruder, H.-W. Huer, et al. PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes. Synthetic metals, 2000, 111:139-143
    [127] L. B. Groenedaal. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mat., 2000, 12:481-492
    [128] A. J. Campbell, D. D. C. Bradley, H. Antoniadis. Quantifying the efficiency of electrodes for positive carrier injection into poly(9,9-dioctylfluorene) and representative copolymers. J. Appl. Phys,2001, 89:3343-3351
    [129]P. K. H. Ho, J. Kim, J. H. Burroughes, et al. Nature, Macmillian Magazines, 2000, 404:481-484
    [130] P. K. H. Ho, M. Granstr(?)m, R. H. Friend, et al. Ultrathin self-assembled layers at the ITO interface to control charge injection and electroluminescence efficiency in polymer light-emitting diodes. Adv. Mat, 1998,10:769-774
    [131] Jia-Ming Liu, Po-Yen Lu, Wen-Kou Weng. Studies on modifications of ITO surfaces in OLED devices by Taguchi methods. Materials Science and Engineering, 2001, B 85:209-211
    [132] Hosokawa C, Higashi H, Nakamura H, et al. Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant. Appl Phys Lett, 1995,67:3853-3596
    [133] Van Slyke S A ,Chen C H ,Tang C W. Organic electroluminescent devices with improved stability. Appl Phys Lett, 1996, 69:2160-2170
    [134] Wakimoto T ,Fukuda Y,Nagayama K,et al. Organic EL cell using alkaline metal compounds as electron injection materials. IEEE Trans Electron Devices, 1972,44:1245-1258
    [135] Shi J, Tang C W. Doped organic electroluminescent devices with improved stability. Appl Phys Lett ,1997, 70:1665-1672
    [136] Choong V E ,Shi S ,Curless J, et al. Organic light emitting diodes with a bipolar transport layer. Appl Phys Lett, 1999,75:172-177
    [137] Yu Wanglin, Cao Yong , Pei Jian, et al. Blue polymer light-emitting diodes from poly (9,9-dihexylfluorene-alt-co-2, 5-didecyloxy-para-phenylene). Appl Phys Lett, 1999, 75:3270-3282
    [138] Choong V E, Shi S, Curless J, et al. Bipolar transport organic light emitting diodes with enhanced reliability by LiF doping. Appl Phys Lett, 2000, 76:958-966
    [139] Jiang Xueyin, Zhang Zhilin, Zhao Weiming, et al. White emitting organic diode with a doped blocking layer between hole and electron transporting layers. J Phys Appl phys,2000,33:473-475
    [140] Kim S C, Lee GB, Choi M W, et al. Controlling hole injection in organic electroluminescent device by sputter grown Cuphthalocyanine thin films. Appl Phys Lett, 2001, 78:1445-1453
    [141] Jiang Hongjin, Zhou Yan, Ooi B S, et al. Improvement of organic light emitting diodes performance by the insertion of a Si_3N_4 Layer. Thin Solid Films, 2000, 363:25-29
    [142]Szuber J,Grzadziel L.Photoemission study of the electronic properties of in situ prepared copper phthalocyanine (CuPc) thin films exposed to oxygen and hydrogen.Thin Solid Films,2001,391:282-287
    [143]郑代顺,张旭,钱可元.空穴缓冲层CuPc对有机电致发光器件特性的影响.半导体学报,2005.26:78-83
    [144]Scott J C,Kaufman J H,Brock P J,et al.Degradation and failure of MEH-PPV light emitting diodes.J Appl Phys,1996,79:2745-2752
    [145]Nuesch F,Carrara M,Schaer M,et al.The role of copper phthalocyanine for charge injection into organic light emitting devices.Chem Phys Lett,2001,347:311-318
    [146]赵俊卿,谢士杰,韩圣浩,等.真空蒸镀双层有机电致发光器件及其稳定性.半导体学报,2001.22:198-202
    [147]N.K.Patel,S.Cin(?),J.H.Burroughes.High-efficiency organic light-emitting diodes.IEEE journal on selected topics in quantum electronics,2002,8:346-361
    [148]E.Tutis,D.Bemer,L.Auppiroli.Internal electric field and charge distribution in multilayer organic lighternitting diodes.Journal of Applied Physics,2003,93:4594-4602
    [149]B.ruhstaller,A.Caterr,S.Barth.Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes.Journal of Applied Physics,200 1,89:4575-4590
    [150]Tatsuo Mori,Takuya Ogawa,Don-Chan Cho.A discussion of conduction in organic light-emitting diodes.Applied Physics Science,2003,458:212-213
    [151]Zhang Zhilin,Jiang Xueyin,Xu Shaohong.Energy transfer and white emitting organic thin film electrolumineseenee.Thin Solid Films,2000,363:61-63
    [152]Pyo Sang Woo,Lee Sang Phil.White light emitting organic electrolurninescent devices using new chelate complexes.Thin Solid Films,2000,363:232-235
    [153]T.J.Marks,J.G.C.Veinot,J.Cui.Progress in high work function TCO OLED anode alternatives and OLED nanopixelation.Synthetic Metals,2002,127:29-35
    [154]T.J.Marks,J.G.C.Veinot,J.Cui.Lecture 7,2001,19-47
    [155]H.Riela,s.Barth,T.Beierlein,et al.Polymer based blue electrophosphorescent light emitting devices.Current Applied Physics.Proceedings of SPIE,2001,Vol.4105:167-175
    [156]Beat Ruhstaller,Tilman Beierlein,Heike Riel,et al.Simulating electronic and optical processes in multilayer organic light-emitting devices IEEE journal of selected topics in quantum electronics,2003,9:723-731
    [157]Shirota Y.Organic light-emitting diodes using novel charge-transport materials. SPIE,1997,3148:186-193
    [158] Jie Yang, Jun Shen. Doping effects in organic electroluminescent devices. Journal of applied physics, 1998,84:2105-2111
    [159] Tadayyon S M, Grandin H M,Griggths K, et al. CuPc buffer layer role in OLED performance: a study of the interfacial band energies. Organic Electronics,2004,5:157-166
    [160] Qiu C F, Chen H Y, Wong M. Dependence of the Current and Power Efficiencies of Organic Light-Emitting Diode on the Thickness of the Constituent Organic Layers. IEEE,48:2131-2137
    [161] Cao Y, Parker I D, Yu G. Improved quantum efficiency for electro-luminescence in semiconducting polymers. Nature, 1999,397-414
    [162] L.S. Hung, C.H. Chen. Recent progress of molecular organic electroluminescent materials and devices. Materials science and engineering. 2002, R 39:143-222
    [163] J.L. Fox, C.H. Chen, US Patent 4,1988,736,032
    [164] T. Inoe, K. Nakatani, Japanese Patent 6, 1994,009,952
    [165] J. Ito, Japanese Patent 7,1995,166,160
    [166] Jianmin shi, C W Tang. Doped organic electroluminescent devices with improved stablity. Appl. Phys. Lett., 1997, 70:1665-1667

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700