采用环境能量的自供电无线传感器网络关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络是新一代的传感器网络,综合了传感器技术、嵌入式计算技术、分布式信息处理技术和通信技术,它的应用和发展将会给人类生产和生活的各个领域带来深远的影响。但是电源供电问题直接影响其性能和生存时间,是限制其实际应用的关键性问题。针对该“瓶颈”,目前众多学者也提出并研究了相当多的能量管理策略,在一定程度上延长了无线传感器网络的生存时间,但是如何从根本上解决供电问题还需进一步研究。本文深入研究了利用外界环境能量为传感器节点供电的自供电无线传感器网络,解决无线传感器网络的自供电问题并对能量进行正确、合理的使用是本文的重点。自供电无线传感节点通过采集环境中的能量来补充供给本身的能耗,可以在很大程度上缓解能量瓶颈并改善网络性能。本文根据能量采集方式的不同分别设计了两种低功耗自供电无线传感节点,详细分析了其组成结构、各子单元能耗模型和系统工作效率,优化了能量采集预测算法和系统能量管理算法,同时本文还分析了自供电无线传感器网络协议层研究的特性,提出了专用的非均匀分簇自适应路由协议,并将协作通信成功应用于网络的簇间通信。具体包含以下几方面内容:
     1.设计了一种具备完善的自适应能量采集及管理策略的太阳能供电无线传感器节点BFCap,采用双向flyback变换器,实现了最大功率传输跟踪算法,并具有更宽的能量采集范围和冷启动功能。同时还设计了WCSAD算法,可更准确预测下一阶段的可采集太阳能。
     2.分析并设计了风能供电无线传感器节点的系统能量管理算法。通过解决两个核心问题:最大功率采集和动态电压调节,将风能供电无线传感节点的采能和耗能两个方面有机联系起来,实验证明该算法可达到真正的节点级别的能量最优化管理。
     3.研究了一种基于强化学习的自供电无线传感器节点能量管理架构,当面对无法预测的环境能量时,该架构不仅可以实时地满足节点维持“永久性”运行的能量需求,而且可以满足自供电无线传感器网络具体任务应用中的服务品质需求。
     4.设计了一种非均匀分簇的自供电无线传感器网络路由协议,该协议通过在网关中集中式运行大运算量的分簇和路由建立优化算法,而在自供电无线传感节点中分布式运行低功耗的簇首调整和路由更新过程,以尽量提高能量利用率。仿真结果证明该路由可有效平衡网络能量分布并增强通信可靠性。
     5.针对所设计的分簇型自供电无线传感器网络路由协议,研究了协作通信协议在其上的应用,该协议通过在各个簇内成员节点中分布式运行功率分配及中继选择联合优化算法,来降低簇首间的通信能耗,仿真结果证明该算法适用于所设计的分簇路由并可在保障网络通信性能的前提下进一步提升能量利用率。
Wireless sensor network is a new generation of sensor network. This technology is a combinationof sensor technology, embedded computing technology, distributed information processing technologyand communication technology. Its application and development will have far reaching implicationsto various fields of human life and production. However, energy issue directly affects its performanceand survival time, becomes a crucial restriction of practical application. For this "bottlenecks", manyscholars have made a considerable number of energy management strategies to prolong survival timeof wireless sensor networks to some extent, but have not fundamentally solve this energy problem.
     This article studies the “self-powered” wireless sensor networks which are powered by theenvironment energy. To solve the energy issue and make a correctly and reasonably using of it are thefocus of this article. The self-powered wireless sensor node is supplemented by the harvested energyfrom environment to supply its energy consumption; which makes a great effort to ease the energybottleneck and also improves the network performance. According to the way of energy harvesting,two different design of low-power self-powered nodes are presented, detailed analysis of itscomposition, unit energy consumption of each sub-model and system level efficiency are also shown,simultaneously, optimized energy harvesting prediction algorithm and system energy managementalgorithm also analyzed. In addition, we research the characteristics of self-powered wireless sensornetwork protocol. Dedicated unequal clustering adaptive routing protocol and cooperativecommunication is successfully applied to the network’s inter-cluster and intra-cluster communication.Specifically, it contains the following aspects:
     1. Design a solar self-powered wireless sensor node BFCap with adaptive energy acquisitionand management strategy; it is made up of a bidirectional flyback converter. It couldachieve maximum power transfer tracking algorithm, and has a wider range of energyharvesting and coldstart function. Also a WCSAD algorithm can more accurately predict thenext stage of collecting solar energy.
     2. Design a self-powered wireless sensor node energy management architecture based onreinforcement learning, when faced with unpredictable environmental energy. Thearchitecture can not only make the node to meet "permanent" run energy demand real-time,but also can to meet the quality of service requirements in the specific tasks of theself-powered wireless sensor network applications.
     3. Analysis and design of wind-powered wireless sensor node system energy managementalgorithm. By addressing two core issues: the maximum power acquisition and dynamicvoltage regulation, the adoption of self-powered wireless sensing system organically linkedand two aspects of energy consumption, the experiments show that the algorithm canachieve true node-level energy optimization management.
     4. Designed a self-powered wireless sensor network routing protocol based on geneticalgorithm, the protocol by using the centralized operation clustering of large amount ofcomputation and routing in the gateway building algorithm, self-powered nodes distributedrun cluster head of the low-power adjustment and routing update process, in order toimprove as much as possible the network energy utilization.
     5. Based on the clustering EH-WSN designed the last chapter, a Cooperative communicationprotocol is used here. The protocol uses a distributed application on DF manner, it is a jointoptimization algorithm by the members’ node running power allocation and relay selection,to optimize the energy consumption between cluster heads communications, and it canimprove the network energy utilization ratio effectively.
引文
[1]孙利民,李建中.无线传感器网络.北京:清华大学出版社,2005.
    [2]崔莉,鞠海玲,苗勇.无线传感器网络研究进展.计算机研究与发展,2005,42(01):163-174.
    [3] J. Yick, B.Mukherjee, D.Ghosal. Wireless sensor network survey. Computer Networks,2008,52(12):2292–2330.
    [4] L.F.Akyildiz, W.Su, Y.Sankarasubramaniam. A Survey on Sensor Networks. IEEE Communica-tions Magazine.2002,40(8):102-114.
    [5]国家能源局.“十二五”可再生能源发展规划.
    [6] Costis Kompis, Simon Aliwell. Energy Harvesting Technologies to Enable Remote and WirelessSensing. Sensors and Instrumentation KTN Report. June2008.
    [7] Kawahara.Y, Lakafosis.H, Asami.T. Design issues for energy harvesting enabled wireless sensingsystems. Microwave Conference,2009:2248-2251.
    [8] W. De Soto, S. A. Klein, and W. A. Beckman. Improvement and validation of a model forphotovoltaic array performance, Sol. Energy, Jan2006,80(1):78–88.
    [9] S. Foss, B. Olaisen, E. Marstein, and A. Holt. A new2.5d distributed spice model of solar cells.Proc. Eur. Photovolt. Sol. Energy Conf. Exhib, Dresden, Germany,2006:21.
    [10] K.Liu and J. Makaran, Design of a Solar Powered Battery Charger, IEEE Electrical Power&Energy Conference, Montreal, QC, Canada,2009:1-5.
    [11] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman and M. Srivastava, Design considerations forsolar energy harvesting wireless embedded systems,4th International Symposium on InformationProcessing in Sensor Networks, Los Angeles, California,2005:457–462.
    [12] C.Alippi, C.Galperti, An adaptive system for optimal solar energy harvesting in wireless sensornetwork nodes, IEEE Transactions on Circuits and Systems I: Regular Papers,2008,55(6):1742–1750.
    [13] Y. Kim, N. Chang, Y. Wang and M. Pedram, Maximum power transfer tracking for aphotovoltaic-supercapacitor energy system, Proc of16th ACM/IEEE Int. Symp Low Power ElectronDesign, New York,2010:307–312.
    [14] D.Dondi, A.Bertacchini, D.Brunelli, L.Larcher, and L.Benini. Modeling and Optimization of aSolar Energy Harvester System for Self-Powered Wireless Sensor Networks, IEEE Trans. onIndustrial Electronics, July2008,55:2759-2766.
    [15] D. Brunelli, C. Moser, L. Thiele and L. Benini, Design of a Solar-Harvesting Circuit forBatteryless Embedded Systems, IEEE Transaction on Circuits and System,2009,56(11):2519-2528.
    [16] O.Lopez-Lapena, M.T. Penella, M.Gasulla,"A New MPPT Method for Low-Power Solar EnergyHarvesting. IEEE Transactions on Industrial Electronics, Sept2010,57(9):3129-3138.
    [17] Oscar López-Lape a, Maria Teresa Penella and Manel Gasulla. A Close-loop Maximum PowerPoint Tracker for Sub-Watt photovoltaic panels. IEEE Transactions on Industrial Electronics, June2011,59(3):1588-1596.
    [18] Cesare Alippi, Romolo Camplani, Cristian Galperti, and Manuel Roveri. A Robust, Adaptive,Solar-PoweredWSN Framework for Aquatic Environmental Monitoring. IEEE Sensors Journal,January2011,11(1):45-55.
    [19] C. Alippi and C. Galperti, Energy storage mechanisms in low power embedded systems: Twinbatteries and supercapacitors, International conference on Wireless Comunication, VehicularTecnology, Information Theory and Aereospace and Electronic Systems Technology, Aalborg,2009:31-35.
    [20] Fabio Ongaro, Stefano Saggini, Li-Ion Battery-Supercapacitor Hybrid Storage System for a LongLifetime, Photovoltaic based Wireless Sensor Network, IEEE Transactions on Power Electronics, Sept2012,27(9):3944-3952.
    [21] S. Saggini, F. Ongaro, C. Galperti and P. Mattavelli, Supercapacitor-based Hybrid StorageSystems for Energy Harvesting in Wireless sensor networks,25th IEEE Annual the Applied PowerElectronics Conference and Exposition, Palm Springs, CA,2010:2281-2287.
    [22] Ko KO Win, Xinhui Wu, Souvik Dasgupta, et al. Efficient solar energy harvester for wirelesssensor node. IEEE International Conference on Communication Systems (ICCS), Nov2010:289-294.
    [23] Steven L. Brunton, Clarence W. Rowley, Sanjeev R. Kulkarni, and Charles Clarkson, MaximumPower Point Tracking for Photovoltaic Optimization Using Ripple-Based Extremism Seeking Control.IEEE Trans on Power Electronics, OCTOBER2010,25(10).
    [24] Goudar, M.D, Patil, B.P, Kumar, V. Adaptive MPPT Algorithm for a Distributed WirelessPhotovoltaic Based Irrigation System, Devices and Communications (ICDeCom),2011InternationalConference on, Feb2011:1–4.
    [25] C. B.Williams and R. B. Yates. Analysis of a micro-electric generator for Microsystems. Proc.Transducers/Eurosensors IX,1995,1:369–372.
    [26] M. E. Kiziroglou, C. He and E.M. Yeatman, Rolling rod electrostatic microgenerator. IEEETrans. On Industrial Electronics, April2009,56(4):1101-1108.
    [27] C. He, A. Arora, M.E. Kiziroglou, D.C. Yates, D. O'Hare, E.M. Yeatman, MEMS EnergyHarvesting Powered Wireless Biometric Sensor, Sixth International Workshop on Wearable andImplantable Body Sensor Networks,2009:207-212.
    [28] S. Roundy, Paul K. Wright, and Jan Rabaey. A study of low level vibrations as a power source forwireless sensor nodes. J. Computer Communications.2003,26(11):1131-1144.
    [29] H.J.Park, Y.W.Park. Development of Inverse Magnetostrictive Actuator. IEEE Transactions onMagnetics, November2008,44(11).
    [30] http://www.newmaker.com/news_87028.html
    [31] C.C. Federspiel, J. Chen, Air-powered sensor. Proc. IEEE Sensors,2003,(1):22–25.
    [32] D.Rancourt, A.Tabesh, L.G.Frechette, Evaluation of centimeter-scale micro wind mills:Aerodynamics and electromagnetic power generation. Proc. PowerMEMS, Freiburg, Germany,2007:93–96.
    [33] Y.K.Tan, S.K.Panda. Optimized Wind Energy Harvesting System Using Emulator and ActiveRectifier for Wireless Sensor Nodes. IEEE Trans. on Power Electronics, Jan2011,26:38-50.
    [34] Y.K.Tan, S.K.Panda. Self-Autonomous Wireless Sensor Nodes with Wind Energy Harvesting forRemote Sensing of Wind-Driven Wildfire Spread. IEEE Transactions on Instrumentation andMeasurement, APRIL2011,60(4):1367-1377.
    [35] Emilio Sardini and Mauro Serpelloni. Self-Powered Wireless Sensor for Air Temperature andVelocity Measurements With Energy Harvesting Capability. IEEE Transactions on Instrumentationand Measurement, MAY2011,60(5):1838-1844.
    [36] Emilio Sardini and Mauro Serpelloni. Passive and Self-Powered Autonomous Sensors forRemote Measurements. Sensors2009,9:943-960.
    [37] A.Flammini, D.Marioli, E.Sardini, M.Serpelloni. An Autonomous Sensor with EnergyHarvesting Capability for Airflow Speed Measurements. Proc. I2MTC,2010:892–897.
    [38] Yanqiu Li, Hongyun Yu, Bo Su, and Yonghong Shang. Hybrid Micropower Source for WirelessSensor Network. IEEE Sensors Journal, JUNE2008,8(6):678-681.
    [39] Jason Hsu, Sadaf Zahedi, Aman Kansal, Mani Srivastava. Adaptive Duty Cycling for EnergyHarvesting Systems. ISLPED, Tegemsee, Germany, October4-6,2006.
    [40] Ali, M.I., Al-Hashimi, B.M.Recas.Evaluation and design exploration of solar harvested-energyprediction algorithm Design. Automation&Test in Europe onference&Exhibition,2010(s):142–147.
    [41] Sharma, V., Mukherji, U., Joseph, V., Gupta, S. Optimal energy management policies for energyharvesting sensor nodes. IEEE Transactions on Wireless Communications, April2010,9(4):1326–1336.
    [42] S. Saggini, P. Mattavelli. Power Management in Multi-Source Multi-Load Energy HarvestingSystems, Power Electronics and Applications, EPE13th European Conference on, Sept2009,8(10):1-10.
    [43] Dusit Niyato, Ekram Hossain, and Afshin Fallahi. Sleep and Wakeup Strategies in Solar-PoweredWireless Sensor/Mesh Networks: Performance Analysis and Optimization, IEEE Transactions onMobile Computing, February2007,6(2):221-256.
    [44] Zhi, A.E., Tan, H.P., Seah, W.K.G. Opportunistic routing in wireless sensor networks powered byambient energy harvesting. Computer Networks,2010,54(17):2943-2966.
    [45] Bogliolo A., Lattanzi, E., Acquaviva, A. Energetic sustainability of environmentally poweredwireless sensor networks. Proc.3rdACM int. Workshop Performance evaluation of wireless ad hoc,sensor and ubiquitous networks,2006:149-152.
    [46] Donggeon Noh, Junu Kim, Joonho Lee, et al. Priority-based Routing for Solar-Powered WirelessSensor Networks.2ndInternational Symposium onWireless Pervasive Computing. Feb2007:53-58.
    [47] Medepally, Bhargav, Mehta, Neelesh B. Voluntary Energy Harvesting Relays and Selection inCooperative Wireless Networks. IEEE Transactions on Wireless Communications.2010,9(11):3543-3553.
    [48] Huijiang Li, Jaggi, N., Sikdar, B., Relay Scheduling for Cooperative Communications in SensorNetworks with Energy Harvesting. IEEE Transactions on Wireless Communicatins.2011,10(9):2918-2928.
    [49] Krikidis, I., Charalambous, T., Thompson, J.S., Stability Analysis and Power Optimization forEnergy Harvesting Cooperative Networks. IEEE Signal Processing Letters.2012,19(1):20-23.
    [50] Chuan Huang, Rui Zhang, Shuguang Cui. Throughput Maximization for the Gaussian RelayChannel with Energy Harvesting Constraints. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, AUGUST2013,31(8).
    [51] J. Nicholas Laneman, Tse, David N C, Wornell, GregoryW W. Cooperative diversity in wirelessnetworks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory.2004,50(12):3062-3080.
    [52] Hesami, Peyman, J. Nicholas Laneman. Incremental Use of Multiple Transmitters for LowComplexity Diversity Transmission in Wireless Systems. IEEE Transactions on Communications,2012,60(9):2522-2533.
    [53] Wagner, J rg, Rankov, Boris. Wittneben, Arinin W. Large n Analysis of Amplify-and-ForwardMIMO Relay Channels with Correlated Rayleigh Fading. IEEE Transactions on Information Theory,54(12):5735-5746.
    [54] Li Jun, He Bo, Lin Fei, etal. Outage Analysis and APA for MIMO based Multi-userOPPortunistic Relaying CooPeration Systems,3rdInternational Conference on Signal Acquisition andproeessing,406-410.
    [55] Tarokh V, Jafarkhani H, Calderbank A R. Space-time block codes from orthogonal designs. IEEETransactions on Information Theory,1999,45(5):1456-1467.
    [56]赵清华.无线传感器节点能量管理系统的研究,[博士论文].山西:太原理工大学,2010.
    [57] H.Yongtai, L.Lihui, L. Yanqiu. Design of solar photovoltaic micro-power supply for applicationof wireless sensor nodes in complex illumination environments. IET Wireless Sensor Systems.2012,2(1):16-21.
    [58]代显智,文玉梅,李平.采用磁电换能器的振动能量采集器.物理学报.2010,59(3):2137-2146.
    [59]卞雷祥,文玉梅,李平.致伸缩/压电叠层复合材料磁-机-电耦合系数分析.物理学报,2009,58(6):4205-4213.
    [60]樊晓平,杨玺,刘少强,瞿志华.具有能量补给的无线传感器网络分簇路由算法.计算机工程.2008,34(11):120-128.
    [61]陈仁文,唐海洋,朱莉娅.用于汽车轮胎状态监测无线传感器的PVDF薄膜能量采集器(专利),南京航空航天大学,2009.
    [62]高英明,金仁成,王宏斌.基于ARM7的无线传感器网络节点能量管理初探,微纳电子技术,2007.
    [63]苏波,李艳秋,于红云,尚永红.从环境中获取能量的无线传感器节点.传感器技术学报,2008,(09).
    [64]张华良,王军,于海斌,曾鹏.一个能量收集无线传感器网络路由协议,小型微型计算机系统,2011,(07):1277-1281.
    [65] http://www.ti.com.cn/tool/cn/ez430-rf2500-seh
    [66] http://www.innowattech.co.il/index.aspx.
    [67] C. Park and P.H. Chou, AmbiMax: Autonomous Energy Harvesting Platform for Multi-SupplyWireless Sensor Nodes,3rd Annual IEEE Communications Society on Sensor and Ad HocCommunications and Networks, Reston, VA,2006:168-177.
    [68] K.Lin, J. Yu, J. Hsu, S. Zahedi, D. Lee, J. Friedman, A. Kansal, V. Raghunathan and M.Srivastava, Heliomote: enabling long-lived sensor networks through solar energy harvesting,Proceedings of the3rd ACM international conference on Embedded networked sensor systems, NewYork,2005:309.
    [69] S. Kim, K.S. No, P.H. Chou, Design and Performance Analysis of Supercapacitor ChargingCircuits for Wireless Sensor Nodes, IEEE Journal on Emerging and Selected Topics in Circuits andSystems,2011,1(3):391-402.
    [70] Xingfa Shen, Cheng Bo, Jianhui Zhang, Shaojie Tang, Xufei Mao and Guojun Dai. EFCon:Energy flow control for sustainable wireless sensor networks, Ad Hoc Networks,2011:1-11.
    [71] Chien-Ying Chen, Pai H. Chou. DuraCap: a Supercapacitor-Based, Power-Bootstrapping,Maximum Power Point Tracking Energy-Harvesting System. ACM/IEEE International Symposium onLow-Power Electronics and Design,2010:313-318.
    [72] S. Kim and P. H. Chou. Energy harvesting by sweeping voltage-es-caladed charging of areconfigurable supercapacitor array.17th ACM/IEEE Int. Symp. Low Power lectron. Design, NewYork, Aug2011:235-240.
    [73] Farhan I. Simjee, Pai H. Chou. Efficient Charging of Supercapacitors for Extended Lifetime ofWireless Sensor Nodes. IEEE TRANSACTIONS ON POWER ELECTRONICS, MAY2008,23(3).
    [74] F. Simjee and P. H. Chou. Everlast: Long-life, supercapacitor-oper-ated wireless sensor node. Int.Symp. Low Power Elec-tron. Design (ISLPED), New York,2006:197–202.
    [75] M. Minami, T. Morito, H. Morikawa, and T. Aoyama. Solar Biscuit: A battery-less wirelesssensor network system for environmental monitoring applications.2nd Int. Workshop NetworkedSens. Syst. San Diego, CA, Jun2005.
    [76] T. Esram and P. L. Chapman. Comparison of photovoltaic array maximum power pointtracking techniques. IEEE Trans. Energy Conv, Jun2007,22(3):439–449.
    [77] Y.-S. Hwang, S.-C. Wang, F.-C.Yang, and J.-J. Chen. New compact CMOS Li-Ion batterycharger using charge-pump technique for portable applications. IEEE Trans. Circuits Syst. I, Reg.Papers, Apr.2007,54(4):705–712.
    [78] Alex S. Weddell, Geoff V. Merrett, Nick R. Harris, and Neil M. White. Energy Devices forSensor Networks: Properties for Simulation and Deployment.1st International Conference onWireless Communication, Vehicular Technology, Information Theory and Aerospace&ElectronicSystems Technology.2009:26-30.
    [79] Dinko Oletic, Tomislav Razov, Vedran Bilas. Extending Lifetime of Battery Operated WirelessSensor Node With DC-DC Switching Converter. IEEE Instrumentation and Measurement TechnologyConference,2011:1-5.
    [80] Donghwa Shin, Younghyun Kim, Jaeam Seo, et al. Battery-Supercapacitor Hybrid System forHigh-Rate Pulsed Load Applications. Design, Automation&Test in Europe Conference&Exhibition,2011:1-4.
    [81] Yen Kheng Tan, Sanjib Kumar Panda. Energy Harvesting From Hybrid Indoor Ambient Lightand Thermal Energy Sources for Enhanced Performance of Wireless Sensor Nodes. IEEETransactions on Industrial Electronics,2011,58(9):4424-4435.
    [82] Zheng Chen, Su Ling, Ma Dongsheng. A Systematic USFG Design Approach for IntegratedReconfigurable Switched-Capacitor Power Converters. IEEE Transactions on Circuits and Systems I:Regular Papers,2011,58(11):2790-2800.
    [83] Dylan Dah-Chuan Lu, Vassilios G. Agelidis. Photovoltaic-Battery-Powered DC Bus System forCommon Portable Electronic Devices. IEEE TRANSACTIONS ON POWER ELECTRONICS,2009,24(3):849-855.
    [84] Zhang Junming, M. Huang, Xiucheng C. A High Efficiency Flyback Converter with New ActiveClamp Technique. IEEE Transactions on Power Electronics.2010,25(7):1775-1785.
    [85] Kohama, T., Yamashima, M., Ninomuya, T., Operation-mode control of active-clampedbi-directional flyback converter as EDLC charger and discharger. Proceedings of the PowerConversion Conference.2002,3:1155-1159.
    [86] http://www.ti.com/product/msp430f2274.
    [87] http://www.ti.com.cn/product/cn/cc2520.
    [88] http://www.linear.com.cn/product/LT1763.
    [89] http://www.linear.com.cn/product/LTC6906.
    [90] http://www.ti.com/product/lmc7215.
    [91] C. Vigorito, D. Ganesan, and A. Barto, Adaptive control of duty cycling in energy-harvestingwireless sensor networks, IEEE Conf. in Sensor,Mesh and Ad Hoc Communications and NetworksSECON’07,2007:21–30.
    [92] Piorno, J.R.Bergonzini, C. Atienza, D.Rosing.T.S. Prediction and Management in EnergyHarvested Wireless Sensor Nodes. Proc of International Conference on Digital Object Identifer, Jan2009:6-10.
    [93] Zhaoting Jiang, Xinyu Jin, Yu Zhang. A Weather-Condition Prediction Algorithm forSolar-Powered Wireless Sensor Nodes.6th International Conference on Wireless CommunicationsNetworking and Mobile Computing,2010:1-4.
    [94] Yongseok Choi, Naehyuck Chang, Taewhan Kim. DC–DC Converter-Aware Power Managementfor Low-Power Embedded Systems. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGNOF INTEGRATED CIRCUITS AND SYSTEMS, AUGUST2007,26(8):1367-1381.
    [95] Z. A. Yamayee and J. L. Bala, Electromechanical Energy Devices and Power Systems. New York,Wiley,1994.
    [96] Seo J, Kim T, Lee J. Optimal Intra-task Dynamic Voltage-Scaling Technique and Its PracticalExtensions. IEEE Trans.on CAD of Integrated Circuits and Systems,2006,25:47-57.
    [97] M. M. Duquette and K. D. Visser. Numerical implications of solidity and blade number on rotorperformance of horizontal-axis wind turbines. Trans. ASME J. Sol. Energy Eng, Nov2003,125(4):425–432.
    [98] A. Stratakos. High-efficiency low-voltage DC-DC conversion for portable applications.[Ph.D.dissertation], Univ. California, Berkeley, CA,1999.
    [99] Y. Choi, N. Chang, and T. Kim. DC-DC converter-aware power management for battery-operated embedded systems. Proc. ACM/IEEE Des.Autom. Conf.,2005:895–900.
    [100] J. A. Nelder, R. Mead, A simplex method for function minimization, Computer Journal,1965,7:308-313
    [101] Jason Hsu, Sadaf Zahedi, Aman Kansal, Mani Srivastava. Power management in energyharvesting sensor networks, ACM Transactions on Embedded Computing Systems (TECS)-SpecialSection, September2007,6(4):32.
    [102] Sutton R.S. TemPoral Credit Assignment in Reinforcement Learning, University ofMassaehusetts.[PhD.thesis]. USA,1984.
    [103] Watkins JC, Dayan HP. Qlearning. MachineLearning,1992,8:279.
    [104] Arts. E, Korst, J. Simulated annealing and Boltzmann machine.New York: Wiley&Sons,1989.
    [105] C. Honsberg, S. Bowden.“Photovoltaics CDROM”, Http://www.udel.edu/Igert/pvcdrom/in-de.html.
    [106] Heinzelman WR, Chandrakasan A, Balakrishnan H. Energy-Efficient communicationprotocol for wireless microsensor networks. In: Proc. of the33rd Hawaii Int’l Conf. on SystemScience,2000:3005-3014.
    [107] JIANG Chang-jiang, SHI Wei-ren, XIANG min, et al. Energy-balanced unequal clusteringprotocol for wireless sensor networks. The Journal of China Universities of Posts andTelecommunications, August2010,17(4):94–99.
    [108] Zhang RB, Cao JF. Uneven clustering routing algorithm for wireless sensor networks basedon ant colony optimization. Journal of Xi’an Jiaotong University (in Chinese with English abstract),2010,44(6):33-38.
    [109] Xiang M, Shi WR, Jiang CJ, Zhang Y. Energy efficient clustering algorithm for maximizinglifetime of wireless sensor networks. AEU-Int’l Journal of Electronic and Communication,2010,64(4):289-298.
    [110] L. Lin, N. B. Shroff, and R. Srikant. Energy-aware routing in sensor networks: A largesystem approach. Ad Hoc Netw,2007,5(6).
    [111] D. Hasenfratz, A. Meier, C. Moser. Analysis, Comparison, and Optimization of RoutingProtocols for Energy Harvesting Wireless Sensor Networks. IEEE International Conferenece onSensor Networks, Ubiquitous, and Trustworthy Computing.2010:19-26
    [112] Carl J. Debono, Patrick Cauchi. Balancingthe Utilizationof Mobile Sensor Nodes throughGenetic-based Clustering. Proceedings of the4th International Symposium on Communications,Control and Signal Processing, Cyprus, March2010.
    [113] Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H., An application-specific protocolarchitecture for wireless microsensor networks. IEEE Transactions on Wireless Communications.1(4):660-670.
    [114] Hill J, Szewczyk R, Woo A, Hollar S, Culler DE, Pister KSJ. System architecture directionsfor networked sensor. ACM SIGPLAN Notices,2000,28(5):93-104.
    [115] Soro S, Heinzelman WB. Prolonging the lifetime of wireless sensor networks via unequalclustering. In: Proc. of the19th IEEE Int’l Parallel and Distributed Processing Symp. Denver,2005:236-244.
    [116] Chakraborty, A., Mitra, S.K., Naskar, and M.K. A Genetic algorithm inspired routingprotocol for wireless sensor networks. Int. J. Comput. Intell. Theory Pracitce,2011,6,(1):1–10.
    [117] L. Lin, N. B. Shroff, and R. Srikant. Asymptotically optimal energy-aware routing formultihop wireless networks with renewable energy sources. IEEE/ACM Trans. Netw,2007,15(5).
    [118] Lattanzi, E., Regini, E., Acquaviva, A, Bogliolo, A. Energetic sustainability of routingalgorithms for energy-harvesting wireless sensor networks. Comput. Commun.2007,30(14):2976–2986.
    [119] K. J. R. Liu, A. K. Sadek, W. Su and A. Kwasinski, Cooperative Communications andNetworking. Cambridge, UK: Cambridge University Press,2009.
    [120] Y.-U. Jang and Y. H. Lee. Performance analysis of user selection for multiuser two-wayamplify-and-forward relay. IEEE Commun. Lett,2010,14(11):1086-1088.
    [121] Z. Yi, M. Ju, and I.-M. Kim. Outage probability and optimum power allocation for analognetwork coding. IEEE Trans. Wireless Commun, Feb2011,10(2):407-412.
    [122] D. B. da Costa and S. A ssa. Performance analysis of relay selection techniques withclustered fixed-gain relays. IEEE Signal Process. Lett, Feb2010,17(2):201-204.
    [123] G. Amarasuriya, C. Tellambura, and M. Ardakani. Performance analysis frame-work fortransmit antenna selection strategies of cooperative MIMO AF relay networks. IEEE Trans. Veh.Technol, Sep2011,60(7):3030-3044.
    [124] L. Pillutla and V. Krishnamurthy. Joint rate and cluster optimization in cooperative MIMOsensor networks. Proc. IEEE6th Workshop on Signal Processing Advances in WirelessCommunications, Philadelphia, USA, Mar2005:265–269.
    [125] S. Cui, A. J. Goldsmith, and A. Bahai. Energy-efficiency of MIMO and cooperative MIMOtechniques in sensor networks. IEEE J. Select. Areas Commun, Aug2004,22(6):1089-1098.
    [126] J. G. Proakis, Digital Communications,3rd Ed. New York: McGraw-Hill,1995.
    [127] Ljiljana Simi, Stevan M. Berber, Kevin W. Sowerby. Partner Choice and Power Allocationfor Energy Efficient Cooperation in Wireless Sensor Networks. IEEE International Conference onCommunications,2008:4255-4260.
    [128] D. B. da Costa and S. A ssa. Cooperative dual-hop relaying systems with beamforming overNakagami-m fading channels. IEEE Trans. Wireless Commun, Aug2009,8(8):3950-3954.
    [129] X. Zhang, W. Wang, and X. Ji. Multiuser diversity in multiuser two-hop cooperative relaywireless networks: System model and performance analysis IEEE Trans. Veh. Technol, Feb2009,58(2):1031–1036.
    [130] N. Yang, M. Elkashlan, and J. Yuan. Impact of opportunistic scheduling on cooperativedual-Hop relay networks. IEEE Trans. Commun, Mar2011,59(3):689-694.
    [131] Z. Yi, M. Ju, and I.-M. Kim. Outage probability and optimum power allocation for analognetwork coding. IEEE Trans. Wireless Commun, Feb2011,10(2):407-412.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700