PV-SOFC联合发电系统建模及能量管理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于不断增加的能源消耗,公众环保意识的逐步增强,可再生能源发电正逐步迈入人们的视线。光伏发电是目前最有前途的可再生能源发电技术之一。燃料电池系统凭借其技术的快速发展和其拥有的诸多优点,比如高效率,零废气排放,和灵活的模块化结构,同样在可再生能源发电领域中有着极大地潜力。当今社会是一个以电力为主要能源的社会,利用光能和燃料电池两者的优点及其互补特性建立起光伏燃料电池联合发电系统,对解决世界能源危机以及我国部分山区的电力供应问题有着及其重要的意义。
     太阳能燃料电池联合使用实际上是太阳能-氢能-燃料电池-电能-用户的能量输送链。由于国内关于固体氧化物燃料电池的研究仍处于起步阶段,将固体氧化物燃料电池和光伏发电相结合构成联合系统更是在能量输送链上存在许多难点需要攻克,比如太阳能燃料电池联合发电系统的设计原则和设计依据;光伏系统中的最大功率点跟踪问题;电解槽类型的选择;电能的存储方式;PVFC联合发电系统匹配设计;负载的能量需求特点;系统结构设计及其能量管理。
     本文主要在联合系统产生能量,储存能量和整体能量的管理上做了大量研究工作,其主要有以下特点:1)在分析了光伏发电,燃料电池发电的工作原理和内部结构后,建立了光伏电池的数学模型,并在该模型的基础上研究如何增大其输出功率的方法,即最大功率跟踪法。2)以STC12C2052AD单片机为控制芯片,设计了一个联合发电系统充电环节的控制器,包括硬件部分及软件部分。3)分析了联合发电系统的组成和构造,搭建了联合发电系统各模块的数学模型,包括(电解槽,SOFC,储氢罐等)并在此模型的基础上研究了联合发电系统内部的各种能量,实现了一种有效地能量管理方式。
Due to ever increasing energy consumption, rising public awareness of environmental protection, alternative distributed generation systems have attracted increased interest. Photovoltaic (PV) power generation is one of the most promising renewable energy technologies. Fuel cell (FC) systems also show great potential in distributed generation applications of the future due to their fast technology development and many merits they have, such as high efficiency, zero or low emission (of pollutant gases) and flexible modular structure. The world today is a world highly depends on electricity. The hybrid photovoltaic SOFC distributed generation systems ,which are consist of many advantages of both PV and SOFC ,are very significant to solve the world energy crisis, as well as parts of the mountain areas of China's electricity supply issues .
     The solar fuel cell hybrid generation is actually an energy transport chain as solar-hydrogen-fuel cell-electric power-user. The solid oxide fuel cell research is still in its infancy stage in China. Even in the world, very little research has been done to combine photovoltaic with SOFC. So lots of difficulties needs to be overcome on the energy transport chain of hybrid generation systems.
     The characteristics of this thesis are as follows: 1.Based on the analysis of working principle and the internal structure of the photovoltaic power generation and the SOFC ,a mathematical model was established. Using this model, a method was studied on how to increase the output power of the system, which is called the maximum power tracking method.2. The charging part's controller of the hybrid power generation system was designed using the STC12C2052AD MCU, including the hardware and the software design. 3. The composition of the hybrid generation system was analyzed and the model (such as electrolyzer, hydrogen storage tanks , etc.) of the system were built to study various energy in the system. An effective energy management was achieved at the end.
引文
[1] International Energy Outlook 2005, Energy Information Administration[DB/OL], http://www.eia.doe.gov/iea.
    [2] International Energy Annual 2003 [DB/OL], http://www.eia.doe.gov/iea.
    [3] System for the Analysis of Global Energy Markets 2005[DB/OL], http://www.eia.doe.gov/iea.
    [4]太阳能燃料电池[DB/OL]http://www.wikipedia.org/.
    [5]曹红亮.固体氧化物燃料电池系统建模及热管理的研究[D].武汉:华中科技大学硕士学位论文.华中科技大学,2008.
    [6]孔宪文,桂敏言,冯玉全.关于燃料电池发电技术调研报告[R]. 2003.
    [7] Rahman,Tam,Study of Photovoltaic Fuel Cell Hybrid Energy System[J].IEEE Transactions on Energy Conversion,1988.3(1):50-55.
    [8] Anon,Solar/Hydrogen fuel cell car crosses Australia[J].Fuel Cells Bulletin,2004.2004(2):8.
    [9] Walker A,Barker G and Christensen J.Inspection and shorter measurement of a national park service photovoltaic/fuel cell remote hybrid power system at Kirby cove,California[EB/OL].http://www.nrel.gov/docs/fv020sti/31321.pdf,2002.
    [10]吕义小功率太阳能光伏发电系统[D].大连:大连海事大学硕士学位论文.大连海事大学,2008.
    [11] D.W. Hart, Introduction to Power Electronics[M], Prentice Hall, 1997.
    [12]龚菲太阳能光伏路灯系统中MPPT控制器的研究与设计[D].浙江:浙江大学硕士学位论文.浙江大学,2007.
    [13] ECEN2060,Renewable Sources and Efficient Electrical Energy Systems [EB/OL] .2008.2.
    [14] John H.R Enslin,Mario S.Wolf etc.Integerated photovoltaic maximum power pointtracking converter.IEEE Trans on lnd Elec[J],vo1,44 1997,P769-772.
    [15]苏建徽,余世杰,赵为,吴敏达,沈玉梁,何慧若.硅太阳电池工程用数学模型.合肥工业大学能源研究所[J].太阳能学报Vol.2 No.4,Oct 2001.
    [16]高嵩.独立式光伏逆变电源的研究[D].北京:北京交通大学硕士学位论文.北京交通大学,2008.
    [17]黄宏生光伏最大功率跟踪系统的研究[D].汕头:汕头大学硕士学位论文.汕头大学,2006.
    [18]刘永军.基于自适应模糊算法的太阳能充电控制器的研制[D].广东:广东工业大学硕士学位论文.广东工业大学,2008.
    [19] W.D. Kellogg, M.H. Nehrir, G. Venkataramanan, V. Gerez. Generation unit sizing and cost analysis for stand-alone wind, photovoltaic, and hybrid wind/PV systems[J].IEEE Transactions on Energy Conversion, Vol. 13, No. 1, pp. 70– 75, March 1998.
    [20] P. Gipe. Wind power: renewable energy for home, farm, and business[J]. Chelsea Green Publishing Company, 2004.
    [21] Tae-Yeop Kim,Ho-Gyun Ahn,etc.A novel maximum power point tracking control for photovoltaic power system under rapidly changing solar radiation[J].ISIE 2001[C],P1011一1014.
    [22]姜子晴.单相光伏发电并网系统的研究[D].江苏:江苏大学硕士学位论文.江苏大学,2008.
    [23]杨化鹏.基于单片机的IGBT光伏充电控制器的研究[D].西安:西安理工大学硕士学位论文.西安理工大学,2006.
    [24]李炜.独立的太阳能燃料电池联合发电系统的协调控制设计与仿真研究[D].上海:上海交通大学博士学位论文.上海交通大学,2007.
    [25]马建荣王菊芬光伏发电系统充放电控制策略研究[J].大学物理实验2004,17(4).
    [26]丁昂.阀控式免维护铅酸蓄电池脉冲充电技术及其智能管理[D].浙江:浙江大学硕士学位论文,浙江大学,2006.
    [27]孙健.UPS供电系统中蓄电池的使用与维护[J].通信管理与技术,2008年2月第1期.
    [28]周志敏,周纪海,纪爱华.充电器电路设计与应用[M].北京:人民邮电出版社,2005年.
    [29]丁志亮,李建婷,李又几.智能铅酸蓄电池充电器的设计[J].电源技术应用,2006.4.
    [30]郑卫东,邹开凤.航空阀控式免维护铅酸蓄电池的充电方法研究[J].军民两用技术与产品,2007( 06).
    [31]刘炳权.蓄电池常规充电方法[J].科技信息(科学教研),2007.(34).
    [32]詹姆斯·拉米尼,安德鲁·迪克斯,朱红(译),燃料电池系统原理·设计·应用[M],北京:科学出版社,2006.
    [33] Sudip K. Mazumder, Comas Lamar Haynes, Robert Williams ,etc. Solid Oxide Fuel Cell Performance and Durability: Resolution of the Effects of Power Conditioning Systems and Application Loads[J], IEEE Transactions on Power Electronics, 2004,19(5):1263~1278.
    [34] Svante Westerlund, Lars Ekstam, Capacitor Theory[J], IEEE Transactions on Dielectrics and Electrical Insulation 1994,1(5):826~839.
    [35] B.M. Vinagre,V. Feliú,Modeling and Control of Dynamic Systems Using Fractinal Calculus_Applaction to Electrochemical Prosesses and Flexible Structures[C], Escuela Técnica Superior de Ingenieros Industriales, proc.41-st IEEE conf,Decision and Control,las Vegos,NV,2002,pp.214~239.
    [36] Robert J. Braun, Optimal Design and Operation of Solid Oxide Fuel Cell Systems For Small-scale Stationary Applications[D], University of Wisconsin Madison, 2002.
    [37] Markus Haschka,Bernd Rüger,Volker Krebs ,etc . Diagnosis of SOFC-Systems Using Fractional Calculus[D], Universit?t Karlsruhe.
    [38] George Kopasakis, Thomas Brinson , Sydni Credle,etc. A Theoretical Solid Oxide Fuel Cell Model for System Controls and Stability Design[J], NASA/TM-2006-214104.
    [39] Caisheng Wang . Modeling and Control of Hybrid Wind/Photovoltaic/Fuel cell Distributed Generation System[D]. Montana State University. 2006.
    [40]李爽风光互补混合发电系统优化设计[D].北京:中国科学院硕士学位论文中国科学院,2001.
    [41] K.Agbossau, R.Chahine, etc. Renewable energy systems based on hydrogen for remote applications[J], Journal of Power Source 96 (2001) 168-172.
    [42] ?. Ulleberg and S. O. M?RNER, TRNSYS simulation models for solar-hydrogen systems[J], Solar Energy, Vol. 59, No. 4-6, pp. 271-279, 1997.
    [43] Phahathai Buasri,Distributed generation system using wind-photovoltaic-fuel cell-PHD[D], Electrical Engineering University of Massachusetts Lowell,2006.
    [44] Thanaa F. El-Shatter *, Mona N. Eskander, Mohsen T. El-Hagry ,Energy flow and management of a hybrid wind-PV-fuel cell generation system[J], Energy Conversion and Management 47 (2006) 1264–1280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700