黑腹绒鼠能量代谢对不同季节和温度的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以南方常见种之一黑腹绒鼠(Eothenomeys melanogaster)为对象,测定其在不同季节以及在3个不同温度(25±1℃,15±1℃,5±1℃)中驯化0d、7d、14d、21d和28d后体重、体脂、器官重量、能量收支、基础代谢率(BMR)、非颤抖性产热(NST)与褐色脂肪组织(BAT)和肝脏的产热活性等的变化。对黑腹绒鼠在不同季节和不同温度下的生理调节模式进行了研究。主要结果和结论如下:
     1.季节波动对黑腹绒鼠的体重和体脂均有显著影响。秋季黑腹绒鼠体重、体脂重量、体脂含量、胴体湿重及胴体干重最高,冬季次之,夏季最低;去脂胴体干重无季节间差异。这一季节动态受温度影响外,还可能与黑腹绒鼠繁殖、食性和栖息地的气候有关。
     2.冬季黑腹绒鼠每日摄入能、每日消化能和每日可代谢能均显著高于夏季。且冬季黑腹绒鼠消化道如小肠、大肠的鲜重,胃和盲肠的鲜重及干重均显著大于夏季,表明黑腹绒鼠可能通过消化道重量的适应性提高来延长食物在消化道内的滞留时间或增加吸收面积来保持其高消化率。同时,机体最主要的能量运输器官——心脏的鲜重也在冬季相应的增加,反映了在冬季环境的胁迫中,动物整体能量代谢活性随之增强。
     3.黑腹绒鼠在冬季具有较高的BMR和NST,显著高于其他季节,暗示黑腹绒鼠产热速率的调整是其适应季节变化的重要对策之一。黑腹绒鼠BAT的相对重量、线粒体蛋白含量和线粒体COX活力均在冬季显著高于其他季节,夏季为最小值。肝脏的相对重量在夏季偏高,但其线粒体蛋白含量和线粒体COX活力在冬季最高,BAT和肝脏的产热特征季节性变化与代谢率季节变化具有一致性,说明黑腹绒鼠的BAT和肝脏积极参与了季节性驯化中产热的适应性调节。
     4.黑腹绒鼠体重在25±1℃、15±1℃和5±1℃分别呈现极显著增加、极显著增加和显著降低的趋势。黑腹绒鼠能量摄入各指标在25±1℃、15±1℃和5±1℃下分别不同程度地降低、增加和上升;而黑腹绒鼠消化率和可代谢能效率在25±1℃、15±1℃中无显著变化,但在5±1℃下显著提高。由此可见,暖温(25±1℃)条件下,动物保留了更多能量用于身体组织的构建和身机能的恢复;较低温度(15±1℃)能够诱导动物增加能量储存为即将来临的冬季作好准备;而低温(5±1℃)胁迫黑腹绒鼠增加能量摄入和消化效率及适量的动用身体内的脂肪以维持能量收支的平衡。
     5.25±1℃驯化下,黑腹绒鼠的BMR保持相对稳定,肝脏除线粒体COX活力显著下降,其他活性指标无显著变化;15±1℃驯化中,黑腹绒鼠BMR显著增加,肝脏线粒体蛋白含量和线粒体COX活力均极显著提升;5±1℃使黑腹绒鼠BMR随时间极显著升高,肝脏各产热特征均与时间极显著相关。且通过与不同地区鼠种的比较发现,低温下黑腹绒鼠肝脏线粒体COX活力提高的水平和BMR增加的幅度具有一致性。以上结果进一步表明了肝脏产热能力的增加是BMR提高的一个重要细胞机制。
     6.BAT是小型哺乳动物NST的主要产热器官这一论点在本研究中也得到证实:25±1C驯化下,黑腹绒鼠的NST呈下降趋势,BAT相对重量、线粒体蛋白含量和线粒体COX活力也有所下降,但均变化不显著;15±1℃驯化中,黑腹绒鼠NST显著提高,同时BAT各产热特征也与时间显著正相关;而5±1℃下,黑腹绒鼠NST和BAT的各项指标变化最剧烈,均随时间极显著增加。冷驯化下NST的提高幅度没有其BMR明显也不及北方的物种,充分体现了其栖息地的地理位置和气候条件特征。
     7.黑腹绒鼠各生理参数在驯化过程中具有一定的时间规律:其体重、能量摄入、BMR、BAT和肝脏的相对重量、线粒体蛋白含量及线粒体COX活力值在3个温度的驯化下随时间均逐渐上升或下降,且大部分指标在21d达到最值,或在21d后仍保持先前趋势但幅度明显变小。说明21d左右可能是黑腹绒鼠新生理稳态形成所需要的时间。
     8.黑腹绒鼠体重、能量摄入、代谢率、线粒体蛋白含量及酶活力随季节变化的趋势与在相应温度下的变化模式之间存在很大的关联性。如在寒冷的冬季,黑腹绒鼠体重比秋季显著降低,而低温(5±1℃)下体重也呈降低的趋势。黑腹绒鼠摄入能冬季>秋季>春季>夏季,具有随温度上升而下降的趋势;相应地,摄入能和食物的利用率在暖温(25±1℃)时下降,在较低温度(15±1℃)时显著增加,而在低温(5±1℃)时则迅速增加。以上结果在一定程度上说明了温度因子在自然季节驯化中具有至关重要的地位。
     黑腹绒鼠为适应不同的季节和温度环境,通过调控自身在细胞水平、器官组织以及整体上的能量代谢和产热活力来维持恒定的体温和正常的生理机能,这对其生存、繁殖和进化具有重大的意义。黑腹绒鼠代谢和产热模式的特点与其自身的生活习性以及生境条件密切相关。温度是黑腹绒鼠生理生态特征季节变化中的一个重要诱导因子,但与其他生态因子如光周期、食物等的协同作用机制还有待于进一步深入研究。
In order to understand the physiological strategy of this specie for season and ambient temperature deeply, energy metabolism and thermogenesis were studied in Melano-bellied Oriental Vole (Eothenomys melanogaster) which is a familiar species in SouthChina, involve the energy intake, organ mass, basal metabolic rate (BMR), non-shivering thermogenesis (NST), thermogenic property of brown adipose tissue (BAT) and liver under different temperature (25±1℃,15±1℃,5±1℃) 0d,7d,14d, 21d,28d. At the same time, the seasonal changes of these parameters were measured in E. melanogaster. The main results and conclusions are as follows:
     1. The seasonal variation effected the body mass and body fat mass chang significantly in E. melanogaster. The body mass, body fat mass, the percentage of body fat, wet carcass mass and dry carcass mass showed higher in fall than in winter, lowest is summer except fat-free carcass mass which had no seasonal variation. These dynamic change may be influened not only by environment temperature but also propagate, feeding habit and climate in the habitat of E. melanogaster.
     2. E. melanogaster in winter showed higher energy intake, digested energy and metabolizable energy than in other seasons as well as digestive track mass increased significantly in winter involved wet mass of big intestine and small intestine, wet and dry mass of stomach and ceacum, which indicates that shape of digestive track may help E. melanogaster have more digestive area for food or more time for food to stay in tract thus kept its high digestibility. Heart mass which is the most important power organ also showed highest level in winter, which could indicate that the metabolic rate in Melano-bellied Oriental Vole improved under pressure of winter.
     3. Significant difference of metabolic rate was found among different seasons in E. melanogaster. The BMR and NST were all highest in winter, and lowest in summer which showed that heat produce is one of important countermeasure for adapting environmental variation. The relative mass, content of mitochondrial protein (MP) and cytochrome C oxidase (COX) activity of mitochondria in brown adipose tissue (BAT) are on higher level in winter. Though the relative mass of liver increased in summer, the COX activity and MP content of liver all increased to highest in winter. The seasonl change of BAT and liver keeped consistent with metabolic rate in E. melanogaster, which indicates BAT and liver participate in adjusting of thermogenesis.
     4. Increasing, increasing and decreasing trend were found in body mass respectively under 25±1℃,15±1℃and 5±1℃. Energy intake under 25±1℃,15±1℃and 5±1℃shows decreas, increase and increase respectively. Digestibility and efficiency of metabolizable energy intake didn't show any change under 25±1℃and 15±1℃, but improved significantly after cold acclimation (5±1℃). From this, it can be seen that E. melanogaster could save enough energy for organism construction and functional recovery when under warm temperature, store up more energy to prepeare for coming winter when under lower temperature, reduce body mass and increase energy intake also digestibility to keep balance between energy in and out when under low temperature.
     5. E. melanogaster under the acclimation of 25±1℃showed stable level in BMR, relative mass and MP content of liver, however reduced in mitochondrial COX activity. Under 15±1℃, BMR increased when the MP content as well as mitochondrial COX activity. Low temperature (5±1℃) induced Melano-bellied Oriental Vole increase BMR and thermogenic capability of liver according to the time of acclimation. Compared with speices in other area, it will be found that the increasing rate of BMR have big relationship with the improving degree of COX activity in liver. What is said above confirmed that change of liver property is one of important cellular mechanism for BMR.
     6. BAT is the main heat-producing organ for NST, that was also proved in this study. Decreasing trend was found in NST as well as relative mass and mitochondrial COX activity of BAT but all without significant difference under 25±1℃acclimation. Incresing trend was detected in NST by 15±1℃acclimation when every property of BAT showed marked increase. Cold acclimation (5±1℃) induced either NST or BAT activity increase largely. It was also found that the changing range of NST in cold acclimation in E. melanogaster was smaller than their BMR and also smaller than NST in species of NorthChina. It reflected the character of geography and climate in the habitat of Melano-bellied oriental vole.
     7. The experiment showed that every parameter had rule in the acclimated-time. The parameters increased or decreased while the time of acclimation delayed involve body mass, BMR relative mass, MP content, mitochondrial COX activity of liver and BAT in E. melanogaster,then all of them went to maxi-value when 21 days, or went slower after 21 days. It means that Melano-bellied oriental vole need about 21 days to form new physiological steady state.
     8. There is a great relationship between seasonal variation and change in different temperature in E. melanogaster. For example, body mass in E. melanogaster decrease in cold winter versus fall, when it also showed decrease under cold acclimation (5±1℃). The energy intake in E. melanogaster showed winter>fall> spring> summer which means it increase with temperatre decrease. Accordingly, the energy intake and digestibility showed decrease in warm temperature (25±1℃), increase in lower temperature (15±1℃) and increase largely in cold acclimation (5±1℃). It indicated to a certain degree that temperature may play an indispensable and crucial role in seasonal acclimation.
     In short, in order to retain body temperature and normal physiological function in different season and temperature, E. melanogaster exhibited adaptive physiological regulations from organism to cellular levels, which is of great significance for animal to survive, reproduce and evolve in natural environment. There was a special mode of metabolic and thermogenic mode in E. melanogaster, which close connect with its life style and habitat environment. Temperature is an important inducement for seasonal variation in animal's physiological ecology, however, it needs further investigation to study mechanism of concerted reaction between temperature and other ecological factor like food, photoperiod and so on.
引文
[1]McNab BK. On the utility of uniformity in the definition of basal rate of metabolism[J]. Physiological Zoology,1997,70:718-720.
    [2]Arends A, McNab BK. The comparative energetics of caviomorph rodents[J]. Comparative Biochemistry and Physiology,2001,130:105-122.
    [3]李庆芬,刘小团,黄晨西,等.长爪沙鼠冷驯化过程中褐色脂肪组织产热活性及解偶联蛋白基因表达[J].动物学报,2001,47(4):388-394.
    [4]宋志刚,王德华.哺乳动物基础代谢率的主要影响因素[J].兽类学报,2002,22(1):53-60.
    [5]王德华,王祖望.小哺乳动物在高寒环境中的生存对策I高原鼠兔和根田鼠褐色脂肪组织(BAT)重量和显微结构的季节性变化[J].兽类学报,1989,9(3):176-185.
    [6]王德华,刘晓达,王祖望.高原鼠兔褐色脂肪组织成分及功能的季节动态[J].兽类学报,1993,26(4):271-276.
    [7]Cannon B, Nedergaard J. Brown adipose tissue:function and physiological significance[J]. Physiological Review,2004,84:277-359.
    [8]Regina MM, John RS. Limits to sustainable metabolic rate during transient exposure to low temperature in short-tailed field voles (Microtus agrestis)[J]. Physiological Zoology, 1994,67(5):1103-1116.
    [9]Bing C, Frankish H M, Pickavance L et al. Hyperphagia in cold exposed rats is accompanied by decreased plasma leptin but unchanged hypothalamic NPY[J]. American Journal of Physiology,1998,274:62-68.
    [10]Abelenda M, Ledesma A, Rial E et al. Leptin administration to cold-acclimated rats reduces both food intake and brown adipose tissue thermogenesis[J]. Journal of Thermogenic Biology, 2003,28:525-530.
    [11]王海.大绒鼠和高山姬鼠体温调节和产热特征的比较研究[D].昆明:云南师范大学,2006.
    [12]朱万龙,贾婷,李宗翰等.冷驯化条件下大绒鼠的产热和能量代谢特征[J].动物学报,2008,54(4):590-601.
    [13]王蓓,徐伟江,姜文秀等.高山姬鼠冷驯化过程中的能量收支[J].兽类学报,2007,27(4):395-402.
    [14]蔡理全,黄晨西,李庆芬.长爪沙鼠季节性产热特征比较[J].兽类学报,1998,18(3):215-218.
    [15]李庆升,王德华,杨明.驯化条件下长爪沙鼠血清瘦素浓度的变化以及与能量收支和产 热的关系[J].动物学报,2004,50(3):334-340.
    [16]AL-Mansour MI. Seasonal variation in basal metabolic rate and body compositon within individual sanderling bird(Calidris alba)[J]. Journal of Biological Science,2004,4:564-567.
    [17]Mckechnic AE, Wolf BO. The allomelry of avian basal metabolic rate:good predictions need good date[J]. Physiological and Biochemical Zoology,2004,77:502-521.
    [18]Jessen C. Temperature Regulation in Humans and other Mammals[M]. NewYork:springer-Verlag. Berlin Heidelberg,2001:1-193.
    [19]Rezende EL, Swanson DL, Novoa F et al. Passerines (versus) nonpasserines:so far, no statistical differences in the sealing of avian energetics[J]. Journal of Experimental Biology, 2002,205:101-107.
    [20]Burton ET, Weathers WW. Energetics and thermoregulation of the Gouldian finch (Erythrura gouldiae). Emu Austral ornithology,2003,103:1-10.
    [21]Heldmaier, D. Sources of heat during nonshivering thermogenesis in Djungarian hamster[J]. Journal of Comparative Physiology,1985,156:237-245.
    [22]Heldmaier G, Klaus S, Wiesing H et al. Cold acclimation and thermogenesis[A]. In:MalanA, Canguihem B, eds. Living in the Cold[M].1989:347-358.
    [23]王政昆,李庆芬,孙儒泳.中缅树鼩的非颤抖性产热及细胞呼吸特征[J].动物学研究,1995,16(3):239-246.
    [24]Porter RK, Brand MD. Body mass dependence of Hleak in mitochondria and its relevance to metabolic rate[J]. Nature,1993,362 (6421):628-630.
    [25]Villarin JJ, Schaeffer PJ, Markle RA et al. Chronic cold exposure in creases liver oxidative capacity in the marsupial (Monodelphis domestica)[J]. Comparative Biochemisty and Physiology,2003,136:621-630.
    [26]Praun CV, Burkert M, Gessner M et al. Tissue-specific expression and cold-induced mRNA levels of uncoupling proteins in the Djungarian hamster[J]. Physiological and Biochemical Zoology,2001,74 (2):203-211.
    [27]Kronfeld-Schor N, Haim A, Dayan T et al. Seasonal thermogenic acclimation of diurnally and nocturnally active desert spiny mice[J]. Physiological and Biochemical Zoology,2000, 73:37-44.
    [28]Burness GP, Ydenberg RC, Hochachka PW. Interindividual variability body composition and restingoxygen consumption rate in breeding tree swallows, Tachycineta bicolor[J]. Physiological Zoology,1998,71:247.
    [29]孙晓光,杨明,彭霞等.半自然驯化条件下黑线姬鼠冬夏两季产热的比较[J].沈阳师范大学学报(自然科学报),2009,27(3):356-360.
    [30]沈丽,王勇,王劫等.洞庭湖不同生态类型区黑线姬鼠消化道重量和长度的季节变化[J].四川动物,2005,24(2):132-137.
    [31]王蓓,朱万龙,练硝等.横断山区高山姬鼠消化道形态的季节动态[J].生态学报,2009,29(4):1719-1724.
    [32]朱万龙,贾婷,王睿等.大绒鼠消化道形态的季节变化[J].动物学杂志,2009,44(2):121-126.
    [33]杜卫国,鲍毅新.社鼠和褐家鼠消化道长度和重量的季节变化[J].动物学报,2000,46(3):271-277.
    [34]张志强,王德华.长爪沙鼠脏器重量和肠道长度的季节性变化[J].兽类学报,2009,29(3):294-301.
    [35]张志强,王德华.长爪沙鼠免疫功能、体脂含量和器官重量的季节变化[J].兽类学报,2006,26(4):338-345.
    [36]汪晓琳,鲍毅新,郑荣泉等.消化道长度和重量的季节变化[J].兽类学报,2007,27(3):284-287.
    [37]Zhao ZJ, Wang DH. Plasticity in the physiological energetics of Mongolian gerbils is associated with diet quality[J]. Physiological and Biochemical Zoology,2009,82(5):504-515.
    [38]Liu QS, Wang DW. Effects of diet quality on phenotypic flexibility of organ size and digestive function in Mongolian gerbils (Meriones unguiculatus) [J]. Journal of Comparative Physiology B,2007,177(5):509-518.
    [39]徐金会,安书成,邰发道.棕色田鼠消化道形态变化与能量需求的关系[J].动物学报,2003,49(1):32-39.
    [40]鲍毅新,杜卫国,林奕等.社鼠能量代谢及消化道形态的比较[J].兽类学报,1998,18(3):202-207.
    [41]Gross JE, Wang Z, Wunder BA. Effects of food quality and energy needs:Changes in gut morphology and capacity of Microtus ochrogaster[J]. Journal of Mammalogy,1985,66(4): 661-667.
    [42]诸葛阳主编.浙江动物志(兽类)[M].杭州:浙江科技出版社,1989:72-73.
    [43]刘铭泉,刘振华.粤西发现的黑腹绒鼠及其生态学的初步调查报告[J].动物学杂志,1983,5:17-19.
    [44]鲍毅新,诸葛阳.黑腹绒鼠生态学研究[J].兽类学报,1986,6(1):67-71.
    [45]赵定全,刘少英,张金钟等.黑腹绒鼠日食量测定及社鼠等食性观察[J].四川林业科技,1994,15(4):38-41.
    [46]冉江洪,刘少英,余明忠等.黑腹绒鼠的洞道结构[J].四川林业科技,1998,19(3):38-41.
    [47]汪晓琳,鲍毅新,柳劲松等.黑腹绒鼠的代谢产热特征及其体温调节[J].兽类学报,2008,28(3):293-299.
    [48]张淑珍,李庆芬,黄晨西.非冬眠达乌尔黄鼠对低温的适应性产热[J].兽类学报,1996,17(1):67-72.
    [49]王德华,王祖望.小哺乳动物在高寒环境中的生存对策II高原鼠兔和根田鼠非颤抖性产热的季节性变化[J].兽类学报,1990,10(1):40-53.
    [50]Li XS, Wang DH. Seasonal adjustments in body mass and thermogenesis in Mongolian gerbils (Merionesu nguiculatus):the roles of short photoperiod and cold[J]. Journal of Comparaitve Physiology B,2005,175(8):593-600.
    [51]Wang JM, Zhang YM, Wang DH. Seasonal regulations of energetics, serum concentrations of leptin, and uncoupling protein content of brown adipose tissue in root voles Microtus oeconomus from the Qinghai-Tibetan plateau[J]. Journal of Comparative Physiology B,2006, 176:663-671.
    [52]Bunduz G. Effects of photoperiod and temperature on growth and reproductive organ mass in adult male Mongolian gerbils Meriones unguiculatus [J]. Turk Journal of Biology,2002,26: 77-82.
    [53]Enrico LR, Mark AC, Kimberly AH. Cold-acclimation in Peromyscus:temporal effects and individual variation in maximum metabolism and ventilatory traits[J]. The Journal of Experimental Biology,2004,207:295-305.
    [54]郑荣泉,鲍毅新,周慧娣等.光周期对社鼠能量摄入的影响[J].动物学报,2003,49(4):525-528.
    [55]鲍毅新,杜卫国,林治等.环境温度对社鼠能量需求和食物同化的影响[J].动物学报,2001,47(5):597-600.
    [56]Wang JM, Zhang YM, Wang DH. Seasonal thermogenesis and body mass regulation in plateau pikas Ochotona curzoniae[J]. Oecologia,2006,149:373-382.
    [57]谢静,朱莉萍,王政昆.冷暴露对中缅树适应性产热特征的影响[J].兽类学报,2009,29(1):50-58.
    [58]张志强,刘全生,李纪元.长爪杀鼠褐色脂肪组织和肝脏产热特征的季节性变化[J].动物学报,2006,52(6):1034-1041.
    [59]王丽文,梁传成,黄薇等.环境温度对爪鲵体温及能量代谢的影响[J].动物学报,2008,54(4):640-644.
    [60]李兴升,王德华,杨俊成.光周期对布氏田鼠和长爪沙鼠体重和能量代谢的影响[J].兽类学报,2003,23(4):304-311.
    [61]Jackson DM, Trayhurn P, Speakman JR. Associations between energetics and over-winter survival in the short-tailed field vole Microtus agrestis[J]. Journal of Animal Ecology, 2001,70:633-640.
    [62]王玉山,王祖望,王德华.温度和光周期对高原鼠兔和根田鼠最大代谢率的影响[J].动物学研究,2001,22(3):200-204.
    [63]Heldmaier G, Steinlechner S, Rafael J et al. Photoperiod and ambient temperature as environmental cues for seasonal thermogenic adaptation in the Djungarian hamster, Phodopus sungorus[J]. International Journal of Biometeorology,1982,26:339-345.
    [64]Klingenspor M, Nigemann H, Heldmaier G. Modulation of leptin sensitivity by short photo period acclimation in the Djungarian hamster Phodopus sungorus[J]. Comparative PhysiologyB,2000,170:37-43.
    [65]Nagy TR, Gower BA, Stetson MH. Endocrine correlates of seasonal body mass dynamics in the collared lemming Dicrostonyx groenlandicus[J]. American Zoology,1995,35:246-258.
    [66]Merritt JF, Zegerts DA. Seasonal thermogenesis and bodymass dynamics of Clethrionomys gapperi[J]. Canadian Journal of Zoology,1991,69:2771-2777.
    [67]Concannon P, Levac K, Rawson R et al. Seasonal changes in serum leptin, food intake, and bodyweight in photoentrained woodchucks[J]. American Journal of Physiology,2001,281: 951-959.
    [68]张志强,张丽娜,王德华.渐变的光周期和温度对布氏田鼠能量代谢和身体成分的影响[J].兽类学报,2007,27(1):18-25.
    [69]Klaus S, Heidmaier G, Ricquier D. Seasonal acclimation of bank voles and wood mice: nonshvering thermogenesis and thermogenic properties of brown adipose tissue mitochondria[J]. Journal of Composite Physiology B,1988,158:157-164.
    [70]Puerta M, Abelenda M. Cold-acclimation in food restricted rats[J].Comparative Biochemistry and Physiology,1987,87A:31-33.
    [71]Liu H, Wang DH, Wang ZW. Energy requirements during reproduction in female Brandt's voles Microt us brandti[J]. Journal of Mammalogy,2003,84 (4):1410-1416.
    [72]Lovegrove BG. Seasonal thermoregulatory responses in mammals[J]. Journal of Comparative Physiology B,2005,175(4):231-247.
    [73]Li XS, Wang DH. Seasonal adjustments in body mass and thermogenesis in Mongolian gerbils (Merionesu nguiculatus):the roles of short photoperiod and cold[J]. Jounral of Comparaitve Physiology B,2005,175(8):593-600.
    [74]Rousseau K, Atcha Z, Cagampang FR et al. Photoperiodic regulation of leptin resistance in the seasonally breeding Siberian hamster(Phodopus sungorus)[J]. Endocrinology,2002,143: 3083-3095.
    [75]Haim A. Food and energy intake, non-shivering thermogenesis and daily rhythm of body temperature in the bushy-tailed gerbil sekeetamys calurus:The role of photoperiod manipulations[J]. Journal of Thermogenic Biology,1996,21:37-42.
    [76]Mercer JG, Lawrence CB, Moar KM et al. Short-day weight loss and effect of food deprivation on hypothalamic NPY and CRF mRNA in Djungarian hamsters[J]. American Journal of Physiology,1997,273:R768-776.
    [77]Powell CS, Blaylock ML, Wang R et al. Effects of energy expenditure and UCP I on photoperiod-induced weight gain in collard lemmings[J]. Obesity Reserch,2002,10:541-550.
    [78]Genin F, Perret M. Photoperiod-induced changes in energy balance in gray mouse lemursfJ]. Physiological Behavior,2000,71:315-321.
    [79]Bozinovic FF, Nova F, Claudio V. Seasonal changes in energy expenditure and digestive tract of Abrothrix andinus in the Andes Range [J]. Physiological Zoology,1990,63:216-231.
    [80]Derting TL, Bogue BA. Responses of the gut to moderate energy demands in a small herbiv ore (Microtus pennsylvanicus) [J]. Journal of Mammalogy,1993,74:59-681.
    [81]Derting TL, Noakes EB. Seasonal changes in gut capacity in the white-footed mouse (Peromyscus leucopus) and meadow vole (Microtus pennsylvanicus)[J]. Canadian Journal of Zoology,1995,73:243-252.
    [82]Bozinovic F, Carlos E B, Paolal S. Spatial and seasonal plasticity in digestive morphology of cavies (Microcavia australis) in habiting habitats with different plant qualities[J]. Journal of Mammalogy,2007,88 (1):165-172.
    [83]李俊生,宋延龄,曾治高.7种荒漠啮齿动物食物组成与消化道长度的比较[J].动物学报,2003,49(2):171-178.
    [84]张美文,王勇,李波等.洞庭湖区社鼠消化道长度和质量的季节变化[J].生态学杂志,2007,26(1):61-66.
    [85]柳劲松,王俊森,杨秀芝.麻雀的消化道在繁殖期间的形态变化及适应意义[J].野生动物,1995,(5):39-43.
    [86]Miner BG, Sultan SE, Morgan SG et al. Ecological consequences of phenotypic plasticity[J]. Trends in Ecology and Evolution,2005,20:687-692.
    [87]杜卫国,鲍毅新,刘季科.七种鼠科啮齿动物消化道长度和重量的比较[J].兽类学报,2001,21(4):264-270.
    [88]王德华,王祖望.高寒地区高原鼠兔消化道形态的季节动态[J].动物学报,2001,47:495-501.
    [89]Martin LB, Weil ZM, Nelson R J. Seasonal changes in vertebrate immune activity:mediation by physiological tradeoffs[J]. Philosophical Transactions of the Royal Society B,2008,163: 321-339.
    [90]杨再学,金星,郑元利.黑线姬鼠肝脏重量及其季节变化研究[J].西南农业学报,2006,19(4):728-734.
    [91]王祖望,孙儒泳.根田鼠消化道长度和重量的变化及其适应意义[J].兽类学报,1995,15(1):53-59.
    [92]刘艳华,陈萌,李兴平.不同生境黑线姬鼠消化道长度和重量的比较[J].南京林业大学学报(自然科学版),2004,28(2):90-92.
    [93]Schmidt-Nielsen K. Animal Physiology:Adaptation and Evironment[M]. Cambridge: Cambrige University Press,1997:169-214.
    [94]李庆芬,黄晨西,刘小团.光周期和温度对布氏田鼠产热的影响[J].动物学报,1995,41:362-369.
    [95]鲍毅新,徐丽珊,郑祥.社鼠褐色脂肪组织和器官总蛋白及线粒体蛋白的季节变化[J].东北林业大学学报,2003,21(3):47-49.
    [96]柳劲松,李铭,邵淑丽.树麻雀肝脏和肌肉产热特征的季节性变化[J].动物学报,2008,54(5):777-784.
    [97]Demas G E. The energetics of immunity:aneuroendocrine link between energy balance and immune function[J]. Hormone and Behavior,2004,45:173-180.
    [98]Nelson R J, Fine J B, Demas G E et al. Photoperiod and population density interact to affect reproductive and immune function in male Prairie voles[J]. American Journal of Physiology, 1996:R571-577.
    [99]Smith KG, Hunt JL. On the use of spleen mass as a measure of avian immune system strength[J]. Oecologia,2004,138(1):28-31.
    [100]Nelson RJ, Demas GE. Seasonal changes in immune functions. The Quarterly Review of Biology,1996,71 (4):511-549.
    [101]Jansky L. Nonshivering thermogenesis and its thermo-regulatory significance[J]. Biology Review,1973,48:265-375.
    [102]Feist DD. Metabolic and thermogenic adjustments in winter acclima tized Alaska redbacked voles[A]. In:Merritt J F, ed. Winter ecology of small mammals[C]. Pitt sburgh:Special publication of Carnegie Museum of Natural History, Pittsburgh,1984:131-137.
    [103]王德华,王祖望.褐色脂肪组织及其产热研究进展[J].生态学杂志,1992,(3):43-48.
    [104]Voltura MB, Wunder BA.. Effects of ambient temperature, diet quality, and food restriction on body composition dynamics of the prairie vole Microtus ochrogaster[J]. Physiological Zoology,1998,71(3):321-328.
    [105]McDevitt RM, Speakman JR. Limits to sustainable metabolic rate during transient exposure to temperatures in short-tailed voles Microtus grestis[J]. Physiological Zoology,1994,67 (5): 1103-1116.
    [106]蔡理全,黄晨西,李庆芬.长爪沙鼠褐色脂肪组织的适应性产热[J].动物学报,1998,44:391-397.
    [107]杨明,刁颖,彭霞等.冷驯化和复温过程中黑线仓鼠产热的变化[J].沈阳师范大学学报,2009,27(2):129-133.
    [108]Degen AA, Khokhlova IS, Kam M et al. Body size, granivory and seasonal dietary shifts in desert gerbilline rodents[J]. Functional Ecology,1997,11:53-59.
    [109]宋志刚,王德华.长爪沙鼠的代谢率与器官的关系[J].动物学报,2002,48(4):445-451.
    [110]Haysseen V, Lacy RC. Basal metabolic rates in mammals:taxonomic difference in the allometry of BMR and body mass[J]. Comparative Biochemistry and Physiology,1985,81A: 741-754.
    [111]McNab BK. Complications inherent in scaling the basal rate of metabolismin mammals[J]. Quarterly Review of Biology,1988,63:25-54.
    [112]Rousseau K, Actha Z, Loudon ASI. Leptin and seasonal mammals[J]. Journal of Neuroendocrinology,2003,15(4):409-414.
    [113]Rosenmann M., Morrison P. Maximum oxygen consumption and heat loss facilitation in small homeotherms by He-O2 [J]. American Journal of Physiology,1974,226:490-495.
    [114]Sundin U, Moore G, Nedergaard J et al. Thermogenin amount and activity in hamster brown fat mitochondria:effect of cold acclimation[J]. American Journal of Physiology,1987, 252(21):822-832.
    [115]Liverini G, Gogtia F, Lanni A et al. Elevated hepatic mitochondria oxidatiae capacities in cold exposed rats[J]. Comparative Biochemistry and Physiology,1990,97(2):327-331.
    [116]王政昆,刘璐,梁子卿等.大绒鼠体温调节和产热特征[J].兽类学报,1999,19(4):276-286.
    [117]Camirand A, Mare V, Babelo R et al. Thiazolidinediones stimulate uncoupling protein-2 expression in cell lines representing white and brown adipose tissue and skeletal muscle[J]. Endocrinology,1998,139(1):428-431.
    [118]Matthias A, Jacobsson A, Cannon B et al. The Bioenergetics of Brown Fat Mitochondria from UCP1-ablated Mice[J]. The Journal of Biological Chemestry,1999,274(40):28150-28160.
    [119]Tomasi TE, Horwitz BA. Thyroid function and cold acclimation in the hamster Mesoocricetus auratus[J].American Journal of Physiology,1987,252:260-267.
    [120]Oufara S, Barre H, Rouanet J et al. Adaptation to extreme ambient temperatures in cold acclimated gerbils and mice[J]. American Journal of Physiology,1987,253:39-45.
    [121]Hammond KA, Wunder BA. The role of diet quality and energy need in the nutritional ecology of a small herbivore, Microtus ochrogaster [J]. Physiol Zool,1991,64:541-567.
    [122]Rafael J, Vsiansky P, Heldmaier G. Increased contribution of brown adipose tissue to nonshivering thermogene-sis in the Djunga-rian hamster during cold-adaptation[J]. Journal of Comparative Physiology B,1985,155:717-722.
    [123]Heldmaier G, Klaus S, Wiesinger H. Seasonal adaptation of thermoregulatory heat production in small mammals[A]. In:Bligh J, KVoigy eds. Thermoreceptors and Temperature Regulation, USA[M]. Berlin:Springer Press,1990:235-243.
    [124]王德华,孙儒泳,王祖望等.根田鼠冷驯化过程中的适应性产热特征[J].动物学报,1996,42(4):368-376.
    [125]Oufara S, Barre H, Rouanet JL. Great adaptability of brown adipose tissue mitochondria to extreme am-bient temperatures in control and clod-acclimated gerbils as compared with mice[J]. Comparative Biochemistry and Physiology B,1988,90:209-214.
    [126]Soppela P, Nieminen M, Saarela S et al. Brown fat-specific mitochondrial uncoupling protein in adipose tissues of newborn reindeer[J]. American Journal of Society,1991,260 (6): 1229-1234.
    [127]Florez-duquet M, Mcdonald RB. Cold-induced thermoregulation and biological aging[J]. Physiology Review,1998,78 (2):339-358.
    [128]王煜,黄晨西,李庆芬等.冷暴露对长爪沙鼠BAT及UCPmRNA的影响[J].北京师范大学学报(自然科学版),2000,36(5):695-699.
    [129]王煜,黄晨西,李庆芬等.布氏田鼠冷暴露中褐色脂肪组织的增补及解偶联蛋白基因表达[J].动物学研究,2001,22(1):41-45.
    [130]谢静,王政昆,张武先等.冷暴露对中缅树鼩褐色脂肪组织中解偶联蛋白Ⅰ含量的影响[J].动物学杂志,2008,43(4):34-40.
    [131]仲明,张宏福,杨琳等.解偶联蛋白对动物能量代谢的作用[J].动物营养学报,2006,18(231):310-315.
    [132]柳劲松,李庆芬.高原鼠兔冷驯化和脱冷驯化中的产热变化[J].动物学报,1996,42(4):377-385.
    [133]李庆芬,李宁,孙儒泳.布氏田鼠对低温的适应性产热[J].兽类学报,1994,14(4):286-293.
    [134]Drozdz A. Metabolic cages for small rodents[A]. In:Godzinski W, Klekowski R K, Duncan A eds. Methods for Ecological Bioenergetics, IBP handbook 24[M]. Oxford:Blackwell Scientific Press,1975:346-351.
    [135]Grodzinski W, Wunder BA. Ecological energetics of small mammals[A]. In:Grolley FB, Petrusewicz K, Ryszkowshi L eds. Small mammals:their productivity and population dynamics[C]. Cambridge:Cambridge University Press,1975:173-204.
    [136]Gorecki A. Grodzinski W, ed.International Biological Programme Handbook [A]. In: Grodzinski W, Klekowski RZ, Duncan A eds. Methods for Ecological Bioenergetics, BP handbook 24 [M]. Oxford:Blackwell Scientific.1975,309-313.
    [137]Bockler H, Steinlechner S, Heldmaier G. Complete cold substitution of noradrenaline-induced thermogenesis in the Djungarian hamster, Phodopus sungorus[J]. Experientia,1982, 38:261-262.
    [138]Heldmaier G. Nonshivering thermogenesis and body size in mammals[J]. Journal of Comparative Physiology,1971,73:222-248.
    [139]Cannon B, Lindberg O. Mitochondria from brown adipose tissue:isolation and properties[A]. In:Fleischer S, Packer Leds. Methods in Enzymology. Vol.LV[M]. New York:Academic Press,1979,65-78.
    [140]Zhao ZJ, Wang DH. Short photoperiod enhances thermogenic capacity in Brand't voles[J]. Physiol and Behavior,2005,143-149.
    [141]Li XS, Wang DH. Regulation of body weight and thermogenesisin seasonally acclimatized Brandt's voles (Microtus brands)[J]. Hormones and Behavior,2005,48 (3):321-328.
    [142]Haim A, Racey PA, Speakman J R. Seasonal acclimation and thermo-regulationin the pouched mouse (Saccostomus campestris)[J]. Jounral of Thermal Biology,1991,16(1):13-17.
    [143]Merrin JF, Zegers DA, Rose LR. Seasonal thermogenesis of southern flying squirrel (Glaucomys volans)[J]. Jounral of Mammalogy,2001,82(1):51-64.
    [144]Selman C, Lumsden S, Bunger L et al. Resting metabolic rate and morphology in mice(Mus musculus)selected for high and low food intake[J]. Journal of Experimental Biology,2001, 204:777-784.
    [145]Trayhurn P, Beattie JH. Physiological role of adipose tissue:white adipose tissue as an endocrine and secretory organ[J]. Proceeding of Nutrual Society,2001,60:329-339.
    [146]Demas GE, Drazen DL, Nelson RJ. Reductions in total body fat decrease humoral immunity[J]. Proceedings of Royal Society London B:Biology Sciences,2003,270:905-911.
    [147]Prendergast BJ, Kriegsfeld LJ, Nelson RJ. Photoperiodic polyphenisms in rodents: neuroendocrine mechanisms, costs, and functions[J]. The Quarterly Review of Biology,2001, 76 (3):293-325.
    [148]Nelson RJ, Demas GE. Seasonal changes in immune functions[J]. The Quarterly Review of Biology,1996,71 (4):511-549.
    [149]Drazen DL, Demas GE, Nelson RJ. Leptin effects on immune function and energy balance are photoperiod dependent in Siberian hamsters (Phodopus sungorus)[J]. Endocrinology, 2001,142:2768-2775.
    [150]Demas GE, BowersRR, Bartness TJ et al. Photoperiodic regulation of gene expression in brown and white adipose tissue of Siberian hamsters[J]. American Journal of Physiology, 2002,282:R114-R121.
    [151]Karasov WH. Energetics, physiology, and vertebrate ecology [J]. Trends in Ecology and Evolution,1986,1(4):101-104.
    [152]梁杰荣,黄铁华,卫斌等.褐家鼠和黄胸鼠能量摄入的季节变化[J].动物学杂志,1988,23(3):24-28.
    [153]Olson JB, Kendeigh SC. Effect of seasonon the energetic, body composition, and cage activity of the Field Sparrow[J].Auk,1980,97:704-720.
    [154]骆鹰,庾太林,黄乘明等.笼养黑颈长尾雉能量摄入的季节变化[J].动物学杂志2008,43(1):38-43.
    [155]Canterbuyr G. Metabolic adaptation and climatic constraints on winter birds distribution[J]. Journal of Evolution,2002,83 (4):946-957.
    [156]宋志刚,王德华.内蒙古草原布氏田鼠的最大同化能[J].兽类学报,2001,21(4):271-278.
    [157]杜卫国,鲍毅新,俞华英等.社鼠消化道长度和重量的季节变化[J].动物学报,1998,44(1):112-114.
    [158]王德华,王祖望,孙儒泳.根田鼠消化道长度和重量的变化及其适应意义[J].兽类学报,1995,15(1):53-59.
    [159]Swanson DL. Cold hardiness and summit metabolism in North American kinglets during fall mignation[J]. Acta Zoology Sinica,2007,53:600-606.
    [160]Lovegorve B G. The influence of climate on the basal metabolic rate of small mammals:a slow fast metabolic continuum[J]. Jounral of Comparative Physiology B,2003,17(3): 87-112.
    [161]鲍伟东,王德华,王祖望等.内蒙古库布齐沙地四种啮齿动物颤抖性产热的季节变化[J].兽类学报,2001,21(1):101-106.
    [162]Zhang ZQ, Wang DH. Seasonal changes in thermogenesis and body mass in wild Mongolian gerbils(Meriones unguiculatus) [J]. Comparative Biochemistry and Physiology A, 2007,148:346-353.
    [163]Khokhlova I, Krasnov BR, Shenbrot GI et al. Body mass and environment:a study in Negev rodents [J]. Israel Journal of Zoology,2002,46:1-13.
    [164]Lynch GR. Seasonal changes in thermogenesis, organ weights, and body composition in the white footed mouse (Peromyscus lucopus)[J]. Oecologia,1973,13:363-376.
    [165]迟庆生,李兴升,赵志军等.布氏田鼠胎后发育过程中褐色脂肪组织和肝脏的产热特征[J].兽类学报,2006,26(3):274-279.
    [166]Li QF, Sun RY, Huang CX. Cold adaptive thermogenesis in small mammals from diferent geographical zones of China[J]. Comparative Biochemistry and Physiology PartA,2001,129: 949-961.
    [167]Wunder BA. Energetics and thermoregulation[A]. In:Tamnrin FH ed. Biology of New World Microtus[M]. Utah:Brigham Young University,1985:812-844.
    [168]Wiesinger H, Heldmaier G, Buchberger A. Effect of photoperiod and acclimation temperature on nonshivering thermogenesis and GDP-binding of brown fat mitochondria in the Djungarian hamster Phodopus sungorus[J]. European Journal of Physiology,1989,413: 667-672.
    [169]王德华,孙儒泳,王祖望.光照和温度对高原鼠兔褐色脂肪组织产热特征的影响[J].动物学研究,1999,20(5):347-351.
    [170]汪晓琳.光周期对黑腹绒鼠能量收支和产热的影响[D].金华:浙江师范大学,2008.
    [171]Iverson SL, Turner BN. Winter weight dynamics in Microtus pennsylvanicus [J]. Ecology, 1974,55:1030-1041.
    [172]张武先,王政昆,徐伟江等.冷驯化对中缅树鼩能量代谢的影响[J].兽类学报,2002,22(2):123-129.
    [173]Daan S, Masman D, Groenewold A. Avian basal metabolic rates:their association with body composition and energy expenditure in nature[J]. American Journal of Physiology,1990,259: R333-340.
    [174]Hammond KA, Diamond J. Maximal sustained energy budgets in humans and animals[J]. Nature,1997,386:457-462.
    [175]Bacigalupe LD, Bozinovic F. Design, limitations and sustained metabolic rate:lessons from small mammals[J]. Journal of Experimental Biology,2002,205:2963-2970.
    [176]Johnston IA, Bennett AF. Animals and Temperature:Phenotypic and Evolutionary Adaptation [M].Cambridge, Cambridge University Press,1996.
    [177]Knopper LD, Boily P. The energy budget of captive Siberian hamsters, Phdopus sungorus, exposed to photopefiod changes:mass loss is caused by a voluntary decrease in food intake [J]. Physiol Biochem Zool,2000,73:517-522.
    [178]Larkin LM, Moore BJ, Stem JS et al. Effect of photoperiod on body weight and food intake of obese and lean zucker rats [J]. Life Sciences,1991,49(10):735-745.
    [179]王德华,孙儒泳,王祖望.根田鼠的最大同化能[J].动物学报,1996,42(1):35-41.
    [180]刁颖.黑线姬鼠的产热及能量代谢特征研究[D].沈阳:沈阳师范大学,2007.
    [181]张麟,王睿,杨芳等.中缅树鼩肝在冷适应条件下的产热特征[J].动物学杂志,2009,44(4):47-57.
    [182]Liknes ET, Swanson DL. Seasonal variation in cold tolerance, basal metabolic rate, and maximal capacity for thermogenesis in whitebreasted nuthatches Sitta carolensis and downy woodpeckers Picides pubescens, two unrelated arboreal temperate residents[J]. Journal of Avian Biology,1996,27:279-288.
    [183]Collin A, Buyse J, Van AP et al. Cold-induced enhancement of avian uncoupling rotein expression, heat production and triiodothyronine concentrations in broiler chicks[J]. General and Comparative Endocrinology,2003,130:70-77.
    [184]柳劲松,李庆芬.高原鼠兔冷驯化和脱冷驯化中的产热变化[J].动物学报,1996,42(4):377-385.
    [185]Jansky L. Humoral thermogenesis and its role in maintaining energy balance[J]. Physiology Review,1995,75:247-259.
    [186]Liu JS, Sun RY, Wang DH. Thenmogenic properties in three species of rodent from Northeastern China [J]. Journal of Thermal Biology,2006,31(1):172-176.
    [187]McKechnie AE. Phenotypic flexibility in basal metabolic rate and the changing view of avian physiological diversity:a review[J]. Journal of Comparative Physiology B,2008, 178(3):235-247.
    [188]Mujahid A. Acute cold-induced thermogenesis in neonatal chicks(Gallus gallus)[J]. Comparative Biochemistry and Physiology A,2010, In Press.
    [189]Himms HJ. Brown adipose tissue thermogenesis:role in thermogenesis energy regulation and obesity [A]. In:Sehovbaum E, Lomax P eds. Physiology and Biochemistry[M]. New York:Pergamon Press,1990:327-414.
    [190]Gordon CJ. Temperature regulation in labomtory rodents[M]. Cambridge:Cambridge University Press,1993:1-276.
    [191]刘春燕,徐伟江,蔡金红等.光照和温度对大绒鼠产热特征的影响[J].兽类学,2008,28(4):409-416.
    [192]王德华.动物生理生态学[A].见:戈峰.现代生态学[M].北京:科学出版社,2002:33-72.
    [193]Hollway JC, Geiser F. Seasonal changes in the thermoenergetics of the marsupial sugarglider(Petaurus breviceps)[J]. Journal of Comparative Physiology B,2001,171: 643-650.
    [194]Jansky L. Nonshivering thermogenesis and its thermoregulatory significance [J]. Biology Reviews,1973,48:85-132.
    [195]Prieto-Anderson MJ, Rauch JC. Seasonal changes in white and brown adipose tissue in Clethrionomys gapperi (red backed vole) and in Microtus pennsylvanicus (meadow vole)[J]. Comparative Biochemistry and Physiology A,1984,79:305-310.
    [196]Gottreich A, Yogev L, Terkel J et al. Effect of photoperiod variation on testes and accessory sex organs in the male blind mole rat Spalax ehrenbergi [J]. Life Sciences,2000,67:521-529.
    [197]Rezende EL, Chappell MA, Hammond KA. Cold-acclimation in Peromyscus:temporal effects and individual variation in maximum metabolism and ventilatory traits[J]. The Journal of Experimental Biology,2004,207(2):295-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700