骨髓间充质干细胞移植对急性肝衰竭大鼠肠源性内毒素血症的治疗作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:急性肝衰竭(acute liver failure, ALF)是一种严重危害人类生命健康的临床综合征,肝移植是目前最有效的治疗肝衰竭的方法,但是,肝移植由于供体短缺及费用昂贵等问题限制了其广泛应用。因此,迫切需要探索新的治疗方法以挽救肝衰竭患者的生命。近年来许多动物及临床研究发现,骨髓间充质干细胞(bone marrow mesenchymal stem cell, BMSC)可以在体内外诱导分化为肝细胞,BMSC移植可以在体内增殖、分化为肝细胞或肝样细胞,替代受损的肝细胞,促进肝功能恢复,因此,有人已将BMSC移植用于治疗ALF并显示出具有显著的疗效。目前,对于BMSC治疗肝衰竭作用机制的研究主要集中在BMSC的分化潜能方面。然而实验研究发现,BMSC在体外诱导分化为肝细胞需要6-12天,体内分化也需要4-5天,而BMSC在移植的早期未分化为肝细胞或肝样细胞时即显示出具有显著的疗效,用干细胞分化机制不足以解释BMSC移植的这种早期应答。那么,BMSC移植早期是通过何种机制发挥作用?有研究提出,BMSC具有抗炎和免疫调节作用,这种作用是否在BMSC移植早期发挥其效应?另外,大量临床研究结果表明,ALF患者伴有的肠源性内毒素血症(Intestinal Endotoxemia, IETM)在肝衰竭的发生发展过程中起重要作用,内毒素可以直接损伤肝细胞,还可以激活下游炎症级联反应,引起大量肝细胞凋亡及坏死,导致肝衰竭。韩德五教授提出了IETM是各种原因导致肝衰竭发生的唯一的共同物质基础,并且这一理论在实验和临床研究中已经得以证实。那么:BMSC对ALF大鼠IETM究竟有何作用?其作用机制如何?是本文的研究重点。
     本课题首先建立一种简便、快捷的体外分离培养大鼠BMSC的方法,在此基础上观察BMSC移植治疗ALF大鼠的作用,从细胞水平及在体水平探讨其可能的机制,为临床治疗ALF提供新的思路。
     本研究共分三个部分:
     第一部分骨髓间充质干细胞的分离培养及其生物学特性的研究
     第二部分骨髓间充质干细胞移植对急性肝衰竭大鼠肠源性内毒素血症的影响
     第三部分骨髓间充质干细胞移植对急性肝衰竭大鼠肠源性内毒素血症治疗作用机制的研究
     第一部分骨髓间充质干细胞的分离培养及其生物学特性的研究
     目的建立一种简便、快速、有效的体外分离培养大鼠BMSC的方法并进行初步鉴定。
     方法无菌条件下取大鼠四肢长骨骨髓,在含20%胎牛血清的DMEM/F12中贴壁培养,倒置显微镜下观察细胞的形态变化;采用免疫细胞化学方法检测细胞膜抗原CD34、CD44及CD45的表达;采用流式细胞术检测细胞周期;细胞加成脂诱导剂体外培养14天后,行油红O染色,观察细胞分化结果。
     结果分离培养的细胞2-3天后呈多形性贴壁生长并开始大量增殖,3代以后的细胞呈均一的成纤维细胞样形态。免疫细胞化学染色显示,细胞表面分子CD44阳性,CD34、CD45阴性。细胞周期检测结果显示,(80.13±1.24)%的第3代BMSC处于G1期。细胞加成脂诱导剂后14天经油红O染色可见胞质内有橙红色的脂滴。
     结论采用全骨髓贴壁培养法可以方便、快捷地获得BMSC,并且在体外培养条件下能大量增殖,经诱导后可以向脂肪细胞分化,具有干细胞的生物学特性,是一种比较理想的体外培养方法。
     第二部分骨髓间充质干细胞移植对急性肝衰竭大鼠肠源性内毒素血症的影响
     实验一急性肝衰竭大鼠伴肠源性内毒素血症模型的建立
     目的探讨用不同剂量硫代乙酰胺(Thioacetamide, TAA)制作ALF大鼠伴IETM模型的量-效关系。
     方法设立3个TAA剂量组,每组10只,分别以200、400、600 mg/(kg·d)剂量的TAA灌胃,24h后相同剂量TAA重复灌胃一次,建立不同剂量TAA致大鼠IETM的动物模型,并设立对照组,以等体积0.9%氯化钠溶液灌胃。观察造模后24h、48h大鼠的死亡率,48h后剩余大鼠腹主动脉采血检测血清中丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)及血浆内毒素含量,取部分肝脏及回肠组织作常规HE染色,光镜下观察肝脏及回肠组织的病理变化。
     结果不同剂量TAA组大鼠在肝损伤评分、ALT、AST、内毒素水平方面与对照组相比差异均有统计学意义(P<0.05)。TAA剂量越大,死亡率越高,肝损评分、ALT、AST及内毒素水平也越高。200mg/kg TAA模型组肝坏死不明显,400mg/kg TAA模型组与600mg/kg TAA模型组有明显肝坏死,ALT、AST及内毒素水平与200mg/kg TAA组相比明显升高,差异有统计学意义(P<0.05)。不同剂量TAA模型组有不同程度的肠粘膜损伤。
     结论TAA致肝损伤具有明显的剂量依赖性,其中400 mg/(kg·d)TAA剂量为制备ALF伴IETM模型的适宜剂量。
     实验二骨髓间充质干细胞移植对急性肝衰竭大鼠内毒素及细胞因子的影响
     目的探讨BMSC移植对TAA所致ALF大鼠内毒素及TNF-α、IL-10的影响。
     方法雌性Wistar大鼠30只,体重250±10g,随机分为对照组、TAA模型组和TAA+BMSC治疗组,每组10只。采用TAA 400mg/kg灌胃,24h后重复灌胃建立ALF大鼠模型,对照组给予0.9%氯化钠溶液2m1灌胃;第二次灌胃后将BMSC(1×106个细胞/只)经尾静脉移植到TAA+BMSC治疗组大鼠体内,对照组和TAA模型组大鼠经尾静脉给予等量无菌磷酸盐缓冲液(PBS)。BMSC治疗72h后将大鼠麻醉状态下腹主动脉采血,检测血清中ALT、AST以及血浆内毒素含量,ELISA法检测血浆及肝组织匀浆中TNF-α、IL-10含量。取部分肝组织及回肠组织作常规病理检查。
     结果TAA模型组与对照组比较,大鼠血清ALT、AST、血浆内毒素、血浆与肝组织TNF-α、IL-10水平均显著上升(P<0.05), TNF-α/IL-10的比值明显升高。TAA+BMSC治疗组与TAA模型组相比大鼠血清ALT、AST以及血浆内毒素水平均显著降低,血浆与肝组织IL-10水平明显升高,TNF-α/IL-10的比值明显降低,差异有统计学意义(P<0.05)。TAA+BMSC治疗组与对照组相比,血浆与肝组织TNF-α/IL-10的比值无明显差异(P>0.05)。病理切片显示BMSC能够明显减轻TAA对肝组织的损害,TAA模型组及TAA+BMSC治疗组回肠组织病理显示均有不同程度损害。
     结论TAA造模形成的ALF大鼠伴有IETM, BMSC尾静脉移植对ALF大鼠IETM有一定的保护作用,可以调节促炎与抗炎因子达到新的平衡,这可能是BMSC移植治疗ALF的作用机制之一。
     第三部分骨髓间充质干细胞移植对急性肝衰竭大鼠肠源性内毒素血症治疗作用机制的研究
     实验一骨髓间充质干细胞对脂多糖刺激枯否细胞分泌细胞因子的影响
     目的探讨在体外条件下BMSC对脂多糖(LPS)刺激后大鼠肝脏枯否细胞(KC)分泌TNF-α的影响。
     方法采用全骨髓贴壁培养法分离、纯化大鼠BMSC,原位灌流、Percoll密度梯度离心法原代分离培养肝KC,取体外培养48h后的KC用于实验,用LPS(终浓度1μg/ml)刺激KC,BMSC加入KC中建立BMSC共培养体系,实验分为四组:①KC组;②KC+LPS组;③KC+LPS+BMSC组;④KC+LPS+BMSC培养上清组。LPS作用24h、48h、72h后收集培养上清检测培养体系中肿瘤坏死因子-α(TNF-α)的水平。
     结果无LPS刺激时,正常肝脏KC培养上清中可检测到少量TNF-α,经LPS刺激后KC培养上清中TNF-α含量明显上升;而与BMSC共培养时,TNF-α含量显著减少(P<0.05);KC与BMSC培养上清共培养时,TNF-α含量与②组相比明显减少,与③组相比TNF-α含量较高,差异均有统计学意义(P<0.05)。
     结论BMSC可以抑制LPS刺激后大鼠肝脏KC的活化,减少TNF-α的分泌,BMSC培养上清同样可以抑制KC的活化,但作用比BMSC弱。
     实验二骨髓间充质干细胞移植对急性肝衰竭大鼠CD14、NF-κB的影响
     目的观察BMSC移植对ALF大鼠肝组织中内毒素受体CD14及核因子NF-κB表达的影响。
     方法30只雌性Wistar大鼠,体重250±10g,随机分为对照组、TAA模型组和TAA+BMSC治疗组,每组10只,BMSC移植治疗72h后将各组存活大鼠麻醉,腹主动脉采血后取部分肝组织备检。SABC免疫组化法检测肝组织中内毒素受体CD14及核因子NF-κB的表达。
     结果对照组肝组织可见少量CD14、NF-κB表达阳性的细胞。TAA模型组与对照组相比,CD14、NF-κB表达明显升高,差异有统计学意义(P<0.05)。经BMSC治疗后,CD14、NF-κB表达比TAA模型组明显降低,差异有统计学意义(P<0.05),与对照组相比,BMSC治疗组CD14、NF-κB仍然很高,差异也有统计学意义(P<0.05)。
     结论BMSC移植可以抑制肝组织CD14及NF-κB的表达。BMSC移植可能通过抑制内毒素受体CD14及核因子NF-κB的表达来阻断内毒素在体内发挥效应。
Background:Acute liver failure is a clinical syndrome which seriously threats against life and health. Today liver transplantation still represents the only effective treatment for liver failure. However, it is not able to be widespreadly applicated in clinic due to critical shortage of donor organs and high cost issues. So it is urgent to explore a new effective feasible treatment for acute liver failure. Recent study found that bone marrow mesenchymal stem cell (BMSC) can be induced and differentiated into hepatocytes in vivo and vitro. BMSC transplantation could provide liver function support and stimulate the regeneration of hepatocytes by proliferation and differentiation. So some people applied BMSC transplantation to treat acute liver failure, which demonstrated significant therapeutic efficacy. The study on the mechanism of BMSC transplantation for acute liver failure focused on the potential differentiation ability of stem cell. The differentiation of BMSC into hepatocytes needs 6~12 days in vivo and 4~5 days in vitro. However, BMSC transplantation showed obvious effects during the early stage when BMSCs were far from differentiation into hepatocytes or hepatocyte-like cells. The theory of stem cell differentiation is still insufficient to explain the early response to acute liver failure.What's the mechanism of BMSC transplantation for early treatment of acute liver failure? Studies found that BMSC had anti-inflammatory and immune regulation functions. Dose BMSC transplantation effect in the early stage of transplantation by the function? In addition, many clinical studies showed that patients with acute liver failure with intestinal endotoxemia (IETM), which play an important role in the occurrence and development of acute liver failure. Endotoxin can directly damage hepatocytes, activate the inflammatory cascade, lead to apoptosis and necrosis of hepatocytes, and then liver failure. Professor Han DW proposed that endotoxin was common material basis of liver failure due to any causes, which has been confirmed by many experimental and clinical studies. What were the effects of BMSC on IETM due to acute liver failure and its mechanism? These were the focus of the article.
     This study first developed a simple, quick and effective method to culture BMSC. Then we observed the effect of BMSC transplantation on the treatment of acute liver failure and explored the possible mechanism in vivo and vitro. Our study may provide new ideas for the clinical treatment of acute liver failure.
     This thesis is composed of three parts:
     Part 1:Study of the isolation, culture and biological properties of rat bone marrow
     Part 1:Study of the isolation, culture and biological properties of rat bone marrow mesenchymal stem cell
     Objective To develop a quick and effective method of isolating and culturing rat bone marrow mesenchymal stem cell (BMSC) in vitro and to initially identificate the cultured cells.
     Methods The bone marrow was obtained from the four limbs of the rats under the aseptic condition and cultured in DMEM/F12 contained 20% bovine serum with conventional method. The change of morphology was observed with invert microscope. The cell member antigens CD34、CD44、CD45 were examined with immunocytochemical technique. Cell cycle was detected with flowing cytometry. The cells were induced in adipogenic inductive medium for 14 days, stained with Oil Red O after 14 days and observe the differentiation of BMSC.
     Results The isolated and cultured cells were attach to culture flask after 2~3 days and proliferated rapidly. The morphology of P3 BMSC was identical fibroblast-like cell. The results of immunocytochemicstry of BMSC showed that CD44 was positive and CD34、CD45 negative. (80.13±1.24)% P3 BMSC were in G1 phase. The cells appeared orange-red lipid droplets by Oil Red O staining after BMSC were cultured in adipogenic inductive medium for 14 days
     Conclusion BMSC can be conveniently and quickly gotten by the way of bone marrow adherent culture. The cultured cells can be induced into adipocyte and show general stem cell biological properties. The bone marrow adherent culture method might be an ideal method for isolation and cultivation of BMSC in vitro.
     Part 2:Effect of BMSC transplantation on IETM due to the acute liver failure rats
     Experiment One:A rat model of the acute liver failure followed with Intestinal Endotoxemia induced by Thioacetamide
     Objective To investigate the correlation between dose and effect of thioacetamide (TAA) on rat models of the acute liver failure with Intestinal Endotoxemia.
     Methods The models of Intestinal Endotoxemia were induced by three different doses of TAA by twice gavage administration of TAA 200,400,600mg/(kg·d) of bodyweight respectively at same time for two days. Each group included 10 rats. The control group rats were administrated 2ml 0.9% NaCl saline gavage. The mortality of the rats in 24 hour and 48 hour were observed. The abdominal aorta blood of the living rats was taken. The serum ALT, AST, plasma endotoxin levels were examined. The liver and ileum tissue were taken out and stained by hematoxylin-eosin. The histopathological changes of liver and ileum were examined under light microscope.
     Results Compared with the control group, the levels of liver injure score, serum ALT, AST and plasma endotoxin in the different TAA dose groups were significantly increased (P<0.05),which showed significantly correlation between dose and effect.200mg/kg TAA group showed little necrosis in liver histology, while 400mg/kg TAA group showed obvious necrosis. Compared with the 200mg/kg TAA group, the liver injure score,serum ALT, AST and plasma endotoxin were significantly increased in 400mg/kg TAA group (P<0.05).
     Conclusion The liver injure induced by TAA has obvious dose dependence.400 mg/(kg·d)TAA is an appropriate dose to manufacture acute liver failure rat models followed with IETM.
     Experiment Two:Effects of bone marrow mesenchymal stem cells thansplantation on endotoxin and cytokines of acute liver failure rats
     Objective To evaluate the effects of BMSC thansplantation on endotoxin and cytokines of acute liver failure rats induced by TAA.
     Methods Thirty female Wistar rats, weighed 250+10g, were randomly assigned to control group, thioacetamide group(TAA) and TAA+BMSC group. Each group included 10 rats. The model of acute liver failure rats was induced by the gavage administration of TAA 400mg/kg in two consecutive days. Control group were administrated 2ml Saline at the same time. After the second gavage, the TAA+BMSC group were injected BMSC (1×106/rat) by tail vein while the control and TAA group were injected Sterile PBS. All rats were put to death at 72 hour after BMSC transplantation. The serum ALT, AST and plasma endotoxin (ET) levels were measured. The contents of TNF-αand IL-10 in plasma and liver tissue were measured by ELISA. The liver and ileum tissues were collected for the pathohistological evaluation.
     Results Compared with the control group, the levels of ALT, AST, ET, TNF-αand IL-10 were significantly increased in the TAA group (P<0.05), TNF-α/IL-10 were significantly increased (P<0.05). Compared with the TAA group, the levels of ALT、AST、ET were significantly decreased, the level of IL-10 in plasma and liver tissue was increased, TNF-α/IL-10 were significantly decreased in the TAA+BMSC group (P<0.05). Compared with the control group, the TNF-α/IL-10 have no significant difference in the TAA+BMSC group (P>0.05). The liver tissues pathological examination showed less inflammatory damage in TAA+BMSC group than that in the TAA group. The ileal tissues pathological examination showed similar damage in TAA+BMSC group and the TAA group.
     Conclusion The acute liver failure rats induced by TAA followed with IETM. BMSC transplantation can protect the injured liver in the early stage of transplantation and adjust anti-inflammatory and pro-inflammatory cytokines to reach a new equilibrium. It might be one of the mechanisms of BMSC transplantation on the treatment of acute liver failure.
     Part 3:Mechanisms of BMSC transplantation on the acute liver failure rats with Intestinal Endotoxemia
     Experiment One:Effects of BMSC on cytokines secration from Kuffer cells stimulated by endotoxin
     Objective To explore the effect of BMSC on TNF-αsecration from Kupffer cells (KC) stimulated by LPS in vitro.
     Methods Rat BMSCs were cultured by the way of bone marrow adherent culture. KC were isolated from liver by in situ perfusion with pronase and collagenase and density gradient centrifugation with Percoll, and then were cultured. The KC cultured for 48 hours were used in the experiment. The KC were stimulated by 1μg/ml LPS. The co-culture system was established by planting BMSC on the KC. Four groups were established according to the following arrangement:①KC groups;②KC+LPS;③KC+LPS+BMSC;④KC+LPS+supernatants from BMSC. The supernatants were collected for TNF-αassay after stimulating KC with LPS for 24h,48h,72h.
     Results There was small amounts of TNF-αin KC supernatants without stimulating by LPS. The concentration of TNF-αincreased significantly in the supernatant after KC were actived by LPS. When BMSC acted on co-cultured system, the concentration of TNF-αdramatically decreased. When BMSC culture supernatants acted on co-cultured system, the concentration of TNF-αdramatically decreased after LPS stimulation compared with KC+LPS group. However, the effect was lower than that of BMSC.
     Conclusion BMSC can inhabit the activation of rat KC stimulated by LPS and decrease the production of TNF-α. BMSC culture supernatants have weaker effect than BMSC.
     Experiment Two:Effects of BMSC transplantation on CD14, NF-κin acute liver failure rats
     Objective To observe the effects of BMSC transplantation on liver tissue CD14、NF-κB in acute liver failure rats.
     Methods Thirty female Wistar rats, weighed 250±10g, were randomly assigned to control group, thioacetamide group(TAA) and BMSC treated group. Each group included 10 rats. All rats were put to death at 72 hour after BMSC transplantation. The liver tissues were collected for the evaluation after the abdominal aorta blood was taken. The expression of liver tissue CD14、NF-κB were measured by SABC immunohistochemistry.
     Results There were some expression of CD 14、NF-κB in the control group rat liver tissue. After BMSC treatment, the expression of CD14、NF-κB in the BMSC group liver tissue were significantly decreased (P<0.05). Compared with the control group, the expression of CD14、NF-κwere significantly increased in BMSC group (P<0.05).
     Conclusion BMSC transplantation can inhibit the expression of CD14 and NF-κB in liver tissue. BMSC transplantation may counter the effects of endotoxin by inhibiting CD 14 and NF-κB expression.
引文
[1]Saji Y, Tamura S, Yoshida Y, et al. Basic fibroblast growth factor promotes the trans-differentiation of mouse bone marrow cells into hepatic lineage cells via multiple liver-enriched transcription factors. J Hepatol,2004,41 (4):545~550.
    [2]Zhao WJ, Chen YJ, Zhao ZG, et al. A study of AFP and ALB expression in human mesenchymal stem cells induced by hepatopathy patient serum. Zhonghua Ganzangbing Zazhi,2006,14 (4):300~301.
    [3]Chivu M, Dima SO, Stancu CI, et al. In vitro hepatic differentiation of human bone marrow mesenchymal stem cells under differential exposure to liver-specific factors. Transl Res,2009,154 (3):122~132.
    [4]王韫芳,南雪,尉承泽,等.丙烯醇致肝损伤微环境定向诱导骨髓干细胞向肝细胞分化.中华肝脏病杂志,2005,13(4):274~277.
    [5]吴雄志,赵连三,许倩,等.骨髓间充质干细胞在肝部分切除模型小鼠体内向肝细胞分化.生物医学工程学杂志,2005,22(6):1234-1237.
    [6]谭浩翔,高毅,陈建锋.人骨髓间充质干细胞移植在大鼠肝再生衰竭中的作用.中华肝脏病杂志,2007,15(6):473-474.
    [7]Patel SA, Sherman L, Munoz J, et al. Immunological properties of mesenchymal stem cells and clinical implications. Arch Immunol Ther Exp (Warsz),2008,56 (1):1~8.
    [8]Stagg J. Immune regulation by mesenchymal stem cells:two sides to the coin. Tissue Antigens.2007,69 (1):1~9.
    [9]Kode JA, Mukherjee S, Joglekar MV, et al. Mesenchymal stem cells:immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy,2009,11 (4):377~391.
    [10]Hong ZF, Huang XJ, Yin ZY, et al. Immunosuppressive function of bone marrow mesenchymal stem cells on acute rejection of liver allografts in rats. Transplant Proc,2009,41 (1):403~409.
    [11]韩德五.肝功能衰竭发病机制的研究-肠源性内毒素血症假说.中华肝脏病杂志,1995,3(3):134-137.
    [12]Le Blanc K, Pittenger M. Mesenchymal stem cell:progress toward promise. Cytotherapy, 2005,7 (1):36~45.
    [13]Bajada S, Mazakova I, Richardson JB, et al. Updates on stem cells and their applications in regenerative medicine. Tissue Eng Regen Med.2008,2 (4):169~183.
    [14]Bobis S, Jarocha D, Majka M. Mesenchymal stem cells:characteristics and clinical applications. Folia Histochem Cytobiol,2006,44 (4):215~230.
    [15]Phinney DG, Prockop DJ. Mesenchymal stem/multipotent stromal cells:the state of transdifferentiation and modes of tissue repair-current views. Stem Cells,2007,25 (11): 2896~2902.
    [16]Rebelatto CK, Aguiar AM, Moretao MP, et al. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood and adipose tissue. Exp Biol Med(Maywood),2008,233 (7):901~913.
    [17]Zohar R, Sodek J, Mc Cullon CA. Characterisation of stromal progenitor enriched by flowcytometry. Blood,1998,90 (9):3471~3475.
    [18]徐忠华,吴清玉,等.贴壁法分离培养大鼠骨髓间充质干细胞的生物学特性.中国组织化学与细胞化学杂志,2007,16(5):554-557.
    [19]Jones EA, English A, Kinsey SE, et al. Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrow. Cytometry B Clin Cytom,2006,70 (6):391~399.
    [20]Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature,2002,418 (6893):41~49.
    [21]Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med,2001,226 (6): 507~520.
    [22]杨丽,张荣华,谢厚杰,等.建立大鼠骨髓间充质干细胞稳定分离培养体系与鉴定.中国组织工程研究与临床康复,2009,13(6):1064-1068.
    [1]韩德五.肠源性内毒素血症是肝炎、肝病的危险因素.山西医科大学学报,2006,37(1):1~4.
    [2]Pallottini V, Martini C, Bassi AM, et al. Rat HMGCoA reductase activation in thioacetamide-induced liver injury is related to an increased reactive oxygen species content. J Hepatol,2006 (2),44:368-374.
    [3]Shapiro H, Ashkenazi M, Weizman N, et al. Curcumin ameliorates acute thioacetamide-induced hepatotoxicity. J Gastroenterol Hepatol,2006,21 (2):358~366.
    [4]Harputuoglu MM, Demirel U, Ciralik H, et al. Protective effects of Gingko bi loba on thioacetamide-induced fulminant hepatic failure in rats. Hum Exp Toxicol,2006,25 (12): 705-713.
    [5]Huang HC, Wang SS, Lee FY, et al. Simvastatin for rats with thioacetamide-induced liver failure and encephalopathy.J Gastroenterol Hepatol,2008,23:e236~e242.
    [6]Tunez I, Munoz MC, Medina FJ, et al. Comparison of melatonin, vitamin E and L-carnitine in the treatment of neuro-and hepatotoxicity induced by thioacetamide. Cell Biochem Funct,2007,25 (2):119~127.
    [7]Shirin H, Aeed H, Shalev T, et al. Utility of a 13C-methacetin breath test in evaluating hepatic injury in rats. J Gastroenterol Hepatol,2008,23 (11):1762~1768.
    [8]朱清静,陈锋,盛国光.丹黄方对硫代乙酰胺所致大鼠急性肝衰竭的防治作用.中西医结合肝病杂志,2007,17(1):35~37.
    [9]刘立新,韩德五,任大宾.肠源性内毒素血症在硫代乙酸胺所致肝损伤发病中的作用. 中华肝脏病杂志,2009,8(3):174-175.
    [1 0]潘巧玲,刘小静,叶峰,等.TAA致大鼠急性肝衰竭的胃肠功能及病理改变.西安交通大学学报(医学版),2008,29(1):66-69.
    [11]Chu CJ, Hsiao CC, Wang TF, et al. Prostacyclin inhibition by indomethacin aggravates hepatic damage and encephalopathy in rats with thioacetamide-induced fulminant hepatic failure. World J Gastroenterol,2005,11 (2):232~236.
    [12]Avraham Y, Zolotarev O, Grigoriadis NC, et al. Cannabinoids and capsaicin improve liver function following thioacetamide-induced acute injury in mice. Am J Gastroenterol, 2008,103 (12):3047~3056.
    [13]张美华,贾林,杜洪,等.硫代乙酰胺致大鼠肝性脑病模型的量-效关系.广州医学院学报,2004,32(3):72-74.
    [14]Maria JT, Marcelino A, Jesus MC. An overview of animal models for investigating the pathogenesis and therapeutic strategies in acute hepatic failure. World J Gastroenterol 2009,15 (25):3086~3098.
    [1]Stravitz RT, Kramer DJ, Medscape. Management of acute liver failure. Nat Rev Gastroenterol Hepatol,2009,6 (9):542~553.
    [2]Han DW. Intestinal endotoxemia as a pathogenetic mechanism in liver failure. World J Gastroenterol,2002,8 (6):961~965.
    [3]Zhao Q, Ren H, Zhu D, et al. Stem/progenitor cells in liver injury repair and regeneration. Biol Cell,2009,101 (10):557~571.
    [4]Xu YQ, Liu ZC. Therapeutic potential of adult bone marrow stem cells in liver disease and delivery approaches. Stem Cell Rev,2008,4 (2):101~112.
    [5]Barry FP, Murphy JM. Mesenchymal stem cells:clinical applications and biological characterization. Int J Biochem Cell Biol,2004,36 (4):568~584.
    [6]J.AN, N.Beauchemin, J Albanese, et al. Use of rat cDNA probe specific for the Y chromosome to detct male-derived cells. Jounal of Andrology,1997,3 (18):289~293.
    [7]Petersen BE, Bowen WC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells, Seience,1999,284 (5417):1168~1170.
    [8]Alison MR, Poulsom R, Jeffery R, et al. Hepatocytes from non-hepatic adult stem cells. Nature,2000,406 (6793):257~258.
    [9]Wang X. Albumin-expressing hepatocyte like cells develop in the livers of immune-deficient mice that received transplants of highly purified human hematopoietic stem cells. Blood,2003,101 (10):4201~4208.
    [10]Dvorakova J, Hruba A, Velebny V, et al. Isolation and characterization of mesenchymal stem cell population entrapped in bone marrow collection sets. Cell Biol Int,2008,32(9): 1116~1125.
    [11]Yagi K, Kojima M, Oyagi S, et al. Application of mesenchymal stem cells to liver regenerative medicine. Yakugaku Zasshi,2008,128 (1):3~9.
    [12]Pan XN, Shen JK, Zhuang YP, et al. Autologous bone marrow stem cell transplantation for treatment terminal liver diseases. Nan Fang Yi Ke Da Xue Xue Bao,2008,28 (7):1207~ 1209.
    [13]Stutchfield BM, Rashid S, Forbes SJ, et al. Practical barriers to delivering autologous bone marrow stem cell therapy as an adjunct to liver resection. Stem Cells Dev,2010,19 (2): 155~162.
    [14]Tunon MJ, Alvarez M, Culebras JM, et al. An overview of animal models for investigating the pathogenesis and therapeutic strategies in acute hepatic failure. World J Gastroenterol, 2009,15 (25):3086~3098.
    [15]Abdel Aziz MT, Atta HM, Mahfouz S,et al. Therapeutic potential of bone marrow-derived mesenchymal stem cells on experimental liver fibrosis. Clin Biochem,2007,40 (12): 893~899.
    [16]Sato Y, Araki H, Kato J, et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood,2005,106 (2): 756~763.
    [17]Tcrai S, Ishikawa T, Omori K, et al. Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells,2006,24:2292~2298.
    [18]Dhingra S, Sharma AK, Arora RC, et al. IL-10 attenuates TNF-alpha-induced NF kappaB pathway activation and cardiomyocyte apoptosis. Cardiovasc Res,2009,82 (1):59~ 66.
    [19]Lovell-Badge R. The early history of the Sox genes. Int J Biochem Cell Biol,2010,42(3): 378~380.
    [20]Wullaert A, Heyninck K, Beyaert R. Mechanisms of crosstalk between TNF-induced NF-kappaB and JNK activation in hepatocytes. Biochem Pharmacol,2006,72(9):1090~ 1101.
    [21]Nagaki M, Iwai H, Naiki T, et al. High levels of serum Interleukin-10 and tumor necrosis factor-alpha are associated with fatality in fulminant hepatitis. J Infect Dis,2000,182: 1103~1108.
    [22]Andrejko KM, Deutschman CS. Acute-phase gene expression correlates with intrahepatic tumor necrosis factor-alpha abundance but not with plasma tumor necrosis factor concentrations during sepsis/systemic inflammatory syndrome in the rat. Crit Care Med, 1996,24 (5):1947~1952.
    [23]Kato, Ikeda MN, Matsushita E, et al. Involvement of IL-10, an anti-inflammatory cytokine in murine liver injury induced by concanavalin A. Hepatology,2001,20:232~243.
    [24]Latifi SQ, Riordan MAO, Levine AD. Interleukin-10 controls the onset of irreversible septic shock. Infect Immun,2002,70:4441~4446.
    [25]Nagaki M, Moriwaki H. Implication of cytokines:Roles of tumor necrosis factor-alpha in liver injury. Hepatol Res,2008,38 (9):S19~S28.
    [26]Hatano E. Tumor necrosis factor signaling in hepatocyte apoptosis. J Gastroenterol Hepatol. 2007,22 Suppl 1:S43~S44.
    [27]Zang GQ, Zhou XQ, Yu H, et al. Effect of hepatocyte apoptosis induced by TNF-α on acute severe hepatitis in mouse models. World J Gastroentero,2000,6 (5):688~691.
    [28]Ding WX, Yin XM. Dissection of the multiple mechanisms of TNF-alpha-induced apoptosis in liver injury. J Cell Mol Med,2004,8 (4):445~454.
    [29]Wang X, Liu Y, Feng J. Experimental study on early liver injury and expressions of TNF-alpha mRNA in bum rats with endotoxemia. Chin J Traumatol,1999 (1):30~32.
    [30]Dhingra S, Sharma AK, Arora RC, et al. IL-10 attenuates TNF-alpha-induced NF kappaB pathway activation and cardiomyocyte apoptosis. Cardiovasc Res,2009,82 (1):59~ 66.
    [31]Byrne A, Reen DJ. Lipopolysaccharide induces rapid production of IL-10 by monocytes in the presence of apoptotic neutrophils. J Immunol,2002,168 (4):1968~1977.
    [32]Maria K, Anders E, Ansgar O, et al. Effects of Forskolin on kupffer cell production of Interleukin-10 and tumor necrosis factor alpha differ from those of endogenous adenylyl cyclase activators:possible role for adenylyl cyclase 9. Infection and Immunity,2005,73 (11):7290~7296.
    [33]Kamimoto M, Mizuno S, Nakamura T. Reciprocal regulation of IL-6 and IL-10 balance by HGF via recruitment of heme oxygenase-1 in macrophages for attenuation of liver injury in a mouse model of endotoxemia. J Immunol,2003,171 (2):584~593.
    [34]Gerard C, Bruyns A, Marchant D, et al. Interleukin 10 reduces the release of tumor necrosis factor and prevents lethality in experimental endotoxemia. J Exp Med,1993,177 (2),:547~550.
    [35]Emoto M, Emoto Y, Brinkmann V, et al. Increased resistance of LFA-1-deficient mice to lipopolysaccharide-induced shock/liver injury in the presence of TNF-alpha and IL-12 is mediated by IL-10:a novel role for LFA-1 in the regulation of the proinflammatory and anti-inflammatory cytokine balance. Int J Mol Med,2009,24 (2):161~170.
    [1]Gordon S, Crocker PR, Morris L, et al. Localization and function of tissue macrophages. CibaFound Symp,1986,118:54~67.
    [2]Grisham JW. Cell types in rat liver cultures:their identification and isolation. Mol Cell Biochem,1983,54 (2):23-33.
    [3]Doolittle RL, Ricter GW. Isolation ang culture of kupffer cells and epatocytes from Single rat livers. Lab Invest,1981,45 (6):558~560.
    [4]孙晓东,周志伟,万德森.小鼠肝枯否细胞的分离、培养与鉴定.中国现代医生,2007,45(6):21-23.
    [5]Zhang X, Goncalves R, Mosser DM. The isolation and characterization of murine macrophages. Curr Protoc Immunol,2008,14 (14):1~3.
    [6]Liu H, Cao H, Wu ZY. Isolation of Kupffer cells and their suppressive effects on T lymphocyte growth in rat orthotopic liver transplantation. World J Gastroenterol,2007, 13 (22):3133~3136.
    [7]Davies JQ, Gordon S. Isolation and culture of murine macrophages. Methods Mol Biol, 2005,290:91~103.
    [8]Valatas V, Xidakis C, Roumpaki H, et al. Isolation of rat kupffer cells:a combined methodology for highly purified primary cultures. Cell Biol Int,2003,27 (1):67~73.
    [9]Naito M, hasegawa G, Takahashi K. Development, differentiation and maturation of Kupffer cells. Microsc Res Tech,1997,39 (4):350~364.
    [10]Decher K. The response of liver macrophages to inflammatory stimulation. Keio J Med, 1998,47(1):1~9.
    [11]Wheeler MD. Endotoxin and Kupffer Cell Activation in Alcoholic Liver Disease. Alcohol Research&Health,2003,27 (10):300~303.
    [12]韩德五.肠源性内毒素血症是肝炎、肝病的危险因素.山西医科大学学报,2006,37(1):1-4.
    [13]Han DW. Intestinal endotoxemia as a pathogenetic mechanism in liver failure. World J Gastroenterol,2002,8(6):962~965.
    [14]Su GL. Lipopolysaccharides in liver injury:molecular mechanisms of Kupffer cell activation. Am J Physiol Gastrointest Liver Physiol,2002,283 (2):G256~265.
    [15]Toth CA, Thomas P. Liver endocytosis and Kupffer cells. Hepatology,1992,16 (1): 255~266.
    [16]Li Z, Perlik V, Feleder C, et al. Kupffer cell-generated PGE2 triggers the febrile response of guinea pigs to intravenously injected LPS. Am J Physiol Regul Integr Comp Physiol, 2006,290 (5):R1262~1270.
    [17]Thomas P, Hayashi H, Lazure D, et al. Inhibition of lipopolysaccharide activation of Kupffer cells by transition metals. J Surg Res,2008,148 (2):116~120.
    [18]韩德五.肠源性内毒素血症与肝病(第一版).北京:中国科技出版社,2004,832-858.
    [1]韩德五.肝功能衰竭发病机制的研究-肠源性内毒素血症假说.肝脏病杂志,1995,3(3)134-137.
    [2]Zingarelli B, Sheehan M, Wong HR. Nuclear factor-κ B as a therapeutic target in critical care medicine. Crit Care Med,2003,31 (1):S105~S111.
    [3]Chen F, Castranova V, Shi X, et al. New insights into the role of nuclear factor-κ B, a ubiquitous transcription factor in the initiation of diseases. Clin Chem,1999,45(4):7~ 17.
    [4]Gorlich D, Kutay U. Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol,1999,15 (4):607-609.
    [5]蒋建新,朱佩芳,王正国.内毒素的跨膜信号转导及其在全身炎症反应综合征中的作用.解放军医学杂志,2002,27(1):1-4.
    [6]Uesugi T, Froh M, Arteel GE, et al. Role of lipopolysaccharide-binding protein in early alcohol-induced liver injury in mice. J Immunol,2002,168 (1):2963-2969.
    [7]Thompson PA, Tobias PS, Viriyakosol S, et al. Lipopolysaccharide (LPS)-binding protein inhibits responses to cell-bound LPS. J Biol Chem,2003,278 (31):28367~28371.
    [8]Yang YX, Li GY. Progression of lipopolysaccharide signal pathway. Zhong Nan Da Xue Xue Bao Yi Xue Ban,2006,31 (1):141~145.
    [9]Wang X, Wu L, Wu K,et al. Roles of endotoxin-related signaling molecules in the progression of acute necrotizing pancreatitis in mice. Pancreas,2005,31 (3):251~257.
    [10]Purohit V, Bode JC, Bode C, et al. Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences:summary of a symposium. Alcohol, 2008,42 (5):349~361.
    [11]Zhang G, Ghosh S. Molecular mechanisms of NF-kappa B activation induced by bacterial lipopolysaccharide through Toll-like receptors. J Endotoxin Res,2000,6(6):453~457.
    [12]Dobrovolskaia MA, Vogel SN. Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect,2002,4 (9):903~914.
    [13]Aggarwal BB, Takada Y, Shishodia S, et al. Nuclear transcription factor NF-kappa B:role in biology and medicine. Indian J Exp Biol,2004,42 (4):341~353.
    [14]Xiong S, She H, Takeuchi H, et al. Signaling role of intracellular iron in NF-kappa B activation. J Biol Chem,2003,278 (20):17646~17654.
    [15]Huxford T, Hwang DB, Malek S, et al. The Crystal Structure of the IBa/NF-B Complex Reveals Mechanisms of NF-B Inactivation. Cell,1998,95 (6):759~770.
    [16]Azevedo-Martins AK, Lortz S, Lenzen S, et al. Improvement of the mitochondrial antioxidant defense status prevents cytokine-induced nuclear factor-kappaB activation in insulin-producing cells. Diabetes,2003,25 (1):93~101.
    [17]Nanji AA, Jokelainen K, Rahemtulla A, et al. Activation of nuclear factor kappa B and cytokine imbalance in experimental alcoholic liver disease in the rat. Hepatology,1999 (4),30:934~943.
    [18]Chen G, Shi J, Jin W, et al. Progesterone administration modulates TLRs/NF-kappaB signaling pathway in rat brain after cortical contusion. Ann Clin Lab Sci,2008,38 (1): 65~74.
    [19]Wang YT, Lu XM, Jiang JX, et al. Kinetics and significance of the activation of NF-κB and AP-1 in KCs during LPS-induced liver injury. Sheng Ming Ke Xue Yan Jiu,2002,6: 224~229.
    [20]杨清武,朱佩芳,王正国,等.Toll样受体4介导内毒素对内皮细胞NF-κ B的激活.中华创伤杂志,2002(3),29:407-410.
    [21]Koay MA, Christman JW, Wudel LJ, et al. Modulation of endotoxin-induced NF-kappa B activation in lung and liver through TNF type 1 and IL-1 receptors. Am J Physiol Lung Cell Mol Physiol,2002,283 (8):L1247~1254.
    [22]Tsoulfas G, Takahashi Y, Ganster RW, et al. Activation of the lipopolysaccharide signaling pathway in hepatic transplantation preservation injury. Transplantation,2002,74(1):7~ 13.
    [23]Wheeler MD, Thurman RG. Up-regulation of CD 14 in liver caused by acute ethanol involves oxidant-dependent AP-1 pathway. J Biol Chem,2003,278 (3):8435~8441.
    [1]中华医学会感染病学分会肝衰竭与人工肝学组,中华医学会肝病学分会重型肝炎与人工肝学组.肝衰竭诊疗指南.中华肝脏病杂志,2006,14(9):643-646.
    [2]Polson J, Lee WM. AASLD Position Paper:The Management of Acute Liver Failure. Hepatology,2005,41 (5):1179~1197.
    [3]邢同京.肝衰竭诊断和分型若干问题的再认识.临床荟萃,2008,23(12):910~912.
    [4]Shiv KS, Ashish K, John A, et al. Acute-on-chronic liver failure:consensus recommendations of the Asian Pacific Association for the study of the liver(APASL). Hepatol Int,2009,3 (1):269~282.
    [5]郑欢伟,贾继东.肝衰竭的诊断和治疗现状.传染病信息,2007,20(3):139-142.
    [6]韩德五.肝功能衰竭的发病机制的研究-肠源性内毒素血症假说.中华肝脏病杂志,1995,3(3):134-137.
    [7]韩德五.肠源性内毒素血症所致“继发性肝损伤”的临床依据.世界华人消化杂志,1999,12(7):1055~1058.
    [8]Lin RS, Lee FY, Lee SD, et al. Endotoxemia in patients with chronic liver diseases: relationship to severity of liver diseases, presence of esophageal varices, and hyperdynamic circulation. J Hepatol Fed,1995,22 (2):165~172.
    [9]马利,黎鳌,肖光夏.细菌内毒素与肠粘膜通透性.第三军医大学学报,1990,12(1):28~44.
    [10]koshi R, Mathan VI, David S, et al. Enteric vascular endothelial response to bacterial endotoxin. Int J exp Path,1993,74 (6):593~601.
    [11]李海.肝脏内皮细胞和枯否细胞的细胞生物学.国外医学消化系疾病分册,1995,15(4):204~206.
    [12]韩德五.肝功能衰竭发病机制的研究进展.中国病理生理杂志,1993,9(6):770~772.
    [13]Kovalovich K, DeAngelis RA, Li W, et al. Increased toxin-induced liver injury and fibrosis in interleukin-6-deficient mice. Hepatology,2000,31 (1):149~159.
    [14]Tsutsui H, Matsui K, Okamura H, et al. Pathophysiological roles of interleukin-18 in inflammatory liver diseases. Immunol Rev,2000,174 (1):192~209.
    [15]Bourdi M, Masubuchi Y, Reilly TP, et al. Protection against acetaminophen-induced liver injury and lethality by interleukin 10:role of inducible nitric oxide synthase. Hepatology, 2002,35 (2):289~298.
    [16]Czaja MJ, Flanders KC, Biempica L, et al. Expression of tumor necrosis factor and transforming growth factor-1 in acute liver injury. Growth Factors,1989,1 (3):219~ 226.
    [17]Kamimura S, Tsukamoto H. Cytokine gene expression by kupffer cells in experimental alcoholic liver disease. Hepatology,1995,22 (4):1304~1309.
    [18]Ji C, Deng Q, Kaplowitz N. Role of TNF-alpha in ethanol-induced hyperhomocysteinemia and murine alcoholic liver injury. Hepatology,2004,40 (2):442~451.
    [19]Hartung T, Sauer A, Hermann C, et al. Over activation of the immune system by translocated bacteria and bacterial products. Scand J Gastroenterol Suppl,1997,222:98~ 99.
    [20]Bezugla Y, Kolada A, Kamionka S, et al. COX-1 and COX-2 contribute differentially to the LPS-induced release of PGE(2) and TXA(2) in liver macrophages. Prostaglandins Other Lipid Mediat,2006,79 (2):93~100.
    [21]Campillo B, Bories PN, Benvenuti C, et al. Serum and urinary nitrate levels in liver cirrhosis:endotoxin, renal function and hyperdynamic circulation. Hepatology,1996, 25 (5):707~714.
    [22]梁秀彬,乔中东,尹镭,等.内毒素体外诱导肝细胞凋亡.中华肝脏病杂志,1999,7(2):72-73.
    [23]赵龙凤,韩德五.肝病患者内毒素血症的临床意义.世界华人消化杂志,1999,7(5):391-393.
    [24]韩德五.肠源性内毒素血症与肝病.第1版.北京:中国科学技术出版社,2004,78~109,145.
    [25]Santoro A, Mancini E, Ferramosca E, et al. Liver support systems. Contrib Nephrol,2007, 156:396~404.
    [26]Onodera K, Sakata H, Yonekawa M, et al. Artificial liver support at present and in the future. J Artif Organs,2006,9 (3):17~28.
    [27]Gh Ryska O, Pantoflicek T, Laszikova E, et al. Current benefit of biological and non-biological methods in the treatment of acute liver failure. Rozhl Chir,2008,87 (6): 291~296.
    [28]Ryska O, Pantoflicek T, Laszikova E, et al. Current benefit of biological and non-biological methods in the treatment of acute liver failure. Rozhl Chir,2008,87(6): 291~296.
    [29]Park JK, Lee DH. Bioartificial liver systems:current status and future perspective. J Biosci Bioeng,2005,99 (4):311~319.
    [30]Van de Kerkhove MP, Hoekstra R, Chamuliau RA, et al. Clinical application of bioartificial liver support systems. Ann Surg,2004,240 (6):216~230.
    [31]Rozga J. Liver support technology—an update. xenotransplantation,2006,13(5):380~ 389.
    [32]Rikker C. Liver support systems today. Orv Hetil,2009,2150 (51):2299~2307.
    [33]Lorenzini S, Gitto S, Grandini E, et al. Stem cells for end stage liver disease:how far have we got? World J Gastroenterol,2008,14 (29):4593~4599.
    [34]Alison MR, Islam S, Lim S. Stem cells in liver regeneration, fibrosis and cancer:the good, the bad and the ugly. J Pathol,2009,217 (2):282~298.
    [1]Houlihan DD, Newsome PN. Critical review of clinical trials of bone marrow stem cells in liver disease. Gastroenterology,2008,135 (2):438~450.
    [2]Pan XN, Shen JK, Zhuang YP,et al. Autologous bone marrow stem cell transplantation for treatment terminal liver diseases. Nan Fang Yi Ke Da Xue Xue Bao,2008,28 (7):1207~ 1209.
    [3]Yagi K, Kojima M, Oyagi S, et al. Application of mesenchymal stem cells to liver regenerative medicine. Yakugaku Zasshi,2008,128 (1):3~9.
    [4]Dai LJ, Li HY, Guan LX, et al. The therapeutic potential of bone marrow-derived mesenchymal stem cells on hepatic cirrhosis. Stem Cell Res,2009,2 (1):16~25.
    [5]Mohamadnejad M, Alimoghaddam K, Mohyeddin-Bonab M, et al. Phase 1 trial of autologous bone marrow mesenchymal stem cell transplantation in patients with decompensated liver cirrhosis. Arch Iran Med.2007,10 (4):459~466.
    [6]Meirelles LS, Fontes AM, Covas DT, et al. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev,2009,20 (6):419~ 427.
    [7]Nerem RM. Cell-based therapies:from basic biology to replacement, repair, and regeneration. Biomaterials,2007,28 (34):5074~5077.
    [8]Xu YQ, Liu ZC. Therapeutic potential of adult bone marrow stem cells in liver disease and delivery approaches. Stem Cell Rev,2008,4 (2):101~112.
    [9]Kilic E, Ceyhan T, Cetinkaya DU. Evaluation of differentiation potential of human bone marrow-derived mesenchymal stromal cells to cartilage and bone cells. Acta Orthop Traumatol Turc,2007,41 (4):295~301.
    [10]Miyazaki M, Hardjo M, Masaka T, et al. Isolation of a bone marrow-derived stem cell line with high proliferation potential and its application for preventing acute fatal liver failure. Stem Cells,2007,25 (11):2855~2863.
    [11]Cai YF, Chen JS, Su SY, et al. Passage of bone-marrow-derived liver stem cells in a proliferating culture system. World J Gastroenterol,2009,7,15 (13):1630~1635.
    [12]Lysy PA, Campard D, Smets F, et al. Stem cells for liver tissue repair:current knowledge and perspectives. World J Gastroenterol,2008,14 (6):864~875.
    [13]Sell S. The role of progenitor cells in repair of liver injury and in liver transplantation. Wound Repair Regen,2001,9 (6):467~482.
    [14]Kakinuma S, Nakauchi H, Watanabe M. Hepatic stem/progenitor cells and stem-cell transplantation for the treatment of liver disease. J Gastroenterol,2009,44 (3):167~ 172.
    [15]Grompe M. Bone marrow-derived hepatocytes. Novartis Found Symp.2005,265(6):20~ 34.
    [16]Petersen BE, Bowen WC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells. Science,1999,284(5417):1168~1170.
    [17]Takeda M, Yamamoto M, Isoda K, et al. Availability of bone marrow stromal cells in three-dimensional coculture with hepatocytes and transplantation into liver-damaged mice. J Biosci Bioeng,2005,100 (1):77~81.
    [18]Xie JM, Chen JF, Gao Y, et al. Hepatocyte growth factor and fibroblast growth factor-4-induced differentiation of human bone marrow mesenchymal stem cells into hepatocyte-like cells in vitro. Nan Fang Yi Ke Da Xue Xue Bao.2006,26 (10):1439~ 1442.
    [19]Theise ND, Krause DS, Sharkis S. Comment on "Little evidence for developmental plasticity of adult hematopoietic stem cells". Science.2003,299 (5611):1317~1319.
    [20]Luk JM, Wang PP, Lee CK, et al. Hepatic potential of bone marrow stromal cells: development of in vitro co-culture and intra-portal transplantation models. J Immunol Methods,2005,305 (1):39~47.
    [21]Oh SH, Witek RP, Bae SH, et al. Bone marrow-derived hepatic oval cells differentiate into hepatocytes in 2-acetylaminofluorenepartial hepatectomy-induced liver regeneration. Gastroenterology,2007,132 (3):1077~1087.
    [22]Theise ND. Liver stem cells:prospects for treatment of inherited and acquired liver diseases. Expert Opin Biol Ther,2003,3 (3):403~408.
    [23]Aurich I, Mueller LP, Aurich H. Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut.2007,56 (3):405~415.
    [24]安伟德,胡祥,曹亮,等.骨髓间充质干细胞定向分化肝细胞及肝内移植研究.中华实验外科杂志,2005,22(8):917-919.
    [25]吴雄志,赵连三,许倩.骨髓间充质干细胞在肝部分切除模型小鼠体内向肝细胞分化.生物医学工程学杂志,2005,22(6):1234-1237.
    [26]Sakaida I, Terai S, Nishina H, et al. Development of cell therapy using autologous bone marrow cells for liver cirrhosis. Med Mol Morphol,2005,38 (4):197~202.
    [27]Stock P, Bruckner S, Ebensing S, et al. The generation of hepatocytes from mesenchymal stem cells and engraftment into murine liver. Nat Protoc,2010,5 (4):617~627.
    [28]Brezillon N, Kremsdorf D, Weiss MC. Cell therapy for the diseased liver:from stem cell biology to novel models for hepatotropic human pathogens. Dis Model Mech,2008,1 (2-3):113~130.
    [29]Sharma AD, Cantz T, Manns MP, et al. The role of stem cells in physiology, pathophysiology, and therapy of the liver. Stem Cell Rev,2006,2 (1):51~58.
    [30]Flohr TR, Bonatti HJ, Brayman KL, et al. The use of stem cells in liver disease. Curr Opin Organ Transplant,2009,14 (1):64~71.
    [31]Popp FC, Slowik P, Eggenhofer E, et al. No contribution of multipotent mesenchymal stromal cells to liver regeneration in a rat model of prolonged hepatic injury. Stem Cells, 2007,25 (3):639~645.
    [32]姚鹏,王帅,胡大荣,等.肝动脉自体骨髓干细胞移植治疗失代偿期肝硬化30例.世界华人消化杂志,2005,13(13):1639-1640.
    [33]高志良,彭亮,崇雨田,等.骨髓间充质干细胞自体移植治疗慢性肝衰竭的疗效研究.现代消化及介入诊疗,2007,12:23~27.
    [34]Terai S, Sakaida I. Current status of autologous bone marrow cell infusion therapy for liver cirrhosis patients. Hepatol Res,2008,38 (S1):S72~S75.
    [35]Lorenzini S, Gitto S, Grandini E, et al. Stem cells for end stage liver disease:how far have we got? World J Gastroenterol.2008,14 (29):4593~4599.
    [36]Haridass D, Narain N, Ott M. Hepatocyte transplantation:waiting for stem cells. Curr Opin Organ Transplant,2008,13 (6):627~632.
    [37]Abdel Aziz MT, Atta HM, Mahfouz S, et al. Therapeutic potential of bone marrow-derived mesenchymal stem cells on experimental liver fibrosis. Clin Biochem,2007,40 (12): 893~899.
    [38]Zhao DC, Lei JX, Chen R, et al. Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rats. World J Gastroenterol,2005,11 (22):3431~ 3440.
    [39]Kuo TK, Hung SP, Chuang CH, et al. Stem cell therapy for liver disease:parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology, 2008,134 (7):2111~2121.
    [40]Dalgetty DM, Medine CN, Iredale JP, et al. Progress and future challenges in stem cell-derived liver technologies. Am J Physiol Gastrointest Liver Physiol,2009,297 (2): G241~248.
    [41]Piscaglia AC. Stem cells, a two-edged sword:risks and potentials of regenerative medicine. World J Gastroenterol,2008,14 (27):4273~4279.
    [42]Feng B, Chen L. Review of mesenchymal stem cells and tumors:executioner or coconspirator? Cancer Biother Radiopharm,2009,24 (6):717~721.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700