树突状细胞在硼替佐米对急性移植物抗宿主病的不同效应中起重要作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异基因造血干细胞移植是治愈血液系统恶性疾病的根本治愈方法。但是,其严重并发症移植物抗宿主病(GVHD)限制了造血干细胞移植的广泛应用。众所周知,急性GVHD (aGVHD)是一炎性反应过程,主要由供体T淋巴细胞攻击受体组织造成。抗原递呈细胞,尤其是宿主树突状细胞(DC)在aGVHD的启动中发挥重要作用。异源性供体T淋巴细胞的活化在很大程度上取决于预处理时或预处理后受体体内DC的活化状态。未成熟DC (imDCs)主要功能是抗原摄取,但是抗原递呈能力比较弱,因此活化T淋巴细胞能力比较弱。而在病原体来源的细菌脂多糖(LPS)或内源性炎症因子肿瘤坏死因子-α(TNF-α)刺激下,imDCs分化为成熟DC(mDCs),迁移到淋巴组织中发挥效应。mDCs具有较强的抗原递呈能力和活化T淋巴细胞功能。NF-κB是广泛分布在几乎所有细胞中的转录因子,它能控制与免疫及炎症反应相关的基因表达,而这些基因与aGVHD病理过程密切相关。值得注意的是,刺激DC成熟的信号也能活化NF-κB,提示我们NF-κB信号通路可能参与DC成熟过程。
     硼替佐米(PS-341;Velcade)是一个可逆性蛋白酶体抑制剂,它有很多生物学功能,其中包括阻断NF-κB活化。硼替佐米阻断NF-κB的能力,使其在aGVHD防治中具有潜在价值。动物模型和部分临床资料的结果显示,硼替佐米能减轻aGVHD。但是,在动物模型中发现,骨髓移植后如果延迟给予硼替佐米反而加重aGVHD。
     因此,为明确究竟在什么条件下,硼替佐米能改善aGVHD从而扩大其临床应用价值,我们通过建立了一系列不同严重程度的小鼠aGVHD模型的方法,并选择移植后不同时间给予硼替佐米,观察硼替佐米对aGVHD的影响及涉及机制。以下是主要研究方法和结果:
     一.早期硼替佐米干预能缓解轻微aGVHD模型中小鼠aGVHD表现
     方法:通过给致死性照射后的BALB/c小鼠输注递减剂量的供体C57BL/6小鼠脾脏细胞(SC)2×107、1×107、5×106,分别建立严重、中等严重和轻微程度小鼠aGVHD模型。在不同模型中,硼替佐米选择在移植后d0-2或d6-8腹腔注射,通过观察移植后小鼠生存时间、体重变化、靶器官病理损害、供体T淋巴细胞增殖、血清炎性因子表达等,分析硼替佐米对小鼠aGVHD影响。
     结果:
     (一)硼替佐米延长轻微aGVHD模型中小鼠生存时间和恢复小鼠体重硼替佐米在移植后早期干预(移植后d0-2),并不能改善严重(SC 2×107)及中等严重(SC1×107) aGVHD模型中小鼠生存时间(P>0.05)。然而,当供体SC减少至5×106以进一步减轻aGVHD程度时,硼替佐米显著延长轻微aGVHD模型(SC 5×106)中小鼠生存时间,移植后d52仍有70%小鼠存活(P=0.016)。而且,移植后d26小鼠体重开始逐渐恢复。但是,即使在这种轻微aGVHD模型中,延迟硼替佐米干预(移植后d6-8)反而增加aGVHD小鼠死亡(平均生存天数:aGVHD组26天,干预组7天)。然而,仅接受骨髓和硼替佐米(移植后d0-2或d6-8干预)的小鼠与单纯接受骨髓的小鼠一样,都能长期存活。
     (二)硼替佐米改善aGVHD小鼠小肠的病理损害病理分析通过H&E染色表明,硼替佐米干预明显改善aGVHD小鼠小肠粘膜的病理损害。显微镜下病理结构显示,aGVHD小鼠小肠粘膜层绒毛结构紊乱,坏死脱落,隐窝细胞增生,粘膜和粘膜下层明显水肿、充血,伴大量淋巴细胞浸润;硼替佐米干预后急性GVHD小鼠小肠粘膜各层结构基本完整,绒毛轻度脱落,隐窝细胞无明显增生,粘膜和粘膜下层无明显淋巴细胞浸润。
     (三)硼替佐米降低aGVHD小鼠体内供体T淋巴细胞增殖硼替佐米对于供体T淋巴细胞的嵌合率无影响,因为硼替佐米干预后aGVHD小鼠与对照aGVHD小鼠相比,均在移植后d+15外周血中供体T淋巴细胞>90%,在移植后d+30供体T淋巴细胞>99%。结果显示,当移植后d3,CD4+T淋巴细胞数:aGVHD组(14.20±1.32)×105,干预组(6.26±0.67)×105;CD8+T淋巴细胞数:aGVHD组(7.82±0.72)×105,干预组(1.44±0.15)×105。当移植后d5,CD4+T淋巴细胞数:aGVHD组(21.25±1.77)×105,干预组(3.44±0.22)×105;CD8+T淋巴细胞数:aGVHD组(60.29±5.02)×105,干预组(13.06±0.85)×105。当移植后d7,CD4+T淋巴细胞数:aGVHD组(47.82±2.81)×105,干预组(15.69±1.95)×105;CD8+T淋巴细胞数:aGVHD组(56.72±3.34)×105,干预组(19.03±2.36)×105。以上结果表明,在移植后d+3、+5和+7,硼替佐米干预明显降低aGVHD小鼠体内供体CD4+或CD8+T淋巴细胞数目(P<0.01)。
     (四)硼替佐米降低aGVHD小鼠体内Th1炎症因子水平,而升高Th2炎症因子水平移植后d7,TNF-α水平:aGVHD组(65.83±9.63)pg/ml,干预组(27.41±4.79)pg/ml;IFN-γ水平:aGVHD组(665.54±36.79)pg/ml,干预组(468.52±27.42)pg/ml;IL-4水平:aGVHD组(178.01±11.66)pg/ml,,干预组(225.36±14.61)pg/ml;IL-10水平:aGVHD组(151.42±10.22)pg/ml,,干预组(220.65±33.80)pg/ml;以上结果表明,硼替佐米干预明显降低aGVHD小鼠体内Th1炎症因子TNF-α和IFN-γ水平(P<0.01),明显升高aGVHD小鼠体内Th2炎症因子IL-4和IL-10水平(P<0.05)。
     二.硼替佐米依赖的aGVHD改善与干预前低水平的TNF-α、LPS以及相对不成熟的宿主DC状态有关
     方法:在中等严重或轻微程度小鼠aGVHD模型中(SC 1×107,5×106),通过酶联免疫法检测(ELISA)硼替佐米干预前血清和组织中TNF-α水平,及鲎试剂法检测血清中LPS水平,流式细胞术检测脾脏中表达TNF-α的供体T淋巴细胞数目和宿主树突状细胞(DC)表面MHCⅡ类分子表达。
     结果:
     (一)硼替佐米干预前血清LPS水平分析无论在轻微aGVHD模型中或是中等严重aGVHD模型中,移植后d6受体小鼠血清LPS水平(SC 5×106组,2.53±0.24 EU/ml:SC 1×107组,8.14±1.17 EU/ml)都明显高于移植后d0(SC 5×106组,0.68±0.03 EU/ml;SC 1×107组,1.13±0.04 EU/ml)(P<0.01).另外,移植后d0,中等严重aGVHD模型中小鼠血清LPS水平高于轻微aGVHD模型中小鼠(P<0.05)。
     (二)硼替佐米干预前血清TNF-α水平分析无论在轻微aGVHD模型中或是中等严重aGVHD模型中,移植后d6受体小鼠血清TNF-α水平(SC 5×106组,54.85±10.51 pg/ml;SC 1×107组,76.55±7.18pg/m1)都明显高于移植后d0(SC 5×106组,10.42±2.22 pg/m1;SC 1×107组,12.54±3.17 pg/m1)(P<0.01).但是,移植后d0,轻微aGVHD模型和中等严重aGVHD模型中小鼠血清TNF-α水平无明显差别(P>0.05)。
     (三)硼替佐米干预前组织TNF-α水平分析移植后d2,中等严重aGVHD模型中小鼠小肠组织中TNF-α水平(603.34±59.05pg/ml)明显高于轻微aGVHD模型中小鼠(399.63±26.19 pg/ml) (P<0.01)。
     (四)硼替佐米干预前表达TNF-α的供体T淋巴细胞数目移植后12小时,中等严重aGVHD模型中受体小鼠脾细胞中表达TNF-α供体T淋巴细胞数目(87.48±12.63)×104明显高于轻微aGVHD模型中小鼠(33.05±3.41)×104(P<0.05)。
     (五)硼替佐米干预前宿主DCs状态受体小鼠脾细胞中CD11chigh/H-2b-群细胞被认为是宿主脾脏DCs。移植后18小时,中等严重aGVHD模型中受体小鼠宿主脾脏DCs表面MHCⅡ分子平均荧光强度(MFI 477.5±37.43)明显高于轻微aGVHD模型中小鼠(MFI276.37±39.62) (P<0.01)。
     三.硼替佐米体外能抑制未成熟DC (imDCs)表型和功能成熟,但是对已成熟DC (mDCs)无明显作用
     方法:骨髓前体细胞在mGM-CSF和mIL-4条件下分化成imDCs, TNF-α或LPS将imDCs诱导成mDCs。通过流式细胞术,观察硼替佐米对不同成熟状态DC成熟表型的影响;通过Annexin V-FITC和PI双标记,观察硼替佐米对不同成熟状态DC凋亡的影响;通过混合淋巴细胞反应(MLR),观察硼替佐米对不同成熟状态DC刺激异基因T淋巴细胞能力及调节性T细胞(Tregs)的影响;通过Western-blot,观察硼替佐米对不同成熟状态DC中IκBα表达水平的影响。
     结果:
     (一)硼替佐米对DCs表型影响硼替佐米阻断LPS或TNF-α.诱导的imDCs成熟。即硼替佐米能阻断CD80、CD86、CD40、CD83和MHC-Ⅱ上调表达,轻度下调粘附分子CD54和趋化因子受体CXCR4表达。然而,硼替佐米对于mDCs表面这些成熟表型表达下调作用不明显。
     (二)硼替佐米对DCs凋亡影响硼替佐米以剂量依赖方式诱导imDCs和mDCs凋亡。但是,当以LPS为成熟刺激剂时,与mDCs比较, imDCs对硼替佐米诱导的凋亡更加敏感。(0nM,imDC14.30±0.98, mDC13.33±0.78; 5nM, imDC 23.24±2.00, mDC16.31±1.55; 10nM, imDC31.83±2.10, mDC22.67±1.66; 20nM, imDC 39.87±2.21, mDC 27.33±2.49) (P<0.01)。当以TNF-α为成熟刺激剂时,观察到相似的结果(OnM, imDC14.29±1.51, mDC14.63±1.42; 5nM, imDC23.51±2.10, mDC 16.39±1.69; 10nM, imDC 34.43±2.57, mDC 25.23±2.30; 20nM, imDC 41.58±3.52, mDC28.74±2.57) (P<0.01)。
     (三)硼替佐米对DCs刺激同种异基因T细胞能力影响低浓度硼替佐米(5nM)明显降低imDCs刺激同种异基因CD4+T(刺激指数SI:干预组20.12±1.45,对照组35.4±1.07)(P<0.01)和CD8+T淋巴细胞增殖(刺激指数:干预组7.35±1.67,对照组18.19±0.40)(P<0.05)。而且,混合淋巴细胞反应中,CD4+T淋巴细胞分泌的TNF-α水平也明显降低(干预组290.46±57.79,对照组867.23±110.30)(P<0.01),但是CD8+T淋巴细胞分泌的TNF-α水平没有明显变化(干预组145.04±34.43,对照组154.85±29.95)(P>0.05)。而且,硼替佐米预处理后的imDC使CD4+T淋巴细胞中Tregs比例显著增加(imDC组22.00±3.75%,mDC组11.89±1.89%)(P<0.05)。但是,低浓度硼替佐米对于已经成熟的mDCs刺激T淋巴细胞的增殖能力和分泌TNF-α水平没有明显变化。
     (四)硼替佐米对DCs中NF-κB活性影响当以LPS为成熟刺激剂,硼替佐米以时间依赖方式逐渐增加imDCs中1κB-α表达(IκB-α/β-actin:12h干预组26.71±3.08,对照组10.64±1.36;24h干预组35.28±3.69,对照组6.04±1.29)(P<0.01),间接表明其抑制NF-κB活性。然而,mDCs中IκB-α表达在硼替佐米作用后没有明显变化(IκB-α/β-actin:12h干预组11.02±1.47,对照组11.07±1.79;24h干预组9.58±1.47,对照组10.48±2.52)(P>0.05)。
     结论:蛋白酶体抑制剂硼替佐米在aGVHD防治中是一把双刃剑。早期硼替佐米干预能改善轻微aGVHD,可能是通过干预受体小鼠体内的imDC,而非已经成熟的mDC。本研究对硼替佐米干预的免疫学和药理学有了崭新认识,同时也提示在实验和临床应用方面,imDC可作为硼替佐米调控的靶细胞。
Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for many malignant and non-malignant hematological diseases. However, graft-versus-host disease (GVHD) remains a lethal complication that limits its further applications. Acute GVHD (aGVHD) is a inflammatory response of donor T cells against host tissues. Antigen Presenting Cells (APCs), specifically host DCs, play a central role in the initiation of aGVHD. Allogeneic T cell priming in this context is significantly influenced by the state of DC activation due to'danger signals'during and after conditioning of the recipients. Immature DCs (imDCs) are specialized for antigen capture but with low APC ability, resulting in less T cell activation. Whereas, mature DCs (mDCs) upon maturation signals such as pathogen-derived products LPS or endogenous inflammatory cytokine TNF-α, migrate to the lymphoid tissue with increased APC ability and T-cell activation potential. NF-κB, a widespread transcription factor in virtually all cell types, controls the expressions of a number of genes important for immune and inflammatory responses characteristic of GVHD pathophysiology. Interestingly, signals that induce DC maturation are also strong activators of NF-κB, suggesting that NF-κB may be involved in DC maturation.
     Bortezomib (PS-341; Velcade), a reversible proteasome inhibitor, has been demonstrated to exert numerous biological effects including the blockade of NF-κB activation. The ability to inhibit NF-κB pathway make bortezomib a potentially attractive option for the prevention of GVHD. Evidence from the animal models as well as clinical data indicates a potential role for bortezomib in the treatment of GVHD. However, contradictory results of GVHD aggravation were observed in murine models with delayed bortezomib administration after bone marrow transplantation (BMT).
     Thus, to specify the conditions under which bortezomib improves GVHD, we set up aGVHD murine models of different severity fulfilled by infusion of decreasing donor splenocytes (SCs) and chose the different timing of bortezomib administration. The following are the main methods we performed and the major results we obtained in the experiments.
     Ⅰ. Early bortezomib administration protected mice form aGVHD in a mild aGVHD model
     Methods:Murine aGVHD models with different severity were set up by infusing lethally irradiated BALB/c with decreasing doses of donor C57BL/6 SCs (2×107,1×107,5×106). In each model, bortezomib was administered from dayO to day2 or from day6 to day8 post-BMT. We observed the effects of bortezomib on aGVHD by means of survival, weight changes, pathological impairment of target organs, donor T cell proliferation and levels of proinflamatory cytokines.
     Results:
     1. Bortezomib prolonged survival and improved weight loss in mice with mild aGVHD Early bortezomib administration (day0-2 post-BMT) imposed no effects on survival improvement in either an aggressive model (SC 2×107) or a modest model (SC 1×107) of aGVHD. In contrast, when the number of donor SCs was decreased to further reduce the severity of the GVHD (SC 5×106), significant (P=0.016) increases in survival were observed, with more than 70% of mice becoming long-term survivors. Bortezomib also improved weight loss of aGVHD mice from day26 post-BMT. But, even in this mild model, delaying the administration of bortezomib (day6-8 post-BMT) resulted in significantly greater mortality than did PBS treatment of GVHD control animals (Median survival:26 days for aGVHD group,7days for intervention group). Notably, animals that underwent transplantation with BM alone and then were treated with bortezomib at early or later time post-BMT had long-term survival similar to those of untreated control mice.
     2. Bortezomib improved pathological changes in the small intestine of aGVHD mice Histologic analysis show reduced damage to the small intestines of bortezomib-treated animals compared with PBS-treated GVHD animals. Microscopic examination revealed obvious villous blunting and fusion, crypt-cell hyperplasia and apoptosis, along with inflammatory infiltrates in the small intestine from PBS-treated GVHD control mice. While, animals administered with bortezomib had modest small intestine injury with only mild villous blunting and few inflammatory infiltrates.
     3. Bortezomib resulted in reduced donor T cell proliferation in aGVHD mice Mice receiving donor BM and SCs with or without bortezomib had>90% donor T cells at day 15 and>99% donor T cells at day 30 post-BMT, suggesting that donor T cell chimerism was not adversely affected. Our results showed, at day 3 post-BMT, CD4+ T cell number was (14.20±1.32)×105 for aGVHD group, (6.26±0.67)×105 for intervention group. CD8+ T cell number was (7.82±0.72)×105 for aGVHD group, (1.44±0.15)×105 for intervention group. At day 5 post-BMT, CD4+ T cell number was (21.25±1.77)×105 for aGVHD group, (3.44±0.22)×105 for intervention group. CD8+ T cell number was (60.29±5.02)×105 for aGVHD group, (13.06±0.85)xl05 for intervention group. At day 7 post-BMT, CD4+ T cell number was (47.82±2.81)×105 for aGVHD group, (15.69±1.95)×105 for intervention group. CD8+T cell number was (56.72±3.34)×105 for aGVHD group, (19.03±2.36)×105 for intervention group. Thus, bortezomib treatment resulted in significantly less donor CD4+ and CD8+ T cell proliferation at day+3,+5 and +7 post-BMT (P<0.01).
     4. Bortezomib induced decreases in Thl proinflamatory cytokines and increases in Th2 proinflamatory cytokines in aGVHD mice On day 7 post-BMT, TNF-αlevel was (65.83±9.63) pg/ml for aGVHD group, (27.41±4.79)pg/ml for intervention group. IFN-γlevel was (665.54±36.79) pg/ml for aGVHD group, (468.52±27.42) pg/ml for intervention group. IL-4 level was (178.01±11.66) pg/ml for aGVHD group, (225.36±14.61) pg/ml for intervention group. IL-10 level was (151.42±10.22) pg/ml for aGVHD group, (220.65±33.80) pg/ml for intervention group. Thus, serum levels of the TNF-α, IFN-γwere both significantly (P<0.01) decreased and serum levels of the IL-4, IL-10 were both significantly (P<0.05) increased in the recipients receiving SCs and bortezomib treatment compared with recipients receiving SCs and PBS.
     Ⅱ. Improved aGVHD by bortezomib correlates with low levels of TNF-αand LPS as well as immature state of host DCs before administration
     Methods:In murine aGVHD models with different severity (SC 1×107,5×106) before bortezomib administration, TNF-αlevels in the sera and tissues were assayed by ELISA kit. Determination of serum LPS levels was performed by Tachypleus Limulus Amebocyte Lysate (LAL) assay. Flow cytometry was used to determine the number of splenic donor T cells expressing TNF-αand analyse MHCⅡexpression on host DCs.
     Results:
     1. Analysis of serum LPS level before bortezomib intervention Increased serum LPS levels were observed in recipients on day+6 post-BMT (2.53±0.24 EU/ml for SC 5×106 group,8.14±1.17 EU/ml for SC 1×107 group) compared with those on d0 post-BMT (0.68±0.03 EU/ml for SC 5×106 group, 1.13±0.04 EU/ml for SC 1×107 group) in each model (P<0.01). Besides, on d0 post-BMT, significantly higher serum LPS levels were observed in recipients with 1×107 donor SCs compared to those with 5×106 SC (P<0.05).
     2. Analysis of serum TNF-αlevel before bortezomib intervention Increased serum TNF-αlevels were observed in recipients on day+6 post-BMT (54.85±10.51 pg/ml for SC 5×106group,76.55±7.18pg/ml for SC 1×107group) compared with those on d0 post-BMT (10.42±2.22 pg/ml for SC 5×106 group, 12.54±3.17 pg/ml for SC 1×107group) in each model (P<0.01). However, there was no difference in serum TNF-αlevel at d0 between the two models (P>0.05)
     3. Analysis of localized TNF-αlevel before bortezomib intervention Significant increases in localized TNF-a in the small intestine were observed in recipients with 1×107donor SCs (603.34±59.05 pg/ml) compared with those with 5×106 SCs (399.63±26.19 pg/ml) on day+2 post-BMT(P<0.01).
     4. Analysis of the number of splenic donor T cells expressing TNF-αbefore bortezomib intervention Significant increases in the number of splenic donor T cells expressing TNF-αwere observed in recipients with 1×107 donor SCs (87.48±12.63)×104 compared with those with 5×106 SCs (33.05±3.41)×104 at 12 hours post-BMT (P<0.05).
     5. Analysis of the state of host DCs before bortezomib intervention CDllchigh/H-2b- population of DCs was gated as host splenic DCs. The mean fluorescence intensity (MFI) of MHCⅡin host splenic DCs from recipients with 1×107 donor SCs (MFI 477.5±37.43) was significantly higher than that from recipients with 5×106 SC (MFI 276.37±39.62) at 18 hours post-BMT (P<0.01).
     Ⅲ. Bortezomib inhibited the phenotypic and functional maturation of imDCs rather than already mDCs in vitro
     Methods:imDCs were prepared from mouse BM progenitors by culturing in the presence of GM-CSF and IL-4. To produce already matured DCs (mDCs), imDCs were stimulated with LPS or TNF-a. To observe the effects of bortezomib on DCs with different maturation stage, we performed flow cytometry to assay phenotypes, applied Annexin V-FITC/PI to analyze apoptosis, conducted mixed lymphocyte reaction (MLR) to assay allostimulatory capacity of DCs and impacts on regulatory T cells (Tregs), used western-blot to study the expression of IκBαin DCs.
     Results:
     1. Effects of bortezomib on phenotypic changes in DCs Bortezomib prevented imDCs maturation in response to LPS or TNF-α. Namely, imDCs pretreatment with the proteasome inhibitor prevented the up-regulation CD80, CD86, CD40 and CD83 as well as MHC-Ⅱ. The normal up-regulation of integrin CD54 and chemokine receptor CXCR4 molecules in response to these inflammatory signals was slightly reduced by the proteasome inhibitor. In contrast to pre-treated imDCs, no significant difference was found regarding the expression of surface markers on bortezomib treated versus untreated mDCs.
     2. Effects of bortezomib on apoptosis in DCs A dose-dependent induction of cell apoptosis in both imDCs in response to LPS and already mDCs (LPS-induced) was observed with bortezomib treatment. However, pre-treated imDCs in response to LPS were more susceptible to bortezomib-induced apoptosis than already matured DCs (LPS-induced) (OnM, imDC14.30±0.98, mDC13.33±0.78; 5nM, imDC 23.24±2.00, mDC16.31±1.55;10nM, imDC 31.83±2.10, mDC22.67±1.66; 20nM, imDC 39.87±2.21, mDC 27.33±2.49) (P <0.01). Similar results were obtained when using TNF-a as a maturation stimulus (OnM, imDC14.29±1.51, mDC 14.63±1.42; 5nM, imDC 23.51±2.10, mDC 16.39±1.69;10nM, imDC 34.43±2.57, mDC 25.23±2.30; 20nM, imDC 41.58±3.52, mDC28.74±2.57) (P<0.01)
     3. Effects of bortezomib on DCs allostimulatory capacity 5nM bortezomib reduced the capacity of imDCs to induce proliferation in alloreactive CD4+ T cells (Stimulation indices were 20.12±1.45 for intervention group,35.44±1.07 for control group) (P<0.01) and CD8+ T cells (Stimulation indices were 7.35±1.67 for intervention group,18.19±0.40 for control group) (P< 0.05). Additionally, significant decreases in TNF-αin alloreactive CD4+ T cells (290.46±57.79 for intervention group,867.23±110.30 for control group) (P<0.01), but not in CD8+ T cells (145.04±34.43 for intervention group,154.85±29.95 for control group) (P>0.05), when co-cultured with LPS-primed imDCs pretreated with bortezomib. Further, significant increases were observed in Tregs in CD4+ T cells when cocultured with bortezomib-pretreated imDCs (22.00±3.75% for imDCs group, 11.89±1.89% for mDCs group) (P<0.05). However, bortezomib with the low concentration does not substantially affect mDCs capacity to prime allogeneic lymphocyte proliferation and TNF-a production.
     4. Effects of bortezomib on NF-κB activity in DCs In imDCs, the pretreatment with bortezomib increased the expression level of IκB-αgradually upon LPS stimulation in a time dependent fashion (The ratio of IκB-αtoβ-actin at 12h was 26.71±3.08 for intervention group,10.64±1.36 for control group. The ratio at 24h was 35.28±3.69 for intervention group,6.04±1.29 for control group.) (P<0.01), indirectly indicating an inhibition of NF-κB activity. In contrast, the expression of IκB-αremained unaffected in mDCs after bortezomib treatment (The ratio of IκB-αtoβ-actin at 12h was 11.02±1.47 for intervention group, 11.07±1.79 for control group. The ratio at 24h was 9.58±1.47 for intervention group, 10.48±2.52 for control group.) (P>0.05).
     In conclusion, proteasome inhibition bortezomib, as a double-edged sword in GVHD, could confer protection from GVHD, in part, due to interfering with DCs at immature stage but not at matured stage. These data provide new insights into the immunopharmacology of bortezomib and suggest a novel approach to the manipulation of DCs for therapeutic and experimental application.
引文
[1]Ferrara JL, Reddy P. Pathophysiology of graft-versus-host disease. Semin Hematol,2006,43: 3-10
    [2]Nash RA, Antin JH, Karanes C, Fay JW, Avalos BR, Yeager AM, Przepiorka D,.Davies S, Petersen FB, Bartels P, Buell D, Fitzsimmons W, Anasetti C, Storb R, Ratanatharathorn V. Phase 3 study comparing methotrexate and tacrolimus with methotrexate and cyclosporine for prophylaxis of acute graft-versus-host disease after marrow transplantation from unrelated donors. Blood,2000,96:2062-2068
    [3]Ferrara JL, Cooke KR, Teshima T. The pathophysiology of acute graft-versus-host disease. Int J Hematol,2003,78:181-187
    [4]Duffner UA, Maeda Y, Cooke KR, Reddy P, Ordemann R, Liu C, Ferrara JL, Teshima T. Host dendritic cells alone are sufficient to initiate acute graft-versus-host disease. J Immunol,2004, 172:7393-7398
    [5]Teshima T, Ordemann R, Reddy P, Gagin S, Liu C, Cooke KR, Ferrara JL. Acute graft-versus-host disease does not require alloantigen expression on host epithelium. Nat Med, 2002,8:575-581
    [6]Li JM, Waller EK. Donor antigen-presenting cells regulate T-cell expansion and antitumor activity after allogeneic bone marrow transplantation. Biol Blood Marrow Transplant,2004, 10:540-551
    [7]Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet,2009,373: 1550-1561
    [8]Cooke KR, Gerbitz A, Crawford JM, Teshima T, Hill GR, Tesolin A, Rossignol DP, Ferrara JL. LPS antagonism reduces graft-versus-host disease and preserves graft-versus-leukemia activity after experimental bone marrow transplantation. J Clin Invest,2001,107:1581-1589
    [9]Antin JH. Acute graft-versus-host disease:inflammation run amok? J Clin Invest,2001,107: 1497-1498
    [10]Hill GR, Ferrara JL. The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease:rationale for the use of cytokine shields in allogeneic bone marrow transplantation. Blood,2000,95:2754-2759
    [11]Socie G, Clift RA, Blaise D, Devergie A, Ringden O, Martin PJ, Remberger M, Deeg HJ, Ruutu T, Michallet M, Sullivan KM, Chevret S. Busulfan plus cyclophosphamide compared with total-body irradiation plus cyclophosphamide before marrow transplantation for myeloid leukemia:long-term follow-up of 4 randomized studies. Blood,2001,98:3569-3574
    [12]Antin JH, Weisdorf D, Neuberg D, Nicklow R, Clouthier S, Lee SJ, Alyea E, McGarigle C, Blazar BR, Sonis S, Soiffer RJ, Ferrara JL. Interleukin-1 blockade does not prevent acute graft-versus-host disease:results of a randomized, double-blind, placebo-controlled trial of interleukin-1 receptor antagonist in allogeneic bone marrow transplantation. Blood,2002, 100:3479-3482
    [13]Blazar BR, Weisdorf DJ, Defor T, Goldman A, Braun T, Silver S, Ferrara JL. Phase 1/2 randomized, placebo-control trial of palifermin to prevent graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (HSCT). Blood,2006,108: 3216-3222
    [14]Chakraverty R, Sykes M. The role of antigen-presenting cells in triggering graft-versus-host disease and graft-versus-leukemia. Blood,2007,110:9-17
    [15]Hadeiba H, Sato T, Habtezion A, Oderup C, Pan J, Butcher EC. CCR9 expression defines tolerogenic plasmacytoid dendritic cells able to suppress acute graft-versus-host disease. Nat Immunol,2008,9:1253-1260
    [16]Matte CC, Liu J, Cormier J, Anderson BE, Athanasiadis I, Jain D, McNiff J, Shlomchik WD. Donor APCs are required for maximal GVHD but not for GVL. Nat Med,2004,10:987-992
    [17]Haniffa M, Ginhoux F, Wang XN, Bigley V, Abel M, Dimmick I, Bullock S, Grisotto M, Booth T, Taub P, Hilkens C, Merad M, Collin M. Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. J Exp Med,2009,206:371-385
    [18]Ginhoux F, Collin MP, Bogunovic M, Abel M, Leboeuf M, Helft J, Ochando J, Kissenpfennig A, Malissen B, Grisotto M, Snoeck H, Randolph G, Merad M. Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. J Exp Med,2007,204: 3133-3146
    [19]Blazar BR, Kwon BS, Panoskaltsis-Mortari A, Kwak KB, Peschon JJ, Taylor PA. Ligation of 4-1BB (CDw137) regulates graft-versus-host disease, graft-versus-leukemia, and graft rejection in allogeneic bone marrow transplant recipients. J Immunol,2001,166:3174-3183
    [20]Yu XZ, Bidwell SJ, Martin PJ, Anasetti C. CD28-specific antibody prevents graft-versus-host disease in mice. J Immunol,2000,164:4564-4568
    [21]Hubbard VM, Eng JM, Ramirez-Montagut T, Tjoe KH, Muriglan SJ, Kochman AA, Terwey TH, Willis LM, Schiro R, Heller G, Murphy GF, Liu C, Alpdogan O, van den Brink MR. Absence of inducible costimulator on alloreactive T cells reduces graft versus host disease
    and induces Th2 deviation. Blood,2005,106:3285-3292
    [22]Taylor PA, Panoskaltsis-Mortari A, Freeman GJ, Sharpe AH, Noelle RJ, Rudensky AY, Mak TW, Serody JS, Blazar BR. Targeting of inducible costimulator (ICOS) expressed on alloreactive T cells down-regulates graft-versus-host disease (GVHD) and facilitates engraftment of allogeneic bone marrow (BM). Blood,2005,105:3372-3380
    [23]王斌,张军,章卫平,冯曹波,王健民,沈茜,杨建民。造血干细胞移植后外周血T淋巴细胞亚群ICOS表达水平与急性移植物抗宿主病的关系。中华血液学杂志,2007,28(2):127-129
    [24]Blazar BR, Sharpe AH, Chen AI, Panoskaltsis-Mortari A, Lees C, Akiba H, Yagita H, Killeen N, Taylor PA. Ligation of OX40 (CD 134) regulates graft-versus-host disease (GVHD) and graft rejection in allogeneic bone marrow transplant recipients. Blood,2003,101:3741-3748
    [25]Buhlmann JE, Gonzalez M, Ginther B, Panoskaltsis-Mortari A, Blazar BR, Greiner DL, Rossini AA, Flavell R, Noelle RJ. Cutting edge:sustained expansion of CD8+ T cells requires CD 154 expression by Th cells in acute graft versus host disease. J Immunol,1999, 162:4373-4376
    [26]Muriglan SJ, Ramirez-Montagut T, Alpdogan O, Van Huystee TW, Eng JM, Hubbard VM, Kochman AA, Tjoe KH, Riccardi C, Pandolfi PP, Sakaguchi S, Houghton AN, Van Den Brink MR. GITR activation induces an opposite effect on alloreactive CD4(+) and CD8(+) T cells in graft-versus-host disease. J Exp Med,2004,200:149-157
    [27]Ingelfinger JR, Schwartz RS. Immunosuppression-the promise of specificity. N Engl J Med, 2005,353:836-839
    [28]Bleakley M, Otterud BE, Richardt JL, Mollerup AD, Hudecek M, Nishida T, Chaney CN, Warren EH, Leppert MF, Riddell SR. Leukemia-associated minor histocompatibility antigen discovery using T-cell clones isolated by in vitro stimulation of naive CD8+ T cells. Blood, 2010 (Epub ahead of print)
    [29]Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P. A direct estimate of the human alphabeta T cell receptor diversity. Science,1999,286:958-961
    [30]Anderson BE, McNiff J, Yan J, Doyle H, Mamula M, Shlomchik MJ, Shlomchik WD. Memory CD4+ T cells do not induce graft-versus-host disease. J Clin Invest,2003,112: 101-108
    [31]Chen B J, Cui X, Sempowski GD, Liu C, Chao NJ. Transfer of allogeneic CD62L-memory T cells without graft-versus-host disease. Blood,2004,103:1534-1541
    [32]Ermann J, Hoffmann P, Edinger M, Dutt S, Blankenberg FG, Higgins JP, Negrin RS, Fathman CG, Strober S. Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood,2005,105:2220-2226
    [33]Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S. Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med,2002,196:389-399
    [34]Zeiser R, Leveson-Gower DB, Zambricki EA, Kambham N, Beilhack A, Loh J, Hou JZ, Negrin RS. Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells. Blood, 2008,111:453-462
    [35]Riley JL, June CH, Blazar BR. Human T regulatory cell therapy, take a billion or so and call me in the morning. Immunity,2009,30:656-665
    [36]Annunziato F, Romagnani S. Do studies in humans better depict Th17 cells? Blood,2009, 114:2213-2219
    [37]Rowell E, Wilson CB. Programming perpetual T helper cell plasticity. Immunity,2009,30: 7-9
    [38]Zeng D, Lewis D, Dejbakhsh-Jones S, Lan F, Garcia-Ojeda M, Sibley R, Strober S. Bone marrow NK1.1 (-) and NK1.1 (+) T cells reciprocally regulate acute graft versus host disease. J Exp Med,1999,189:1073-1081
    [39]Kohrt HE, Turnbull BB, Heydari K, Shizuru JA, Laport GG, Miklos DB, Johnston LJ, Arai S, Weng WK, Hoppe RT, Lavori PW, Blume KG, Negrin RS, Strober S, Lowsky R. TLI and ATG conditioning with low risk of graft-versus-host disease retains antitumor reactions after allogeneic hematopoietic cell transplantation from related and unrelated donors. Blood,2009, 114:1099-1109
    [40]Lowsky R, Takahashi T, Liu YP, Dejbakhsh-Jones S, Grumet FC, Shizuru JA, Laport GG, Stockerl-Goldstein KE, Johnston LJ, Hoppe RT, Bloch DA, Blume KG, Negrin RS, Strober S. Protective conditioning for acute graft-versus-host disease. N Engl J Med,2005,353: 1321-1331
    [41]Morris ES, MacDonald KP, Kuns RD, Morris HM, Banovic T, Don AL, Rowe V, Wilson YA, Raffelt NC, Engwerda CR, Burman AC, Markey KA, Godfrey DI, Smyth MJ, Hill GR. Induction of natural killer T cell-dependent alloreactivity by administration of granulocyte colony-stimulating factor after bone marrow transplantation. Nat Med,2009,15:436-441
    [42]Yi T, Zhao D, Lin CL, Zhang C, Chen Y, Todorov I, LeBon T, Kandeel F, Forman S, Zeng D. Absence of donor Th17 leads to augmented Thl differentiation and exacerbated acute graft-versus-host disease. Blood,2008,112:2101-2110
    [43]Carlson MJ, West ML, Coghill JM, Panoskaltsis-Mortari A, Blazar BR, Serody JS. In vitro-differentiated TH17 cells mediate lethal acute graft-versus-host disease with severe cutaneous and pulmonary pathologic manifestations. Blood,2009,113:1365-1374
    [44]Wysocki CA, Panoskaltsis-Mortari A, Blazar BR, Serody JS. Leukocyte migration and graft-versus-host disease. Blood,2005,105:4191-4199
    [45]Chakraverty R, Cote D, Buchli J, Cotter P, Hsu R, Zhao G, Sachs T, Pitsillides CM, Branson R, Means T, Lin C, Sykes M. An inflammatory checkpoint regulates recruitment of graft-versus-host reactive T cells to peripheral tissues. J Exp Med,2006,203:2021-2031
    [46]Dutt S, Ermann J, Tseng D, Liu YP, George TI, Fathman CG, Strober S. L-selectin and beta7 integrin on donor CD4 T cells are required for the early migration to host mesenteric lymph nodes and acute colitis of graft-versus-host disease. Blood,2005,106:4009-4015
    [47]Wysocki CA, Jiang Q, Panoskaltsis-Mortari A, Taylor PA, McKinnon KP, Su L, Blazar BR, Serody JS. Critical role for CCR5 in the function of donor CD4+CD25+ regulatory T cells during acute graft-versus-host disease. Blood,2005,106:3300-3307
    [48]Varona R, Cadenas V, Gomez L, Martinez AC, Marquez G. CCR6 regulates CD4+ T-cell-mediated acute graft-versus-host disease responses. Blood,2005,106:18-26
    [49]Piper KP, Horlock C, Curnow SJ, Arrazi J, Nicholls S, Mahendra P, Craddock C, Moss PA. CXCL10-CXCR3 interactions play an important role in the pathogenesis of acute graft-versus-host disease in the skin following allogeneic stem-cell transplantation. Blood, 2007,110:3827-3832
    [50]Bouazzaoui A, Spacenko E, Mueller G, Miklos S, Huber E, Holler E, Andreesen R, Hildebrandt GC. Chemokine and chemokine receptor expression analysis in target organs of acute graft-versus-host disease. Genes Immun,2009,10:687-701
    [51]Murai M, Yoneyama H, Ezaki T, Suematsu M, Terashima Y, Harada A, Hamada H, Asakura H, Ishikawa H, Matsushima K. Peyer's patch is the essential site in initiating murine acute and lethal graft-versus-host reaction. Nat Immunol,2003,4:154-160
    [52]Welniak LA, Blazar BR, Murphy WJ. Immunobiology of allogeneic hematopoietic stem cell transplantation. Annu Rev Immunol,2007,25:139-170
    [53]Murphy WJ, Welniak LA, Taub DD, Wiltrout RH, Taylor PA, Vallera DA, Kopf M, Young H, Longo DL, Blazar BR. Differential effects of the absence of interferon-gamma and IL-4 in acute graft-versus-host disease after allogeneic bone marrow transplantation in mice. J Clin Invest,1998,102:1742-1748
    [54]Min CK, Maeda Y, Lowler K, Liu C, Clouthier S, Lofthus D, Weisiger E, Ferrara JL, Reddy P. Paradoxical effects of interleukin-18 on the severity of acute graft-versus-host disease mediated by CD4+ and CD8+ T-cell subsets after experimental allogeneic bone marrow transplantation. Blood,2004,104:3393-3399
    [55]Okamoto I, Kohno K, Tanimoto T, Iwaki K, Ishihara T, Akamatsu S, Ikegami H, Kurimoto M. IL-18 prevents the development of chronic graft-versus-host disease in mice. J Immunol, 2000,164:6067-6074
    [56]Lin MT, Storer B, Martin PJ, Tseng LH, Gooley T, Chen PJ, Hansen JA. Relation of an interleukin-10 promoter polymorphism to graft-versus-host disease and survival after hematopoietic-cell transplantation. N Engl J Med,2003,349:2201-2210
    [57]van den Brink MR, Burakoff SJ. Cytolytic pathways in haematopoietic stem-cell transplantation. Nat Rev Immunol,2002,2:273-281
    [58]Dickinson AM, Holler E. Polymorphisms of cytokine and innate immunity genes and GVHD. Best Pract Res Clin Haematol,2008,21:149-164
    [59]Levine JE, Paczesny S, Mineishi S, Braun T, Choi SW, Hutchinson RJ, Jones D, Khaled Y, Kitko CL, Bickley D, Krijanovski O, Reddy P, Yanik G, Ferrara JL. Etanercept plus methylprednisolone as initial therapy for acute graft-versus-host disease. Blood,2008,111: 2470-2475
    [60]Alousi AM, Weisdorf DJ, Logan BR, Bolanos-Meade J, Carter S, Difronzo N, Pasquini M, Goldstein SC, Ho VT, Hayes-Lattin B, Wingard JR, Horowitz MM, Levine JE. Etanercept, mycophenolate, denileukin, or pentostatin plus corticosteroids for acute graft-versus-host disease:a randomized phase 2 trial from the Blood and Marrow Transplant Clinical Trials Network. Blood,2009,114:511-517
    [61]Jacobsohn DA, Vogelsang GB. Acute graft versus host disease. Orphanet J Rare Dis,2007,2: 35
    [62]Deeg HJ, Antin JH. The clinical spectrum of acute graft-versus-host disease. Semin Hematol, 2006,43:24-31
    [63]Voorhees PM, Orlowski RZ. The proteasome and proteasome inhibitors in cancer therapy. Annu Rev Pharmacol Toxicol,2006,46:189-213
    [64]Demarchi F, Brancolini C. Altering protein turnover in tumor cells:new opportunities for anti-cancer therapies. Drug Resist Updat,2005,8:359-368
    [65]Cavo M. Proteasome inhibitor bortezomib for the treatment of multiple myeloma. Leukemia, 2006,20:1341-1352
    [66]Almond JB, Cohen GM. The proteasome:a novel target for cancer chemotherapy. Leukemia, 2002,16:433-443
    [67]Sunwoo JB, Chen Z, Dong G, Yeh N, Crowl Bancroft C, Sausville E, Adams J, Elliott P, Van Waes C. Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin Cancer Res, 2001,7:1419-1428
    [68]Richardson PG, Hideshima T, Anderson KC. Bortezomib (PS-341):a novel, first-in-class proteasome inhibitor for the treatment of multiple myeloma and other cancers. Cancer Control,2003,10:361-369
    [69]Mitsiades N, Mitsiades CS, Richardson PG, Poulaki V, Tai YT, Chauhan D, Fanourakis G, Gu X, Bailey C, Joseph M, Libermann TA, Schlossman R, Munshi NC, Hideshima T, Anderson KC. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents:therapeutic applications. Blood,2003,101: 2377-2380
    [70]McBride WH, Iwamoto KS, Syljuasen R, Pervan M, Pajonk F. The role of the ubiquitin/proteasome system in cellular responses to radiation. Oncogene,2003,22: 5755-5773
    [71]Sayers TJ, Brooks AD, Koh CY, Ma W, Seki N, Raziuddin A, Blazar BR, Zhang X, Elliott PJ, Murphy WJ. The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood,2003,102:303-310
    [72]Siebenlist U, Franzoso G, Brown K. Structure, regulation and function of NF-kappa B. Annu Rev Cell Biol,1994,10:405-455
    [73]Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination:the control of NF-[kappa]B activity. Annu Rev Immunol,2000,18:621-663
    [74]Baeuerle PA, Baichwal VR. NF-kappa B as a frequent target for immunosuppressive and anti-inflammatory molecules. Adv Immunol,1997,65:111-137
    [75]Luo H, Wu Y, Qi S, Wan X, Chen H, Wu J. A proteasome inhibitor effectively prevents mouse heart allograft rejection. Transplantation,2001,72:196-202
    [76]Vanderlugt CL, Rahbe SM, Elliott PJ, Dal Canto MC, Miller SD. Treatment of established relapsing experimental autoimmune encephalomyelitis with the proteasome inhibitor PS-519. J Autoimmun,2000,14:205-211
    [77]Zollner TM, Podda M, Pien C, Elliott PJ, Kaufmann R, Boehncke WH. Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCID-hu model. J Clin Invest,2002,109:671-679
    [78]Sun K, Welniak LA, Panoskaltsis-Mortari A, O'Shaughnessy MJ, Liu H, Barao I, Riordan W, Sitcheran R, Wysocki C, Serody JS, Blazar BR, Sayers TJ, Murphy WJ. Inhibition of acute graft-versus-host disease with retention of graft-versus-tumor effects by the proteasome inhibitor bortezomib. Proc Natl Acad Sci U S A,2004,101:8120-8125
    [79]El-Cheikh J, Michallet M, Nagler A, de Lavallade H, Nicolini FE, Shimoni A, Faucher C, Sobh M, Revesz D, Hardan I, Furst S, Blaise D, Mohty M. High response rate and improved graft-versus-host disease following bortezomib as salvage therapy after reduced intensity conditioning allogeneic stem cell transplantation for multiple myeloma. Haematologica,2008, 93:455-458
    [80]Sun K, Wilkins DE, Anver MR, Sayers TJ, Panoskaltsis-Mortari A, Blazar BR, Welniak LA, Murphy WJ. Differential effects of proteasome inhibition by bortezomib on murine acute graft-versus-host disease (GVHD):delayed administration of bortezomib results in increased GVHD-dependent gastrointestinal toxicity. Blood,2005,106:3293-3299
    [81]Sun Y, Tawara I, Toubai T, Reddy P. Pathophysiology of acute graft-versus-host disease: recent advances. Transl Res,2007,150:197-214
    [82]wFainaru O, Woolf E, Lotem J, Yarmus M, Brenner O, Goldenberg D, Negreanu V, Bernstein Y, Levanon D, Jung S, Groner Y. Runx3 regulates mouse TGF-beta-mediated dendritic cell function and its absence results in airway inflammation. Embo J,2004,23:969-979
    [83]Vodanovic-Jankovic S, Hari P, Jacobs P, Komorowski R, Drobyski WR. NF-kappaB as a target for the prevention of graft-versus-host disease:comparative efficacy of bortezomib and PS-1145. Blood,2006,107:827-834
    [84]Sykes M, Romick ML, Hoyles KA, Sachs DH. In vivo administration of interleukin 2 plus T cell-depleted syngeneic marrow prevents graft-versus-host disease mortality and permits alloengraftment. J Exp Med,1990,171:645-658
    [85]Sykes M, Szot GL, Nguyen PL, Pearson DA. Interleukin-12 inhibits murine graft-versus-host disease. Blood,1995,86:2429-2438
    [86]Yang YG, Dey BR, Sergio JJ, Pearson DA, Sykes M. Donor-derived interferon gamma is required for inhibition of acute graft-versus-host disease by interleukin 12. J Clin Invest, 1998,102:2126-2135
    [87]Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science,1996,274:782-784
    [88]Piguet PF, Vesin C, Donati Y, Barazzone C. TNF-induced enterocyte apoptosis and detachment in mice:induction of caspases and prevention by a caspase inhibitor, ZVAD-fmk. Lab Invest,1999,79:495-500
    [89]Chen LW, Egan L, Li ZW, Greten FR, Kagnoff MF, Karin M. The two faces of IKK and NF-kappaB inhibition:prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion. Nat Med,2003,9:575-581
    [90]Egan LJ, Eckmann L, Greten FR, Chae S, Li ZW, Myhre GM, Robine S, Karin M, Kagnoff MF. IkappaB-kinasebeta-dependent NF-kappaB activation provides radioprotection to the intestinal epithelium. Proc Natl Acad Sci U S A,2004,101:2452-2457
    [91]Yan F, John SK, Polk DB. Kinase suppressor of Ras determines survival of intestinal epithelial cells exposed to tumor necrosis factor. Cancer Res,2001,61:8668-8675
    [92]Ruemmele FM, Beaulieu JF, O'Connell J, Bennett MW, Seidman EG, Lentze MJ. The susceptibility to Fas-induced apoptosis in normal enterocytes is regulated on the level of cIAP1 and 2. Biochem Biophys Res Commun,2002,290:1308-1314
    [93]Cooke KR, Hill GR, Crawford JM, Bungard D, Brinson YS, Delmonte J, Jr., Ferrara JL. Tumor necrosis factor-alpha production to lipopolysaccharide stimulation by donor cells predicts the severity of experimental acute graft-versus-host disease. J Clin Invest,1998,102: 1882-1891
    [94]Hill GR, Crawford JM, Cooke KR, Brinson YS, Pan L, Ferrara JL. Total body irradiation and acute graft-versus-host disease:the role of gastrointestinal damage and inflammatory cytokines. Blood,1997,90:3204-3213
    [95]Auffermann-Gretzinger S, Lossos IS, Vayntrub TA, Leong W, Grumet FC, Blume KG, Stockerl-Goldstein KE, Levy R, Shizuru JA. Rapid establishment of dendritic cell chimerism in allogeneic hematopoietic cell transplant recipients. Blood,2002,99:1442-1448
    [96]MacDonald KP, Rowe V, Clouston AD, Welply JK, Kuns RD, Ferrara JL, Thomas R, Hill GR. Cytokine expanded myeloid precursors function as regulatory antigen-presenting cells and promote tolerance through IL-10-producing regulatory T cells. J Immunol,2005,174: 1841-1850
    [97]Shlomchik WD. Antigen presentation in graft-vs-host disease. Exp Hematol,2003,31: 1187-1197
    [98]Tarbell KV, Yamazaki S, Steinman RM. The interactions of dendritic cells with antigen-specific, regulatory T cells that suppress autoimmunity. Semin Immunol,2006,18: 93-102
    [99]Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, Wu S, Vuthoori S, Ko K, Zavala F, Pamer EG, Littman DR, Lang RA. In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity,2002, 17:211-220
    [100]Nachbaur D, Kircher B, Eisendle K, Latzer K, Haun M, Gastl G. Phenotype, function and chimaerism of monocyte-derived blood dendritic cells after allogeneic haematopoietic stem cell transplantation. Br J Haematol,2003,123:119-126
    [101]Matzinger P. The danger model:a renewed sense of self. Science,2002,296:301-305
    [102]Reddy P. Pathophysiology of acute graft-versus-host disease. Hematol Oncol,2003,21: 149-161
    [103]Sanchez-Sanchez N, Riol-Blanco L, de la Rosa G, Puig-Kroger A, Garcia-Bordas J, Martin D, Longo N, Cuadrado A, Cabanas C, Corbi AL, Sanchez-Mateos P, Rodriguez-Fernandez JL. Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells. Blood,2004,104:619-625
    [104]Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol,2003,21:685-711
    [105]Shakhar G, Lindquist RL, Skokos D, Dudziak D, Huang JH, Nussenzweig MC, Dustin ML. Stable T cell-dendritic cell interactions precede the development of both tolerance and immunity in vivo. Nat Immunol,2005,6:707-714
    [106]Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature, 2004,430:257-263
    [107]Re F, Strominger JL. Heterogeneity of TLR-induced responses in dendritic cells:from innate to adaptive immunity. Immunobiology,2004,209:191-198
    [108]Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature,1998,392: 245-252
    [109]Maeda Y, Reddy P, Lowler KP, Liu C, Bishop DK, Ferrara JL. Critical role of host gammadelta T cells in experimental acute graft-versus-host disease. Blood,2005,106: 749-755
    [110]Chorny A, Gonzalez-Rey E, Fernandez-Martin A, Ganea D, Delgado M. Vasoactive intestinal peptide induces regulatory dendritic cells that prevent acute graft-versus-host disease while maintaining the graft-versus-tumor response. Blood,2006,107:3787-3794
    [111]MacDonald KP, Kuns RD, Rowe V, Morris ES, Banovic T, Bofinger H, O'Sullivan B, Markey KA, Don AL, Thomas R, Hill GR. Effector and regulatory T-cell function is differentially regulated by RelB within antigen-presenting cells during GVHD. Blood,2007,
    109:5049-5057
    [112]Lechler R, Ng WF, Steinman RM. Dendritic cells in transplantation-friend or foe? Immunity, 2001,14:357-368
    [113]Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat Rev Immunol,2002,2:116-126
    [114]Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins:evolutionarily conserved mediators of immune responses. Annu Rev Immunol,1998,16:225-260
    [115]Baldwin AS, Jr. The NF-kappa B and I kappa B proteins:new discoveries and insights. Annu Rev Immunol,1996,14:649-683
    [116]Ouaaz F, Arron J, Zheng Y, Choi Y, Beg AA. Dendritic cell development and survival require distinct NF-kappaB subunits. Immunity,2002,16:257-270
    [117]Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T, Munshi N, Dang L, Castro A, Palombella V, Adams J, Anderson KC. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem,2002,277:16639-16647
    [118]Papandreou CN, Daliani DD, Nix D, Yang H, Madden T, Wang X, Pien CS, Millikan RE, Tu SM, Pagliaro L, Kim J, Adams J, Elliott P, Esseltine D, Petrusich A, Dieringer P, Perez C, Logothetis CJ. Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J Clin Oncol,2004, 22:2108-2121
    [119]Chen X, Murakami T, Oppenheim JJ, Howard OM. Triptolide, a constituent of immunosuppressive Chinese herbal medicine, is a potent suppressor of dendritic-cell maturation and trafficking. Blood,2005,106:2409-2416
    [120]Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol,1996,14:233-258
    [121]Grewal IS, Flavell RA. CD40 and CD 154 in cell-mediated immunity. Annu Rev Immunol, 1998,16:111-135
    [122]Nencioni A, Schwarzenberg K, Brauer KM, Schmidt SM, Ballestrero A, Grunebach F, Brossart P. Proteasome inhibitor bortezomib modulates TLR4-induced dendritic cell activation. Blood,2006,108:551-558
    [123]Nencioni A, Hua F, Dillon CP, Yokoo R, Scheiermann C, Cardone MH, Barbieri E, Rocco I, Garuti A, Wesselborg S, Belka C, Brossart P, Patrone F, Ballestrero A. Evidence for a protective role of Mcl-1 in proteasome inhibitor-induced apoptosis. Blood,2005,105: 3255-3262
    [124]Korngold R, Marini JC, de Baca ME, Murphy GF, Giles-Komar J. Role of tumor necrosis factor-alpha in graft-versus-host disease and graft-versus-leukemia responses. Biol Blood Marrow Transplant,2003,9:292-303
    [125]Schmaltz C, Alpdogan O, Muriglan SJ, Kappel BJ, Rotolo JA, Ricchetti ET, Greenberg AS, Willis LM, Murphy GF, Crawford JM, van den Brink MR. Donor T cell-derived TNF is required for graft-versus-host disease and graft-versus-tumor activity after bone marrow transplantation. Blood,2003,101:2440-2445
    [126]Naito Y, Handa O, Takagi T, Ishikawa T, Imamoto E, Nakagawa S, Yamaguchi T, Yoshida N, Matsui H, Yoshikawa T. Ubiquitin-proteasome inhibitor enhances tumour necrosis factor-alpha-induced apoptosis in rat gastric epithelial cells. Aliment Pharmacol Ther,2002, 16Suppl2:59-66
    [127]Chiang PH, Wang L, Bonham CA, Liang X, Fung JJ, Lu L, Qian S. Mechanistic insights into impaired dendritic cell function by rapamycin:inhibition of Jak2/Stat4 signaling pathway. J Immunol,2004,172:1355-1363
    [128]Chen T, Guo J, Yang M, Han C, Zhang M, Chen W, Liu Q, Wang J, Cao X. Cyclosporin A impairs dendritic cell migration by regulating chemokine receptor expression and inhibiting cyclooxygenase-2 expression. Blood,2004,103:413-421
    [129]Rajkumar SV, Richardson PG, Hideshima T, Anderson KC. Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol,2005,23:630-639
    [130]Nencioni A, Garuti A, Schwarzenberg K, Cirmena G, Dal Bello G, Rocco I, Barbieri E, Brossart P, Patrone F, Ballestrero A. Proteasome inhibitor-induced apoptosis in human monocyte-derived dendritic cells. Eur J Immunol 2006,36:681-689
    [1]Deeg HJ. How I treat refractory acute GVHD. Blood,2007,109:4119-4126
    [2]Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet,2009,373: 1550-1561
    [3]Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol,2005,175:5-14
    [4]Wysocki CA, Panoskaltsis-Mortari A, Blazar BR, Serody JS. Leukocyte migration and graft-versus-host disease. Blood,2005,105:4191-4199
    [5]Petersdorf EW. Immunogenomics of unrelated hematopoietic cell transplantation. Curr Opin Immunol,2006,18:559-564
    [6]Petersdorf EW. Risk assessment in haematopoietic stem cell transplantation: histocompatibility. Best Pract Res Clin Haematol,2007,20:155-170
    [7]Weisdorf DJ, Nelson G, Lee SJ, Haagenson M, Spellman S, Antin JH, Bolwell B, Cahn JY, Cervantes F, Copelan E, Gale R, Gratwohl A, Khoury HJ, McCarthy P, Marks DI, Szer J, Woolfrey A, Cortes-Franco J, Horowitz MM, Arora M. Sibling versus unrelated donor allogeneic hematopoietic cell transplantation for chronic myelogenous leukemia:refined HLA matching reveals more graft-versus-host disease but not less relapse. Biol Blood Marrow Transplant,2009,15:1475-1478
    [8]Mommaas B, Stegehuis-Kamp JA, van Halteren AG, Kester M, Enczmann J, Wernet P, Kogler G, Mutis T, Brand A, Goulmy E. Cord blood comprises antigen-experienced T cells specific for maternal minor histocompatibility antigen HA-1. Blood,2005,105:1823-1827
    [9]Ringden O, Pavletic SZ, Anasetti C, Barrett AJ, Wang T, Wang D, Antin JH, Di Bartolomeo P, Bolwell BJ, Bredeson C, Cairo MS, Gale RP, Gupta V, Hahn T, Hale GA, Halter J, Jagasia M, Litzow MR, Locatelli F, Marks DI, McCarthy PL, Cowan MJ, Petersdorf EW, Russell JA, Schiller GJ, Schouten H, Spellman S, Verdonck LF, Wingard JR, Horowitz MM, Arora M. The graft-versus-leukemia effect using matched unrelated donors is not superior to HLA-identical siblings for hematopoietic stem cell transplantation. Blood,2009,113: 3110-3118
    [10]Cutler C, Antin JH. Sirolimus for GVHD prophylaxis in allogeneic stem cell transplantation. Bone Marrow Transplant,2004,34:471-476
    [11]Remberger M, Mattsson J, Hassan Z, Karlsson N, LeBlanc K, Omazic B, Okas M, Sairafi D, Ringden O. Risk factors for acute graft-versus-host disease grades Ⅱ-Ⅳ after reduced intensity conditioning allogeneic stem cell transplantation with unrelated donors:a single centre study. Bone Marrow Transplant,2008,41:399-405
    [12]Smith AR, Baker KS, Defor TE, Verneris MR, Wagner JE, Macmillan ML. Hematopoietic cell transplantation for children with acute lymphoblastic leukemia in second complete remission:similar outcomes in recipients of unrelated marrow and umbilical cord blood versus marrow from HLA matched sibling donors. Biol Blood Marrow Transplant,2009,15: 1086-1093
    [13]Jacobsohn DA, Vogelsang GB. Acute graft versus host disease. Orphanet J Rare Dis,2007,2: 35
    [14]Riddell SR, Appelbaum FR. Graft-versus-host disease:a surge of developments. PLoS Med, 2007,4:e198
    [15]Koreth J, Stevenson KE, Kim HT, Garcia M, Ho VT, Armand P, Cutler C, Ritz J, Antin JH, Soiffer RJ, Alyea EP. Bortezomib, tacrolimus, and methotrexate for prophylaxis of graft-versus-host disease after reduced-intensity conditioning allogeneic stem cell transplantation from HLA-mismatched unrelated donors. Blood,2009,114:3956-3959
    [16]Sun K, Wilkins DE, Anver MR, Sayers TJ, Panoskaltsis-Mortari A, Blazar BR, Welniak LA, Murphy WJ. Differential effects of proteasome inhibition by bortezomib on murine acute graft-versus-host disease (GVHD):delayed administration of bortezomib results in increased GVHD-dependent gastrointestinal toxicity. Blood,2005,106:3293-3299
    [17]El-Cheikh J, Michallet M, Nagler A, de Lavallade H, Nicolini FE, Shimoni A, Faucher C, Sobh M, Revesz D, Hardan I, Furst S, Blaise D, Mohty M. High response rate and improved graft-versus-host disease following bortezomib as salvage therapy after reduced intensity conditioning allogeneic stem cell transplantation for multiple myeloma. Haematologica,2008, 93:455-458
    [18]Petersdorf EW, Malkki M, Gooley TA, Martin PJ, Guo Z. MHC haplotype matching for unrelated hematopoietic cell transplantation. PLoS Med,2007,4:e8
    [19]Ferrara JL, Reddy P. Pathophysiology of graft-versus-host disease. Semin Hematol,2006,43: 3-10
    [20]Demarchi F, Brancolini C. Altering protein turnover in tumor cells:new opportunities for anti-cancer therapies. Drug Resist Updat,2005,8:359-368
    [21]Dickinson AM, Charron D. Non-HLA immunogenetics in hematopoietic stem cell transplantation. Curr Opin Immunol,2005,17:517-525
    [22]Baron C, Somogyi R, Greller LD, Rineau V, Wilkinson P, Cho CR, Cameron MJ, Kelvin DJ, Chagnon P, Roy DC, Busque L, Sekaly RP, Perreault C. Prediction of graft-versus-host disease in humans by donor gene-expression profiling. PLoS Med,2007,4:e23
    [23]Jouvin-Marche E, Fuschiotti P, Marche PN. Dynamic aspects of TCRalpha gene recombination:qualitative and quantitative assessments of the TCRalpha chain repertoire in man and mouse. Adv Exp Med Biol,2009,650:82-92
    [24]Rezvani K, Mielke S, Ahmadzadeh M, Kilical Y, Savani BN, Zeilah J, Keyvanfar K, Montero A, Hensel N, Kurlander R, Barrett AJ. High donor FOXP3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT. Blood,2006,108:1291-1297
    [25]June CH, Blazar BR. Clinical application of expanded CD4+25+ cells. Semin Immunol,2006, 18:78-88
    [26]Feng X, Hui KM, Younes HM, Brickner AG. Targeting minor histocompatibility antigens in graft versus tumor or graft versus leukemia responses. Trends Immunol,2008,29:624-632
    [27]Spaapen R, Mutis T. Targeting haematopoietic-specific minor histocompatibility antigens to distinguish graft-versus-tumour effects from graft-versus-host disease. Best Pract Res Clin Haematol,2008,21:543-557
    [28]Riddell SR, Bleakley M, Nishida T, Berger C, Warren EH. Adoptive transfer of allogeneic antigen-specific T cells. Biol Blood Marrow Transplant,2006,12:9-12
    [29]Rusakiewicz S, Molldrem JJ. Immunotherapeutic peptide vaccination with leukemia-associated antigens. Curr Opin Immunol,2006,18:599-604
    [30]Bogunia-Kubik K, Duda D, Suchnicki K, Lange A. CCR5 deletion mutation and its association with the risk of developing acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Haematologica,2006,91:1628-1634
    [31]Li B, New JY, Tay YK, Goh E, Yap EH, Chan SH, Hu HZ. Delaying acute graft-versus-host disease in mouse bone marrow transplantation by treating donor cells with antibodies directed at 1-selectin and alpha4-integrin prior to infusion. Scand J Immunol,2004,59: 464-468
    [32]Chen YB, Kim HT, McDonough S, Odze RD, Yao X, Lazo-Kallanian S, Spitzer TR, Soiffer R, Antin JH, Ritz J. Up-Regulation of alpha4beta7 integrin on peripheral T cell subsets correlates with the development of acute intestinal graft-versus-host disease following allogeneic stem cell transplantation. Biol Blood Marrow Transplant,2009,15:1066-1076

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700