SARS冠状病毒与H5N1型禽流感病毒致病机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于哺乳动物细胞表达系统得到越来越广泛的应用,其优点是表达的蛋白质结构正确,且糖基化位点与天然蛋白相似。但哺乳动物细胞表达系统的一个最大瓶颈是产量较低。为了解决这一问题,本论文对几种重要蛋白质的编码序列进行了优化,并将编码序列连接到强表达载体上,转染哺乳动物细胞进行表达,发现所有蛋白质都能够正确表达,证实了序列优化方法的可行性。为了验证序列优化对蛋白表达水平的影响,我们比较了几种蛋白质的表达情况,发现经优化的序列蛋白质表达比未经优化的序列表达能力有明显的提高。而恒定表达细胞株的构建使持续获得高表达量的蛋白质成为可能。
     为了方便进行蛋白纯化,我们在载体上添加了CD5L引导肽序列,这可以增强蛋白的分泌能力,另外还添加了human Fc标签,可以方便的使用Protein A亲和层析柱进行蛋白富集与纯化。此外,为了能够得到不含标签的蛋白质,目的蛋白与Fc标签之间插入了TEV酶切位点。
     序列的优化、载体的改进及恒定表达细胞株的构建为获得高产量,高纯度的蛋白质奠定了基础。
     SARS-CoV进入细胞机制的研究
     导致严重急性呼吸综合征(SARS)世界性爆发流行的病原体是一种新型的冠状病毒:SARS冠状病毒(SARS-CoV)。SARS是一种以呼吸系统症状为主要表现的全身性疾病,可引起全身多器官多组织损伤,导致患者死亡的主要病因为急性呼吸窘迫综合征(ARDS)。其宿主范围广,传播速度快,且可通过飞沫传播,危害极大。
     关于这种致命病毒进入宿主细胞的方式,最早有学者通过电镜观察提出病毒通过直接膜融合方式进入细胞。而后来有病毒进入细胞依赖pH的报道,提示病毒进入细胞的方式可能并不是单一的。现有研究证实,SARS-CoV的刺突蛋白(Spikeprotein,S蛋白)是病毒表面最重要的膜蛋白,能够与受体结合并促进病毒入胞。本论文研究发现SARS-CoV可以通过内吞方式进入宿主细胞。SARS-CoV进入宿主细胞的过程中并不依赖于clathrin及caveolin蛋白;而脂筏,这种细胞表面重要的脂质微区在病毒进入细胞的过程中起重要作用。
     上述结果的阐明为了解SARS-CoV致病机理及研发新型抗病毒药物提供了重要信息。
     H5N1型禽流感病毒导致急性肺损伤机理的研究
     最近一段时间以来,不断发生H5N1型禽流感病毒感染禽类和人类的事件。由于这种病毒变异性极高,发生流行的危险较大。而且缺乏有效的预防与治疗方法,病人病死率非常高。因此,H5N1型禽流感病毒致病机理的研究显得尤为重要。
     病人主要的死亡原因为急性肺损伤,而关于急性肺损伤的分子机理,尚不清楚。本论文研究发现,H5N1型禽流感病毒可以通过以下两种方式导致急性肺损伤:
     1.H5N1通过诱导肺部巨噬细胞产生ROS,氧化细胞表面磷脂,激活TLR4-TRIF-NFkB通路导致大量炎性因子(IL-6)的产生,导致急性肺损伤。ROS抑制剂及氧化磷脂的清除剂都可以缓解H5N1导致的急性肺损伤。
     2.H5N1通过Akt-TSC2-mTOR通路诱导细胞产生自噬,并导致细胞死亡,进而导致急性肺损伤的发生。自噬的特异抑制剂及自噬特异分子的敲除可以缓解H5N1导致的急性肺损伤。
     上述结果的阐明为了解H5N1型禽流感病毒致病机理及研发新型抗病毒药物提供了重要信息。
     H5N1型禽流感病毒进入宿主细胞机制的研究
     关于禽流感病毒进入细胞机制的研究主要来自H1N1型病毒,由于不同病毒株进入不同细胞时采取的方式可能有所不同,而H5N1型禽流感病毒近期较为流行,我们研究了H5N1型禽流感病毒进入宿主细胞的方式。本论文发现H5N1型病毒进入人肺上皮细胞A549细胞时,依赖于clathrin蛋白而并不依赖于caveolin蛋白,这一结果的阐明为了解H5N1型禽流感病毒致病机理及研发新型抗病毒药物提供了重要信息。
Mammalian expression of codon optimized proteins
     The mammalian expression system has been widely used in recent years due to its ability of producing correctly folded and glycosylated protein.However,one disadvange of this system is the low protein yield.This paper described a new method of codon optimization,which enhances protein expression to a higher level compared with non-optimized sequence.The establishment of a stable expression cell line enables the production of protein in large scale.
     In order to simplify protein purification,the expression vector was modified by inserting a CD5 lead sequence upstream of coding sequence,which will enhance protein secretion into supernatant,and a human Fc tag,which will facilitate protein purification with a Protein A column.In addition,in order to obtain proteins without tags,a TEV site was constructed between coding sequence and Fc tag.
     This system enables production of lage-scale,high-purity,and glycosylated proteins.
     Mechanism of SARS-CoV entry host cells
     The entry pathway of SARS-CoV into host cells has been controversial,direct membrane was firstly observed by electro-micorscope in 2003,however,later,it was reported that the entry is dependent on pH,which suggests that an endocytic pathway may also exist.Our paper found that SARS-CoV can enter via endocytosis and the SARS-CoV was targeted to endosome in Vero E6 cells.We also found that the entry pathway of SARS-CoV into host cells did not dependent on clathrin or caveolae,but, lipid rafts,an important microdomains rich in cholesterol was found to be involved in this process.
     These findings are of great importance to the development of novel anti-viral drugs.
     Molecular mechanism of H5N1 avian influenza induced acute lung injury
     Recent outbreaks of highly pathogenic avian influenza H5N1 in poultry and humans have raised the concern that a pandemic will occur in the near future.According to the most recent World Health Organization data,reported on March 11,2009,the cumulative mortality attributed to avian influenza HSN1 virus infection is greater than 60%.Acute lung injury(ALI) is the major manifestation associated with patients hospitalized with H5N1 influenza infection.ALI has a high mortality rate and,other than mechanical ventilation and supportive clinical care,there are few specific therapeutic options of proven benefit.We know little about the molecular pathogenesis of ALI.This paper found that H5N1 can cause ALI via two pathways:
     1.H5N1 induce lung macrophages to produce ROS,which will oxidize phospholipids and generate OxPLs,which will then activate TLR4-TRIF-NFkB pathway,producing large quantity of cytokines,inducing ALI.ROS inhibitors,antibodies that can bind OxPLs can alievate the severity of ALI.
     2.H5N1 viruses induce autophagy in lung epithelial cells via Akt-TSC2-mTOR pathway.This autophagy leads to cell death,which will cause lung injury.Specific inhibitors and siRNAs targeting autophagy will alievate the severity of ALI.
     These findings expand our understanding of H5N1 induced lung injury and also provide valuable information for the anti-viral research.
     Mechanism of H5N1 avian influenza entry host cells
     The mechanism of influenza virus entry has been widely studied;however,all the studies have been carried out with virus strain H1N1,and most of the studies have used the canine kidney cell line MDCK.It has been reported that the influenza virus can enter cells via clathrin-mediated endocytosis,caveolae-mediated endocytosis,or non-clathrin-, non-caveolae-dependent endocytosis,depending on the different cell lines or virus strains used.However,since the risk of an H5N1 pandemic is increasing due to the widespread occurrence of birds infected with H5N1 and the lack of effective drugs or vaccines,it is imperative to understand the mechanism of disease caused by H5N1 in humans.In this paper,we used the H5N1 strain and a cell line of human lung tissue origin,which is the main target of H5N1 infection,and found that the H5N1 virus can enter a human lung carcinoma cell line via clathrin-dependent endocytosis.This finding is relevant for the development of novel therapeutic drugs targeting influenza virus H5N1.
引文
[1]张国强,刘志刚,俞炜源,哺乳动物细胞高效表达系统研究进展[J],生物技术通讯,2005,16(1):56-59
    [2]吴丹,仇华吉,童光志,几种表达系统的比较[J],生物技术通报,2002,2:30-34
    [3]优化基因表达的关键因素之:基因的重新设计和合成[OL],丁香通,2008-7-21
    [4]刘定燮,周晓巍,黄培堂,哺乳动物细胞表达系统及其研究进展[J],生物技术通讯,2003,14(4):308-311
    [5]董德祥等,疫苗技术基础与应用[M],北京,化学工业出版社,2002,76
    [6]J(u|¨)rgen Haas,Eun-Chung Park and Brian Seed,Codon usage limitation in the expression of HIV-1 envelope glycoprotein[J],Current Biology,1996,6(3):315-324
    [1].C.Drosten,S.Gunther,W.Preiser,S.van der Werf,H.R.Brodt,S.Becker,H.Rabenau,M.Panning,L.Kolesnikova,R.A.Fouchier,A.Berger,A.M.Burguiere,J.Cinatl,M.Eickmann,N.Escriou,K.Grywna,S.Kramme,J.C.Manuguerra,S.Muller,V.Rickerts,M.Sturmer,S.Vieth,H.D.Klenk,A.D.Osterhaus,H.Schmitz,H.W.Doerr,Identification of a novel coronavirus in patients with severe acute respiratory syndrome[J],N Engl J Med 2003,348:1967-1976
    [2].T.G.Ksiazek,D.Erdman,C.S.Goldsmith,S.R.Zaki,T.Peret,S.Emery,S.Tong,C.Urbani,J.A.Comer,W.Lim,P.E.Rollin,S.F.Dowell,A.E.Ling,CD.Humphrey,W.J.Shieh,J.Guarner,CD.Paddock,P.Rota,B.Fields,J.DeRisi,J.Y.Yang,N.Cox,J.M.Hughes,J.W.LeDuc,W.J.Bellini,L.J.Anderson,A novel coronavirus associated with severe acute respiratory syndrome[J],N Engl J Med 2003,348:1953-1966.
    [3].M.A.Marra,S.J.Jones,C.R.Astell,R.A.Holt,A.Brooks-Wilson,Y.S.Butterfield,J.Khattra,J.K.Asano,S.A.Barber,S.Y.Chan,A.Cloutier,S.M.Coughlin,D.Freeman,N.Girn,O.L.Griffith,S.R.Leach,M.Mayo,H.McDonald,S.B.Montgomery,P.K.Pandoh,A.S.Petrescu,A.G.Robertson,J.E.Schein,A.Siddiqui,D.E.Smailus,J.M.Stott,G.S.Yang,F.Plummer,A.Andonov,H.Artsob,N.Bastien,K.Bernard,T.F.Booth,D.Bowness,M.Czub,M.Drebot,L.Fernando,R.Flick,M.Garbutt,M.Gray,A.Grolla,S.Jones,H.Feldmann,A.Meyers,A.Kabani,Y.Li,S.Normand,U.Stroher,G.A.Tipples,S.Tyler,R.Vogrig,D.Ward,B.Watson,R.C.Brunham,M.Krajden,M.Petric,D.M.Skowronski,C.Upton,R.L.Roper,The Genome sequence of the SARS-associated coronavirus[J],Science,2003,300:1399-1404
    [4].W.Li,M.J.Moore,N.Vasilieva,J.Sui,S.K.Wong,M.A.Berne,M.Somasundaran,J.L. Sullivan, K. Luzuriaga, T.C Greenough, H. Choe, M. Farzan,Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus[J],Nature, 2003,426: 450-454
    [5].K.Kuba,Y.Imai,S.Rao,H.Gao,F.Guo,B.Guan,Y.Huan,P.Yang,Y.Zhang,W.Deng,L.Bao,B.Zhang,G.Liu,Z.Wang,M.Chappell,Y.Liu,D.Zheng,A.Leibbrandt,T.Wada,A.S.Slutsky,D.Liu,C.Qin,C.Jiang,J.M.Penninger,A crucial role of angiotensin converting enzyme 2(ACE2)in SARS coronavirus-induced lung injury[J],Nat.Med.,2005,11: 875-879
    [6].I.Hamming,W.Timens,M.L.Bulthuis,A.T.Lely,G.J.Navis,H.van Goor,Tissue distribution of ACE2 protein,the functional receptor for SARS coronavirus.A first step in understanding SARS pathogenesis[J],J.Pathol.2004,203: 631-637
    [7].A.Marzi,T.Gramberg,G.Simmons,P.Moller,A.J.Rennekamp,M.Krumbiegel,M.Geier,J.Eisemann,N.Turza,B.Saunier,A.Steinkasserer,S.Becker,P.Bates,H.Hofmann,S.Pohlmann,DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of the severe acute respiratory syndrome coronavirus[J],J.Virol.2004,78:12090-12095.
    [8].S.A.Jeffers,S.M.Tusell,L.Gillim-Ross,E.M.Hemmila,J.E.Achenbach,G.J.Babcock,W.D.Thomas Jr,L.B.Thackray,M.D.Young,R.J.Mason,D.M.Ambrosino,D.E.Wentworth,J.C.Demartini,K.V.Holmes,CD209L(L-SIGN)is a receptor for severe acute respiratory syndrome coronavirus[J],Proc.Natl.Acad.Sci.US A.2004,101: 15748-53
    [9].V.S.Chan,K.Y.Chan,Y.Chen,L.L.Poon,A.N.Cheung,B.Zheng,K.H.Chan,W.Mak,H.Y.Ngan,X.Xu,G.Screaton,P.K.Tarn,J.M.Austyn,L.C.Chan,S.P.Yip,M.Peiris,U.S.Khoo,C.L.Lin,Homozygous L-SIGN(CLEC4M)plays a protective role in SARS coronavirus infection[J],Nat.Genet.2006,38:38-46
    [10].Fackler OT,Peterlin BM.Endocytic entry of HIV-1[J].Curr Biol.2000,10:1005-1008.
    [11].Cantin C,Holguera J,Ferreira L,Villar E,Munoz-Barroso I.Newcastle disease virus may enter cells by caveolae-mediated endocytosis[J].J Gen Virol.2007,88:559-569
    [12].Ng ML,Tan SH,See EE,Ooi EE,Ling AE.Early events of SARS coronavirus infection in vero cells[J].J Med Virol 2003;71:323-31
    [13].Qinfen Z,Jinming C,Xiaojun H,et al.The life cycle of SARS coronavirus in Vero E6 cells[J].J Med Virol 2004;73:332-7
    [14].Yang ZY,Huang Y,Ganesh L,et al.pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN[J].J Virol 2004;78:5642-50
    [15].Simmons G,Gosalia DN,Rennekamp AJ,Reeves JD,Diamond SL,Bates P.Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry[J].Proc Natl Acad Sci U S A 2005;102:11876-81
    [16].Negre D,Mangeot PE,Duisit G,et al.Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus(SIVmac251)that efficiently transduce mature human dendritic cells[J].Gene Ther 2000;7:1613-23
    [17].Moore MJ,Dorfman T,Li W,et al.Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2[J].J Virol 2004;78:10628-35
    [18].Wang LH,Rothberg KG,Anderson RG.Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation[J].J Cell Biol 1993;123:1107-17
    [19].Benmerah A,Bayrou M,Cerf-Bensussan N,Dautry-Varsat A.Inhibition of clathrin-coated pit assembly by an Epsl5 mutant[J].J Cell Sci 1999;112(Pt 9):1303-11
    [20].Sieczkarski SB,Whittaker GR.Dissecting virus entry via endocytosis[J].J Gen Virol 2002;83:1535-45.
    [21].Sanchez-San Martin C,Lopez T,Arias CF,Lopez S.Characterization of rotavirus cell entry[J].J Virol 2004;78:2310-8
    [22].Inoue Y,Tanaka N,Tanaka Y,et al.Clathrin-dependent Entry of SARS Coronavirus into Target Cells Expressing Cytoplasmic Tail-deleted ACE2[J].J Virol 2007
    [1].Horimoto T,Kawaoka Y.Influenza:lessons from past pandemics,warnings from current incidents[J].Nat Rev Microbiol 2005;3:591-600
    [2].de Jong JC,Claas EC,Osterhaus AD,Webster RG,Lim WL.A pandemic warning?[J].Nature 1997;389:554
    [3].Spackman E.A brief introduction to the avian influenza virus[J].Methods Mol Biol 2008;436:1-6.
    [4].Thanh TT,van Doom HR,de Jong MD.Human H5N1 influenza:current insight into pathogenesis[J].Int J Biochem Cell Biol 2008;40:2671-4.
    [5].Rogers GN,Paulson JC.Receptor determinants of human and animal influenza virus isolates:differences in receptor specificity of the H3 hemagglutinin based on species of origin[J].Virology 1983;127:361-73.
    [6].Ito T,Couceiro JN,Kelm S,et al.Molecular basis for the generation in pigs of influenza A viruses with pandemic potential[J].J Virol 1998;72:7367-73
    [7].Cyranoski D.Bird flu spreads among Java's pigs[J].Nature 2005;435:390-1.
    [8].de Jong MD,Bach VC,Phan TQ,et al.Fatal avian influenza A(H5N1)in a child presenting with diarrhea followed by coma[J].N Engl J Med 2005;352:686-91
    [9].Abdel-Ghafar AN,Chotpitayasunondh T,Gao Z,et al.Update on avian influenza A(H5N1)virus infection in humans[J].N Engl J Med 2008;358:261-73
    [10].Hui DS.Review of clinical symptoms and spectrum in humans with influenza A/H5N1 infection[J].Respirology 2008;13 Suppl LS10-3
    [11].Tang PS,Mura M,Seth R,Liu M.Acute lung injury and cell death:how many ways can cells die?[J].Am J Physiol Lung Cell Mol Physiol 2008;294:L632-41
    [12].Martin TR,Hagimoto N,Nakamura M,Matute-Bello G.Apoptosis and epithelial injury in the lungs[J].Proc Am Thorac Soc 2005;2:214-20
    [13].KATHLEEN B.SCHWARZ,Oxidative stress during viral infection:A review[J].[J],Free Radical Biology & Medicine,1996,21(5):641-649
    [14].Klionsky,D.J.Autophagy:from phenomenology to molecular understanding in less than a decade[J].Nature reviews Molecular Cell Biology,2007,8:931-937.
    [15].Baehrecke,E.H.Autophagy:dual roles in life and death?[J].Nature reviews Molecular Cell Biology,2005,6:505-510
    [1].Sieczkarski SB,Whittaker GR.Dissecting virus entry via endocytosis[J].J Gen Virol,2002;83:1535-45
    [2].Pelkmans L,Helenius A.Insider information:what viruses tell us about endocytosis[J].Curr Opin Cell Biol,2003;15:414-22
    [3].Matlin KS,Reggio H,Helenius A,Simons K.Infectious entry pathway of influenza virus in a canine kidney cell line[J].J Cell Biol,1981;91:601-13
    [4].Rust MJ,Lakadamyali M,Zhang F,Zhuang X.Assembly of endocytic machinery around individual influenza viruses during viral entry[J].Nat Struct Mol Biol,2004;11:567-73
    [5].Nunes-Correia I,Eulalio A,Nir S,Pedroso de Lima MC.Caveolae as an additional route for influenza virus endocytosis in MDCK cells[J].Cell Mol Biol Lett,2004;9:47-60
    [6].Sieczkarski SB,Whittaker GR.Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis[J].J Virol,2002;76:10455-64
    [7].Ahn A,Gibbons DL,Kielian M.The fusion peptide of Semliki Forest virus associates with sterol-rich membrane domains[J].J Virol 2002;76:3267-75.
    [8].Guo Y,Rumschlag-Booms E,Wang J,et al.Analysis of hemagglutinin-mediated entry tropism of H5N1 avian influenza[J].Virol J 2009;6:39.
    [1]C.Drosten,S.Gunther,W.Preiser,S.van der Werf,H.R.Brodt,S.Becker,H.Rabenau,M.Panning,L.Kolesnikova,R.A.Fouchier,A.Berger,A.M.Burguiere,J.Cinatl,M.Eickmann,N.Escriou,K.Grywna,S.Kramme,J.C.Manuguerra,S.Muller,V.Rickerts,M.Sturmer,S.Vieth,H.D.Klenk,A.D.Osterhaus,H.Schmitz,H.W.Doerr,Identification of a novel coronavirus in patients with severe acute respiratory syndrome,N Engl J Med 348(2003)1967-1976.
    [2]T.G.Ksiazek,D.Erdman,C.S.Goldsmith,S.R.Zaki,T.Peret,S.Emery,S.Tong,C.Urbani,J.A.Comer,W.Lim,P.E.Rollin,S.F.Dowell,A.E.Ling,CD.Humphrey,W.J.Shieh,J.Guarner,CD.Paddock,P.Rota,B.Fields,J.DeRisi,J.Y.Yang,N.Cox,J.M.Hughes,J.W.LeDuc,W.J.Bellini,L.J.Anderson,A novel coronavirus associated with severe acute respiratory syndrome,N Engl J Med 348(2003)1953-1966.
    [3]P.A.Rota,M.S.Oberste,S.S.Monroe,W.A.Nix,R.Campagnoli,J.P.Icenogle,S.Penaranda,B.Bankamp,K.Maher,M.H.Chen,S.Tong,A.Tamin,L.Lowe,M.Frace,J.L.DeRisi,Q.Chen,D.Wang,D.D.Erdman,T.C Peret,C Burns,T.G.Ksiazek,P.E.Rollin,A.Sanchez,S.Liffick,B.Holloway,J.Limor,K.McCaustland,M.Olsen-Rasmussen,R.Fouchier,S.Gunther,A.D.Osterhaus,C.Drosten,M.A.Pallansch,L.J.Anderson,W.J.Bellini,Characterization of a novel coronavirus associated with severe acute respiratory syndrome,Science 300(2003)1394-1399.
    [4]M.A.Marra,S.J.Jones,CR.Astell,R.A.Holt,A.Brooks-Wilson,Y.S.Butterfield,J.Khattra,J.K.Asano,S.A.Barber,S.Y.Chan,A.Cloutier,S.M.Coughlin,D.Freeman,N.Girn,O.L.Griffith,S.R.Leach,M.Mayo,H.McDonald,S.B.Montgomery,P.K.Pandoh,A.S.Petrescu,A.G.Robertson,J.E.Schein,A.Siddiqui,D.E.Smailus,J.M.Stott,G.S.Yang,F.Plummer,A.Andonov,H.Artsob,N.Bastien,K.Bernard,T.F.Booth,D.Bowness,M.Czub,M.Drebot,L.Fernando,R.Flick,M.Garbutt,M.Gray,A.Grolla,S.Jones,H.Feldmann,A.Meyers,A.Kabani,Y.Li,S.Normand,U.Stroher,G.A.Tipples,S.Tyler,R.Vogrig,D.Ward,B.Watson,R.C.Brunham,M.Krajden,M.Petric,D.M.Skowronski,C.Upton,R.L.Roper,The Genome sequence of the SARS-associated coronavirus,Science 300(2003)1399-1404.
    [5]Z.Y.Yang,Y.Huang,L.Ganesh,K.Leung,W.P.Kong,O.Schwartz,K.Subbarao,G.J.Nabel,pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN,J Virol 78(2004)5642-5650.
    [6]E.J.Snijder,P.J.Bredenbeek,J.C.Dobbe,V.Thiel,J.Ziebuhr,L.L.Poon,Y.Guan,M.Rozanov,W.J.Spaan,A.E.Gorbalenya,Unique and conserved features of genome and proteome of SARS-coronavirus,an early split-off from the coronavirus group 2 lineage,J Mol Biol 331(2003)991-1004.
    [7]W.Li,M.J.Moore,N.Vasilieva,J.Sui,S.K.Wong,M.A.Berne,M.Somasundaran,J.L. Sullivan, K. Luzuriaga, T.C. Greenough, H. Choe, M. Farzan,Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus,Nature 426(2003)450-454.
    [8]K.Kuba,Y.Imai,S.Rao,H.Gao,F.Guo,B.Guan,Y.Huan,P.Yang,Y.Zhang,W.Deng,L.Bao,B.Zhang,G.Liu,Z.Wang,M.Chappell,Y.Liu,D.Zheng,A.Leibbrandt,T.Wada,A.S.Slutsky,D.Liu,C.Qin,C.Jiang,J.M.Penninger,A crucial role of angiotensin converting enzyme 2(ACE2)in SARS coronavirus-induced lung injury,Nat Med 11(2005)875-879.
    [9]F.Li,W.Li,M.Farzan,S.C.Harrison,Structure of SARS coronavirus spike receptor-binding domain complexed with receptor,Science 309(2005)1864-1868.
    [10]I.Hamming,W.Timens,M.L.Bulthuis,A.T.Lely,G.J.Navis,H.van Goor,Tissue distribution of ACE2 protein,the functional receptor for SARS coronavirus.A first step in understanding SARS pathogenesis,J Pathol 203(2004)631-637.
    [11]A.Marzi,T.Gramberg,G.Simmons,P.Moller,A.J.Rennekamp,M.Krumbiegel,M.Geier,J.Eisemann,N.Turza,B.Saunier,A.Steinkasserer,S.Becker,P.Bates,H.Hofmann,S.Pohlmann,DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus,J Virol 78(2004)12090-12095.
    [12]S.A.Jeffers,S.M.Tusell,L.Gillim-Ross,E.M.Hemmila,J.E.Achenbach,G.J.Babcock,W.D.Thomas,Jr.,L.B.Thackray,M.D.Young,R.J.Mason,D.M.Ambrosino,D.E.Wentworth,J.C.Demartini,K.V.Holmes,CD209L(L-SIGN)is a receptor for severe acute respiratory syndrome coronavirus,Proc Natl Acad Sci U S A 101(2004)15748-15753.
    [13]V.S.Chan,K.Y.Chan,Y.Chen,L.L.Poon,A.N.Cheung,B.Zheng,K.H.Chan,W.Mak,H.Y.Ngan,X.Xu,G.Screaton,P.K.Tam,J.M.Austyn,L.C.Chan,S.P.Yip,M. Peiris,U.S.Khoo,C.L.Lin,Homozygous L-SIGN(CLEC4M)plays a protective role in SARS coronavirus infection,Nat Genet 38(2006)38-46.
    [14]I.C.Huang,B.J.Bosch,F.Li,W.Li,K.H.Lee,S.Ghiran,N.Vasilieva,T.S.Dermody,S.C.Harrison,P.R.Dormitzer,M.Farzan,P.J.Rottier,H.Choe,SARS coronavirus,but not human coronavirus NL63,utilizes cathepsin L to infect ACE2-expressing cells,J Biol Chem 281(2006)3198-3203.
    [15]S.Liu,G.Xiao,Y.Chen,Y.He,J.Niu,C.R.Escalante,H.Xiong,J.Farmar,A.K.Debnath,P.Tien,S.Jiang,Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus:implications for virus fusogenic mechanism and identification of fusion inhibitors,Lancet 363(2004)938-947.
    [16]K.W.Tsang,P.L.Ho,G.C.Ooi,W.K.Yee,T.Wang,M.Chan-Yeung,W.K.Lam,W.H.Seto,L.Y.Yam,T.M.Cheung,P.C.Wong,B.Lam,M.S.Ip,J.Chan,K.Y.Yuen,K.N.Lai,A cluster of cases of severe acute respiratory syndrome in Hong Kong,N Engl J Med 348(2003)1977-1985.
    [17]J.S.Peiris,CM.Chu,V.C.Cheng,K.S.Chan,I.F.Hung,L.L.Poon,K.I.Law,B.S.Tang,T.Y.Hon,C.S.Chan,K.H.Chan,J.S.Ng,B.J.Zheng,W.L.Ng,R.W.Lai,Y.Guan,K.Y.Yuen,Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia:a prospective study,Lancet 361(2003)1767-1772.
    [18]Z.Lang,L.Zhang,S.Zhang,X.Meng,J.Li,C.Song,L.Sun,Y.Zhou,Pathological study on severe acute respiratory syndrome,Chin Med J(Engl)116(2003)976-980.
    [19]K.T.Wong,G.E.Antonio,D.S.Hui,N.Lee,E.H.Yuen,A.Wu,C.B.Leung,T.H.Rainer,P.Cameron,S.S.Chung,J.J.Sung,A.T.Ahuja,Severe acute respiratory syndrome:radiographic appearances and pattern of progression in 138 patients,Radiology 228(2003)401-406.
    [20]C.M.Booth,L.M.Matukas,G.A.Tomlinson,A.R.Rachlis,D.B.Rose,H.A.Dwosh,S.L.Walmsley,T.Mazzulli,M.Avendano,P.Derkach,I.E.Ephtimios,I.Kitai,B.D.Mederski,S.B.Shadowitz,W.L.Gold,L.A.Hawryluck,E.Rea,J.S.Chenkin,D.W.Cescon,S.M.Poutanen,A.S.Detsky,Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area,Jama 289(2003)2801-2809.
    [21]R.S.Wong,A.Wu,K.F.To,N.Lee,C.W.Lam,C.K.Wong,P.K.Chan,M.H.Ng,L.M.Yu,D.S.Hui,J.S.Tarn,G.Cheng,J.J.Sung,Haematological manifestations in patients with severe acute respiratory syndrome:retrospective analysis,Bmj 326(2003)1358-1362.
    [22]R.Reghunathan,M.Jayapal,L.Y.Hsu,H.H.Chng,D.Tai,B.P.Leung,A.J.Melendez,Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome,BMC Immunol 6(2005)2.
    [23]J.Sui,W.Li,A.Roberts,L.J.Matthews,A.Murakami,L.Vogel,S.K.Wong,K.Subbarao,M.Farzan,W.A.Marasco,Evaluation of human monoclonal antibody 80R for immunoprophylaxis of severe acute respiratory syndrome by an animal study,epitope mapping,and analysis of spike variants,J Virol 79(2005)5900-5906.
    [24]M.Yang,C.K.Li,K.Li,K.L.Hon,M.H.Ng,P.K.Chan,T.F.Fok,Hematological findings in SARS patients and possible mechanisms(review),Int J Mol Med 14(2004)311-315.
    [25]T.Mizutani,S.Fukushi,M.Murakami,T.Hirano,M.Saijo,I.Kurane,S.Morikawa,Tyrosine dephosphorylation of STAT3 in SARS coronavirus-infected Vero E6 cells,FEBS Lett 577(2004)187-192.
    [26]T.Mizutani,S.Fukushi,M.Saijo,I.Kurane,S.Morikawa,Regulation of p90RSK phosphorylation by SARS-CoV infection in Vero E6 cells,FEBS Lett 580(2006)1417-1424.
    [27]Y.Imai,K.Kuba,S.Rao,Y.Huan,F.Guo,B.Guan,P.Yang,R.Sarao,T.Wada,H.Leong-Poi,M.A.Crackower,A.Fukamizu,C.C.Hui,L.Hein,S.Uhlig,A.S.Slutsky,C.Jiang,J.M.Penninger,Angiotensin-converting enzyme 2 protects from severe acute lung failure,Nature 436(2005)112-116.
    [28]Z.Y.Yang,W.P.Kong,Y.Huang,A.Roberts,B.R.Murphy,K.Subbarao,G.J.Nabel,A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice,Nature 428(2004)561-564.
    [29]D.M.Zhang,G.L.Wang,J.H.Lu,Severe acute respiratory syndrome:vaccine on the way,Chin Med J(Engl)118(2005)1468-1476.
    [30]W.Li,C.Zhang,J.Sui,J.H.Kuhn,M.J.Moore,S.Luo,S.K.Wong,I.C.Huang,K.Xu,N.Vasilieva,A.Murakami,Y.He,W.A.Marasco,Y.Guan,H.Choe,M.Farzan,Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2,Embo J 24(2005)1634-1643.
    1. Abdel-Ghafar AN,Chotpitayasunondh T,Gao Z,et al.Update on avian influenza A(H5N1)virus infection in humans.N Engl J Med 2008;358:261-73.
    2. Hui DS.Review of clinical symptoms and spectrum in humans with influenza A/H5N1 infection.Respirology 2008;13 Suppl 1:S10-3.
    3. Thanh TT,van Doom HR,de Jong MD.Human H5N1 influenza:current insight into pathogenesis.Int J Biochem Cell Biol 2008;40:2671-4.
    4. Gambotto A,Barratt-Boyes SM,de Jong MD,Neumann G,Kawaoka Y.Human infection with highly pathogenic H5N1 influenza virus.Lancet 2008;371:1464-75.
    5. Spackman E.A brief introduction to the avian influenza virus.Methods Mol Biol 2008;436:1-6.
    6. Horimoto T,Kawaoka Y.Influenza:lessons from past pandemics,warnings from current incidents.Nat Rev Microbiol 2005;3:591-600.
    7. Lewis DB.Avian flu to human influenza.Annu Rev Med 2006;57:139-54.
    8. Matrosovich MN,Matrosovich TY,Gray T,Roberts NA,Klenk HD.Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium.J Virol 2004;78:12665-7.
    9. Air GM,Laver WG.The neuraminidase of influenza virus.Proteins 1989;6:341-56.
    10.Seo SH,Hoffmann E,Webster RG.The NS1 gene of H5N1 influenza viruses circumvents the host anti-viral cytokine responses.Virus Res 2004;103:107-13.
    11.Allen PJ.Avian influenza pandemic:not if,but when.Pediatr Nurs 2006;32:76-81.
    12.de Jong JC,Claas EC,Osterhaus AD,Webster RG,Lim WL.A pandemic warning?Nature 1997;389:554.
    13.Zambon MC.The pathogenesis of influenza in humans.Rev Med Virol 2001;11:227-41.
    14.Pascoe N.A pandemic flu:not if,but when.SARS was the wake-up call we slept through.Tex Nurs 2006;80:6-10.
    15.Suzuki Y.Sialobiology of influenza:molecular mechanism of host range variation of influenza viruses.Biol Pharm Bull 2005;28:399-408.
    16.Rogers GN,Paulson JC.Receptor determinants of human and animal influenza virus isolates:differences in receptor specificity of the H3 hemagglutinin based on species of origin.Virology 1983;127:361-73.
    17.Ito T,Couceiro JN,Kelm S,et al.Molecular basis for the generation in pigs of influenza A viruses with pandemic potential.J Virol 1998;72:7367-73.
    18.Cyranoski D.Bird flu spreads among Java's pigs.Nature 2005;435:390-1.
    19.Ma Wenjun REKaJAR.The pig as a mixing vessel for influenza viruses:Human and veterinary implications J Mol Genet Med 2009;3:158-66.
    20.Nicholls JM,Chan RW,Russell RJ,Air GM,Peiris JS.Evolving complexities of influenza virus and its receptors.Trends Microbiol 2008;16:149-57.
    21.Guo Y,Rumschlag-Booms E,Wang J,et al.Analysis of hemagglutinin-mediated entry tropism of H5N1 avian influenza.Virol J 2009;6:39.
    22.Nicholls JM,Peiris JS.Avian influenza:update on pathogenesis and laboratory diagnosis.Respirology 2008;13 Suppl 1:S14-8.
    23.de Jong MD,Bach VC,Phan TQ,et al.Fatal avian influenza A(H5N1)in a child presenting with diarrhea followed by coma.N Engl J Med 2005;352:686-91.
    24.Abrahams A HN,French H.A further investigation into influenzo-pneumococcoal septicaemia:epidemic influenzal 'pneumonic' of highly fatal type and its relation to purulent bronchitis,lancet 1919;196:1-11.
    25.Johnson NP,Mueller J.Updating the accounts:global mortality of the 1918-1920 "Spanish" influenza pandemic.Bull Hist Med 2002;76:105-15.
    26.Imai Y,Kuba K,Neely GG,et al.Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury.Cell 2008;133:235-49.
    27.Akira S,Takeda K.Toll-like receptor signalling.Nat Rev Immunol 2004;4:499-511.
    28.Miller YI,Viriyakosol S,Binder CJ,Feramisco JR,Kirkland TN,Witztum JL.Minimally modified LDL binds to CD 14,induces macrophage spreading via TLR4/MD-2,and inhibits phagocytosis of apoptotic cells.J Biol Chem 2003;278:1561-8.
    29.Tang PS,Mura M,Seth R,Liu M.Acute lung injury and cell death:how many ways can cells die? Am J Physiol Lung Cell Mol Physiol 2008;294:L632-41.
    30.Martin TR,Hagimoto N,Nakamura M,Matute-Bello G.Apoptosis and epithelial injury in the lungs.Proc Am Thorac Soc 2005;2:214-20.
    31.Uiprasertkul M,Kitphati R,Puthavathana P,et al.Apoptosis and pathogenesis of avian influenza A(H5N1)virus in humans.Emerg Infect Dis 2007;13:708-12.
    32.Tumpey TM,Lu X,Morken T,Zaki SR,Katz JM.Depletion of lymphocytes and diminished cytokine production in mice infected with a highly virulent influenza A(H5N1)virus isolated from humans.J Virol 2000;74:6105-16.
    33.Li C,LH,Sun Y,et al.Nanoparticle Starburst polyamidoamine dendrimers promote acute lung injury by inducing autophagic cell death through Akt-TSC2-mTOR signaling pathway.Journal of Molecular Cell Biology(in press)
    34.Kuba K,Imai Y,Rao S,et al.A crucial role of angiotensin converting enzyme 2(ACE2)in SARS coronavirus-induced lung injury.Nat Med 2005;11:875-9.
    35.Wang H,Rao S,Jiang C.Molecular pathogenesis of severe acute respiratory syndrome.Microbes Infect 2007;9:119-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700