龙眼子叶胚发育相关的若干基因克隆及序列分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
龙眼(Dimocarpus Longan Lour)属无患子科(Sapindaceae )龙眼属,是我国南方诸省较重要而有特色的一种热带亚热带木本果树。由于龙眼合子胚遗传背景复杂,童期长,阻碍对其胚胎发育相关基因的研究。本文以龙眼子叶胚为材料,建立cDNA-AFLP技术体系,分析龙眼胚胎发育相关的基因差异表达,为研究龙眼胚胎发育奠定基础。建立了RACE体系,克隆了看家基因3-磷酸甘油醛脱氢酶基因(GAPDH),并作为后续试验的内参;以这个RACE体系克隆了一系列与龙眼胚胎发育相关的基因,同时对这些基因在胚胎发育中的表达特性也进行了研究。
     1利用cDNA-AFLP技术分析龙眼子叶胚的发育
     分别以小量法和大量法提取‘红核子’龙眼谢花后35天子叶胚(早期子叶胚)和谢花后50天子叶胚(晚期子叶胚)的RNA,经过合成双链cDNA、酶切、加接头、预扩增和选择性扩增一系列步骤,建立适宜于龙眼子叶胚的cDNA-AFLP分析体系,得到了条带清晰、对应良好、信号强度基本一致、分布均匀的cDNA-AFLP指纹图谱,对41个差异片段回收克隆和序列分析,发现其中21个与已知功能基因具有高度同源性,这些基因的功能主要涉及侧生器官的离轴极性、糖酵解、能量代谢、离子转运、细胞壁伸长、细胞周期调控、RNA转录、RNA翻译和调控、蛋白磷酸化调控和降解、信号转导等;另外20个片段与已知基因的同源性较低或未发现同源性。随机挑选7个进行RACE扩增,RT-PCR检测其表达情况。
     2龙眼子叶胚GAPDH基因全长cDNA克隆及序列分析
     根据Super SMARTTM PCR cDNA Synthesis Kit特点,设计两端锚定引物,同时根据与已知的GAPDH基因高度同源的EST序列设计巢式引物,成功地扩增出该基因的3′端和5′端,说明这种RACE方法适合用于扩增龙眼子叶胚的基因。
     序列分析表明,该基因的cDNA全长为1395bp,包括一个长1008bp,编码336个氨基酸的开放阅读框,其核苷酸和氨基酸序列与其他物种的GAPDH基因具有高度同源性。GAPDH基因是组成型表达,可以作为内参基因。
     3龙眼子叶胚离轴极性基因YABBY2的克隆和序列分析
     采用巢式的RACE方法,获得与拟南芥YABBY2同源的基因,共获得三个全长YAB2-1,YAB2-2,YAB2-3和三个片段YAB2-4,YAB2-5,YAB2-6。
     生物信息学分析表明这几个基因有不同的3′端非编码区和5′端非编码区,有高度一致的开放阅读框,在YAB2-1,YAB2-2,YAB2-3的5′端非编码区发现疑似的IRES序列。
     半定量RT-PCR分析表明YAB2-3在早期子叶胚显著地表达,在晚期子叶胚中微量表达;YAB2-1和YAB2-2在早期和晚期胚都显著表达,但早期表达量大;YAB2-4是微量表达的基因,在晚期胚胎表达量较大。
     4龙眼胚胎FVE、Remorin、CCR4-NOT等基因克隆和序列分析
     采用巢式的RACE方法,成功地扩增龙眼的FVE、Remorin、CCR4-NOT的全长序列,获得硫转运蛋白基因的5′端序列、脱水应答蛋白相关基因3′端序列和几丁质酶基因3′端序列。FVE基因具有WD40superfamily结构域,表达量极其显著,早期表达量较大;Remorin基因在早期胚中显著地表达,在晚期胚微弱地表达;CCR4-NOT基因在早期和晚期胚都显著表达,早期胚胎表达量较大;硫转运蛋白基因是微量表达的基因,在早期胚胎中表达量较大;几丁质酶基因也是微量表达的基因,在晚期胚胎表达量较大。脱水应答蛋白的相关基因在早期胚显著表达,但晚期胚微量表达。
Longan (Dimocarpus Longan Lour), which belongs to Sapindaceae Lour, is one of the most important and characteristic tropical and subtropical woody fruit trees in those provinces located in South of China. Due to the complex genetic background of Longan zygotic embryos and long juvenile period, the research on genes related to embryonic development is hindered. In the present study, with the cotyledon embryos as plant materials, the cDNA-AFLP technology system was established and then used to investigate the differentially expressed genes concerning embryonic development of Longan, which aimed to lay the foundation for the research on Longan embryonic development. Secondly, the RACE system was established and the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH) in Longan was successfully isolated which could serve as a reference gene in the subsequent study. Moreover, with the RACE system established here, a series of genes relevant to Longan embryonic development were cloned and the expression profile of these genes during embryonic development was also demonstrated.
     1. Differentially expressed analysis in Longan cotyledon embryo by cDNA-AFLP
     The‘honghezi’Longan (Dimdcarpus longan Lour.) cotyledon embryo, of which the flowers had faded and flied for more than thirty-five days (early cotyledon embryos) or fifty days (late cotyledon embryos) , was utilized as plant materials to isolate the RNA. Then, the corresponding RNA was used for double-stranded cDNA synthesis, enzyme digest, anchors ligation, pre-amplification and selective amplification. The result of polyacrylamide gel electrophoresis showed that, with strong signal and equal distribution, the amplification bands of cDNA-AFLP were clear and easy to discriminate. Thus, the cDNA-AFLP system suitable for the differential expression analysis was established successfully. Then, 41 differentially expressed fragments were recovered, cloned and sequenced. The corresponding sequences of 20 differentially expressed fragments were found to highly homologous with some cloned genes with known function, the function mainly involved in the abaxial polarity of lateral organ, glycolysis, energy metabolism, ion transport, cell wall elongation, cell cycle regulation, RNA transcription, RNA translation and regulation, protein phosphorylation regulation and protein degradation, signal transduction and so on; while the sequences of the remaining genes had low homologous with function-known genes or even had no homologous with any function-known genes. Finally, seven genes were selected for RACE amplification, and the expression of these genes was also detected with RT-PCR.
     2. Full-length cDNA sequence cloning and sequence analysis of GAPDH gene in Longan cotyledon embryo
     According to the features of Super SMARTTM PCR cDNA Synthesis Kit, the primers anchored at both ends were designed, and at the same time in accordance with the sequence of EST which shows highly homologous to cloned GAPDH gene, nested primers were also designed. Then, the 3 'UTR and 5' region of GAPDH gene in Longan were successfully amplified. The amplification indicated that the method is suitable for RACE amplification of gene in Longan cotyledon embryo.
     The result of sequence analysis showed that the full-length cDNA sequence of GAPDH gene in Longan was 1395 bp long, including a 1008 bp long open reading frame (ORF) encoding 336 amino acids. The nucleotide and amino acid sequence of this cloned GAPDH gene were found to be highly homologous with GAPDH genes in other plant species. Through RT-PCR analysis, the expression of this GAPDH gene cloned here was constitutively expressed and could be used as a reference gene.
     3. Cloning and sequence analysis of abaxial polarity gene YABBY2 in Longan cotyledon embryo
     Using the method of nested RACE amplification, the abaxial polarity YABBY2 genes which shared high homology with Arabidopsis abaxial polarity gene YABBY2 were obtained. In total, there were three full-length cDNA sequences YAB2-1, YAB2-2 and YAB2-3 and three partial fragments YAB2-4, YAB2-5 and YAB2-6.
     Bioinformatics analysis indicated that these genes were highly homologous with each other in the corresponding ORF regions and had different kinds of 3 'UTR and 5' non-coding region. In the 5 'end of YAB2-1, YAB2-2 and YAB2-3, the putative non-coding region of the IRES was found.
     Semi-quantitative RT-PCR analysis showed that YAB2-3 was significantly expressed in the early cotyledon embryo and only a small amount of expression value existed in the late cotyledon embryo; the expression of both YAB2-1 and YAB2-2 in both early and late cotyledon embryos were obviously; however, YAB2-4, with only trace amounts of expression, had a relatively more amounts of expression in later embryos.
     4. Cloning and sequence analysis of FVE, Remorin, CCR4-NOT genes in Longan cotyledon embryo
     The nested RACE method was used and the full-length cDNA sequences of FVE, Remorin and CCR4-NOT genes were successfully obtained, plus the 5 'sequence of sulfur transfer protein gene and the 3' sequences of chitinase gene and dehydration-responsive protein-related gene. The expression of FVE genes was significant and especially high in the early phase; Remorin gene was expressed with a large amount in the early embryo and the expression of this gene in late embryonic expression was only faint; CCR4-NOT gene was highly expressed in both early late embryos and the expression in early embryo was relatively larger; Sulfur transfer protein gene, which was assumed a gene with tiny expression, was expressed at a relatively higher amount in the early embryo; The expression of chitinase gene was also tiny and the expression of this gene in late embryo was larger than that in early embryo; dehydration-responsive protein-related gene was found to be expressed significantly in the early embryo, but its expression in late embryo was only trace.
引文
[1]蔡长河,唐小浪,张爱玉.龙眼肉的食疗价值及其开发利用前景[J].食品科学,2002, 23, (8):328-330
    [2]李永清.龙眼的遗传进化与种群生态[J].云南农业大学学报,1989,4(1): 47-51
    [3]易干军,谭卫萍,霍合强,等.龙眼品种(系)遗传多样性及亲缘关系的AFLP分析[J].园艺学报,2003,30(3):272-276
    [4]谭卫萍.龙眼种质资源遗传多样性的分子评价及分类研究[D].湖南农业大学,2002
    [5]林同香,陈振光,戴思兰,等. RAPD技术在龙眼品种分类中的应用研究[J].植物学报,1998,40(12):1159-1165
    [6]彭建营,束怀瑞,孙仲序.分子标记技术及其在果树种质资源研究上的应用[J].山东农业大学学报(自然科学版) , 2001 , 32 (1):103-106
    [7]邓九生.龙眼和荔枝染色体DNA的提取与鉴定[J].广西农业大学学报,1998,17 (4) :393-395
    [8]赖钟雄,桑庆亮,陈春玲,等.龙眼的遗传学研究[J].福建农业大学学报,2000,29 (4):416-420
    [9] Williams FGK, Kubelik AR , Livak KJ, et al. DNApolymorphisms amplified by arbitrary prim ers areuseful as genetic markefs [J]. Nucleic Acids Res,1990,18: 6531-6535
    [10] Welsh J, Mc Clelland M. Fingerprinting genomes using PCR with arbitrary primers[J]. Nucleic Acids Res,1990,18: 7213-7218
    [11]钟凤林,潘东明,郭志雄,等.龙眼种质资源的RAPD分析[J].热带农业科学,2007,23(7):558-563
    [12] Yonemoto Y, Chowdhury A K,Kato H, et al. Cultivars identification and their genetic relationships inDimocarpus longan subspecies based on RAPD markers[J].Scientia Horticulturae,2006,109: 147–152
    [13]高慧颖,姜帆,陈秀萍,等.不同地域的代表性基因型龙眼RAPD分析[J].福建林业科技,2007,34(1):67-71
    [14]陈有志,刘成明.龙眼品种的RAPD鉴别及分析[J].中国果树,2001,4: 28-29
    [15]钟伟,林晓东,朱芳德,等.应用RAPD技术分析热带龙眼四季蜜与常规龙眼品种的遗传差异[J].中山大学学报(自然科学版) ,2004,43(增刊):65-68
    [16]王心燕,肖璇,乔爱民,等.‘石硖’龙眼芽变系双引物RAPD鉴定的研究[J].园艺学报,2006, 33 (1) :134-136
    [17]肖璇,孙敏,王心燕,等.‘石硖’龙眼大果型桂花味芽变系的RAPD分析鉴定[J].园艺学报, 2005 ,32(4):684-687
    [18] Zietkiewicz E, Rafalski A,Labuda D. Genome fingerprinting by simple sequence repeat(SSR) anchored polymerase chain reaction amplification[J]. Genomics,1994,20:176-183
    [19]张青林,罗正荣. ISSR及其在果树上的应用[J].果树学报, 2004, 21(1):54-58
    [20]曾黎辉,洪自同,许家辉,等.龙眼ISSR反应体系的建立和优化[J].中国农学通报,2007,23 (9):111-114
    [21]姜帆,高慧颖,陈秀萍,等.龙眼ISSR-PCR反应体系的优化及指纹图谱初探[J].福建农业学报,2007,22(3) :256-260
    [22]洪自同.龙眼品种的ISSR分析及焦核性状的分子标记研究[D].福建农林大学,2007
    [23]袁磊.龙眼遗传多样性及亲缘关系的ISSR分析[D].广西大学,2007
    [24]姜帆,高慧颖,陈秀萍,等.龙眼属rDNA的ITS序列分析[J].果树学报,2008,25 (2):262-268
    [25] Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting[J].Nucleic AcidsResearch, 1995, 23:4407- 4414
    [26] Lin TX, Lin Y, Ishiki K. Genetic diversity of Dimocarpus longan in China revealed by AFLP markersand partial rbcL gene sequences[J]. Sci. Horticult. 2005, 103:489-498
    [27]李江舟.广西龙眼遗传多样性及亲缘关系的AFLP分析[D].广西大学,2007
    [28]陈月华.龙眼大小年结果问题的剖析[J].福建农学院学报,1985,14(4):331-338
    [29]黄羌维.龙眼内源激素变化和花芽分化及大小年结果的关系[J].热带亚热带植物学报,1996,4(2):58-62
    [30]邱金淡,吴定尧,张海岚.石硖龙眼花芽分化的研究[J].华南农业大学学报,2001,22(1):27-30
    [31]陈清西,李松刚.氯酸钾诱导龙眼成花与叶片蛋白质及核酸含量变化的关系[J].果树学报,2004 21(3):278-280
    [32]李松刚.氯酸钾诱导龙眼(Dimocarpus longan Lour)成花及其生理生化变化的研究[D].福建农林大学,2003
    [33]兰树斌,李建国.植物LFY基因的研究进展.广西农业生物科学2007,26(增刊):132-137
    [34]曾黎辉,王庆莲,洪自同,等.龙眼LEAFY同源基因片段的克隆和表达.热带作物学报,2006, 27 (4):69-73
    [35]高慧颖,李韬,姜帆,等.龙眼APETALA1(AP1)同源基因的克隆与序列分析.福建果树,2006,137:1-3
    [36]龙强.龙眼(Dimocarpus longan Lour.)成花逆转蛋白质组学的初步研究[D].福建农林大学,2006
    [37]陈思思.龙眼花芽成花逆转的差异蛋白分析[D].福建农林大学,2008
    [38]庞国彩.龙眼花芽与叶芽差异蛋白质的初步研究[D].福建农林大学,2008
    [39]曾志.龙眼(Dimocarpus longan Lour.)成花逆转cDNA-AFLP分析,2008
    [40]梁文裕,陈伟,宋瑞峰,等.龙眼胚胎发育研究进展[J].亚热带植物科学,2004,33(4):65-68
    [41]郑少泉,黄金蚣,许秀淡,等.焦核龙眼种子发育特点观察[J].园艺学报, 1996,23(1): 83-85
    [42]陈伟,吕柳新.荔枝胚珠中多胺含量变化与胚胎发育的关系[J].热带亚热带植物学报,2000,8(3):229-234
    [43] Chen W, Lu L. Endogenous hormones in relation to embryo development in Litchi[J].Acta Horticulturae,2001, 558: 247-250
    [44]陈伟,吕柳新.兰竹荔枝胚珠内源激素含量变化与胚胎发育的关系[J].应用与环境生物学报, 2000,6(5):419-422
    [45] Chen W, Lu L. Relationship between Litchi embryo abortion and phenolic inhibitors[J].Acta BotanicaSinica,2002, 44(2): 168-172
    [46]陈伟,黄春梅,吕柳新.顽拗植物荔枝蛋白质双向电泳的改良方法[J].福建农业大学学报,2001,30(1):123-126
    [47]陈伟,吕柳新.乌叶荔枝胚胎发育过程特异蛋白的变化[J].园艺学报,2001,28(6):504-508
    [48]陈伟,吕柳新,叶陈亮,等.荔枝胚胎败育与胚珠内源激素关系研究[J].热带作物学报,2000, 21(3):34-38
    [49]梁文裕,许鸿川,陈伟,等.龙眼胚胎发育过程中胚珠内核酸、蛋白质和淀粉含量的变化[J].福建农林大学学报(自然科学版)2006,35(1):38-41
    [50]梁文裕,陈伟.龙眼胚珠多胺含量变化与胚胎发育的关系[J].应用与环境生物学报,2005,11(3):286-288
    [51]梁文裕,陈伟,宋瑞锋,等.“乌龙岭”龙眼胚胎发育时期特异性蛋白质的变化[J].热带亚热带植物学报,2005, 13(3): 229-232
    [52]李燕.龙眼胚胎发育不同时期的蛋白质组分析[D].福建农林大学硕士学位论文, 2006
    [53]章希娟,许鸿川,陈伟,等.龙眼胚胎F3H基因的cDNA克隆及序列分析[J].园艺学报,2008,35(11): 1581-1586.
    [54]赖钟雄,潘良镇,陈振光.龙眼胚性细胞系的建立与保持[J].福建农业大学学报,1997,26(2):160-167
    [55]赖钟雄,陈振光.胚性愈伤组织的高频率体细胞胚胎发生研究[J].福建农业大学学报,1997, 26(3): 271-276
    [56]赖钟雄,陈振光.龙眼胚性悬浮细胞原生质体培养及其体胚发生再生植株[J].热带作物学报, 2002,23(3): 53-61
    [57]赖钟雄,陈振光.龙眼单细胞培养及其体胚发生再生植株[J].热带作物学报,2003,24(2):16-18
    [58]赖钟雄,李惠华.龙眼胚性愈伤组织体胚发生过程中生物大分子的动态变化[J].福建农林大学学报(自然科学版),2006,35(3):258-261
    [59]赖钟雄,陈春玲.龙眼体细胞胚胎发生过程中的内源激素变化[J].热带作物学报,2002,23(2):41-47
    [60]彭业芳,傅家瑞.荔枝和龙眼种子发育过程中ABA含量及其对外源ABA敏感性的变化[J].植物生理学报,1995,21(2):159-165
    [61]陈春玲,赖钟雄.龙眼体细胞胚胎发生过程中内源多胺的变化[J].福建农林大学学报(自然科学版),2006, 35(4):381-383
    [62]王凤华,赖钟雄,郭志雄,等.龙眼胚性培养物蛋白质水平双向电泳技术体系的建立..福建农林大学学报(自然科学版),2003 32(2):196-200
    [63]安娜.龙眼体细胞胚胎发生的蛋白质组学研究.福建农林大学,2006
    [64]王凤华,赖钟雄,郑金贵,等.龙眼体细胞胚胎发生过程的基因差异表达[J] .农业生物技术学报,2005,13(6):703-708
    [65]王凤华,赖钟雄,郑金贵,等.龙眼胚性愈伤组织维生素C过氧化物酶基因(apx)及NADH脱氢酶基因(nad2)部分序列的克隆[J].应用与环境生物学报,2005, 11(1):45-48
    [66]李冬梅.龙眼体细胞胚胎成熟机理的研究[D].福建农林大学,2003
    [67]林小苹,赖钟雄,黄浅.不同光质对龙眼胚性愈伤组织生长和细胞膜保护酶活性的影响[J].福建农林大学学报(自然科学版),2008,37(3):253-256
    [68]李惠华,赖钟雄,陈桂信,等.龙眼胞浆形抗坏血酸过氧化物酶基因3′末端序列的同源克隆[J].农业生物技术学报,2006,14 (1):141 - 142
    [69]李惠华,赖钟雄.龙眼体胚发生过程中抗坏血酸过氧化物酶活性的变化[J].亚热带植物科学, 2006, 35(3):9-11
    [70]邵巍,赖钟雄,赖呈纯,等.龙眼胚性培养物APX同工酶的分析方法建立及其在龙眼体胚发生过程中的变化[J].福建农林大学学报(自然科学版),2008,37(2):140-144
    [71]郭志雄.龙眼胚胎乙醇脱氢酶的分离纯化、鉴定及其cDNA克隆[D].福建农林大学,2006
    [72]邵巍,赖钟雄,陈义挺,等.龙眼胚性愈伤组织肌动蛋白基因( actin)片段的克隆与序列分析[J].农业生物技术科学,2008,24(3):40-43
    [73]曾黎辉,陈振光,吕柳新.发根农杆菌转化龙眼研究初报[J].福建农业大学学报,2000,29 (1):27- 30
    [74]郑启发,胡桂兵,陈大成,等.荔枝龙眼细胞悬浮培养和转基因研究[J].果树学报,2005,22(2):125-128
    [75]张妙霞.香蕉与龙眼转化受体系统建立及转化PEAS基因初步研究[D].福建农林大学,2004
    [76]陈春玲,赖钟雄.龙眼胚性愈伤组织体胚发生同步化调控及组织细胞学观察[J].福建农林大学学报(自然科学版),2002,31(2):192-194
    [77]曾黎辉,吕柳新,王平,等.荔枝、龙眼胚性愈伤组织的细胞组织学观察[J].福建农林大学学报(自然科学版),2002,31(3):331-333
    [78]林琳,郭志雄,潘东明.龙眼果皮过氧化物酶的分离纯化[J].福建农林大学学报(自然科学版),2002,31(2):157-160
    [79]林琳.龙眼果皮过氧化物酶的分离纯化及cDNA的克隆[D].福建农林大学,2006
    [80]潘腾飞.龙眼(Dimocarpus longan Lour.)在酸雨胁迫下Ca信号传递及蛋白表达的初步研究.福建农林大学,2007
    [81]Bachem CWB, Hoeven RS, Bruijn SM, et al. Visualization of differential gene expression using a novelmethod of RNA fingerprinting based on AFLP:analysis of gene expression during potato tuber development [J].The Plant Journal,1996,9(5), 745-753.
    [82]Habu Y, Fukada-Tanaka S, Hisatomi Y,et al. Amplified Restriction fragment length polymorphism-based mRNA fingerprinting using a single restriction enzyme that recognizes a 4-bp sequence [J]. Biochemical and biophysical research communications, 1997,234,516–521
    [83]周志钦.马铃薯从休眠到发芽过程差异表达基因的分析[J].西南农业大学学报,2001,23(3):213-215
    [84]王永勤,余小林,曹家树.白菜小孢子发育相关基因BcMF3的分离及序列分析[J].遗传学报, 2004,31(11) :1302- 1308
    [85]娄平,王晓武,Guusje B,等.利用cDNA-AFLP技术鉴定甘蓝显性核不育基因相关表达序列[J].园艺学报,2003,30(6) :668-672
    [86]孙涌栋,张兴国,侯瑞贤,等.授粉后黄瓜果实膨大相关基因的鉴别[J].植物生理与分子生物学学报,2005, 31 (4): 403-408
    [87]康俊根,王晓武,张国裕,等.利用cDNA-AFLP检测甘蓝雄性不育相关基因的时序性表达[J].园艺学报,2006,33(3) : 544-548
    [88]孙保娟,曹家树,黄细松,等.白菜离体春化相关基因表达的cDNA-AFLP分析[J].园艺学报,2006,33(6) :1341-1344
    [89] Chen GP, Ma WS, Huang ZJ, et al. Isolation and characterization of TaGSK1 involved in wheat salttolerance[J]. Plant science,2003,165:1369-1375
    [90] Yang L, Zheng BS, Mao CZ, et al. Analysis of gene expression during enhanced seminal root elongationof Rice under upland condition by cDNA-AFLP[J].植物生理与分子生物学学报,2003,29(1):65- 70
    [91] Aoki A, Kanegami A, Mihara M,et al. Molecular cloning and characterization of a novel soybean geneencoding a leucine-zipper-like protein induced to salt stress[J].Gene ,2005,356 :135-145
    [92]秘彩莉,张学勇,温小杰,等.利用cDNA-AFLP技术获得小麦耐盐性相关基因TaVHA-C[J].中国农业科学, 2006, 39(9):1736-1742
    [93]刘志勇,杜永臣,王孝宣,等.高温胁迫下番茄叶片差异表达基因的cDNA-AFLP分析[J].园艺学报, 2008,35 (7) : 1011-1016 [94 ]邹中伟,房婉萍,张定,等.低温胁迫下茶树基因表达的差异分析[J].茶叶科学,2008,28(4):249-254
    [95]陈银华,韩淑梅,沙爱华,等.cDNA-AFLP法筛选红树植物盐应答基因[J].中国农业科学,2008,41 (12):4257-4263
    [96] Gao ZH, Xue YB, Dai JR. cDNA-AFLP analysis reveals that maize resistance to Bipolaris maydis isassociatedwith the induction of multiple defense-related genes[J]. Chinese Science Bulletin, 2001, 46(17): 1454-1458
    [97]薛春生,肖淑芹,王国英,等.利用cDNA-AFLP技术分析玉米自交系黄早四甘蔗花叶病毒侵染后基因差异表达[J].植物病理学报,2005,35(3):229-234
    [98]李大志,陈霄,邓子牛,等.应用cDNA-AFLP技术分离应答BABA诱导的番茄抗病相关基因[J].湖南农业大学学报(自然科学版),2007,33 (1):32-36
    [99]古瑜,毛英伟,赵前程,等.花椰菜(Brassica oleracea var. botrytis)抗黑腐病差异表达cDNA片段的克隆及功能的初步研究[J].南开大学学报(自然科学版) ,2008,41 (4) : 42-48
    [100]刘喜梅,许艳丽,张韧,等.大豆根组织受尖孢镰刀菌侵染后基因表达反应的cDNA-AFLP分析[J].植物病理学报,2008,38 (2): 165-170
    [101]张富铁,庄延,杨之帆,等.药用野生稻应答稻飞虱取食过程中基因表达的研究[J].武汉植物学研究,2005, 23(1) : 1-6
    [102]田曾元,戴景瑞.利用cDNA-AFLP技术分析玉米灌浆期功能叶基因差异表达与杂种优势[J].科学通报,2002,47(18):1412-1416
    [103]吴才君,曹家树,何勇,等.白菜与芜普亚种间杂交种及其亲本莲座期基因差异表达[J].园艺学报,2004 ,31 (4):508-510
    [104]崔辉梅,曹家树,张明龙,等.甘蓝型油菜Ogura雄性不育x白菜的回交杂种后代与亲本之间蕾期基因表达差异比较研究[J].遗传, 2005,27(2):255-261
    [105]汤钦.用cDNA一AFLP指纹技术分离MeJA诱导的人参皂营生物合成相关基因[D].中南大学,2008
    [106]谢荣,何志水,刘芳华,等应用cDNA-AFLP技术鉴定紫花苜蓿(Medicago sativa)根瘤发育相关基因[J].科学通报,2006,51(15):1794-1801
    [107]冷春旭,李付广,陈国跃,等.陆地棉体细胞胚胎发生过程的cDNA-AFLP分析[J].西北植物学报, 2007,27 (2) :233-237
    [108] Peffer M, McCrea PD, Green KJ,et al. The vertebrate adhesive junction proteins -catenin andplakoglobin and the Drosophila Segment polarity pene armadillo porm a pultigene pamily with similarproperties[J]. The journal of cell biology,1992, 118(3): 681-691
    [109]马媛媛,甘睿,王宁宁.植物富含亮氨酸重复序列型类受体蛋白激酶的生物学功能[J].植物生理与分子生物学学报, 2005, 31 (4): 331-339
    [110]周冰,曹诚,刘传暄.翻译延伸因子1A的研究进展[J].生物技术通讯,2007,18(2):281-284
    [111]胡晓丽,李德全.植物蛋白磷酸酶及其在信号转导中的作用[J].植物生理学通讯, 2007,43(3):407-212
    [112] Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threoninephosphatases implicated in cell growth and signalling[J].Biochem. J.,2001, 353, 417-439
    [113] Schumann U, Prestele J, Geen HO, et al. Requirement of the C3HC4 zinc RING finger of theArabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts[J]. PNAS, 2007,104 (3): 1069–1074
    [114] Burd CG, Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins[J].Science,1994,265:615-621.
    [115] Hematy K, Sado PE, Tuinen AV,et al. A receptor-like kinase mediates the response of Arabidopsis cellsto the inhibition of cellulose synthesis[J]. Current Biology, 2007,17:922–931
    [116]朱国萍,黄恩启,赵旵军.NADP-异柠檬酸脱氢酶的结构与功能[J].安徽师范大学学报(自然科学版),2007,30 (3):366-371
    [117]杨东叶,刘凯于,余泽华.泛素连接酶E3[J].细胞生物学杂志,2005,27:281-285
    [118] Kim HJ, Hyun YB, Park JY,et al. A genetic link between cold responses and flowering timethrough FVEin Arabidopsis thaliana[J].Nature genetic, 2004,36(2):167-171
    [119] Siegfried K R, Eshed Y, Baum S F,et al. Members of the YABBY gene family specify abaxial cell fate inArabidopsis[J]. Development,1999,126: 4117-4128
    [120] Raffaele S, Mongrand S, Gamas P, et al. Genome-Wide Annotation of Remorins, a Plant-SpecificProtein Family: Evolutionary andFunctional Perspectives[J]. Plant Physiology, 2007, 145: 593–600
    [121]郜刚.青枯菌诱导的马铃薯防卫相关基因克隆与表达[D].中国农业科学院,2008
    [122] Chen J, Chiang YC, Denis CL. CCR4, a 3-5poly(A) RNA and ssRNA exonuclease ,is the catalyticcomponent of the cytoplasmic deadenylase[J].The EMBO Journal,2002,21(6):1414-1426
    [123]蓝海燕,陈正华.几丁质酶及其研究进展[J].生命科学研究,1998,2(3):163-171,176
    [124]周键,孙建波,彭明.高等植物体细胞胚胎发生的研究进展[J].中国农学通报, 2008, 24(2):129-133
    [125]陈昕,王保莉,曲东.植物硫转运蛋白研究进展[J].西北植物学报,2004, 24 (10):1966-1971
    [126] Bachem CWB, Oomen RJFJ, Visser RGF, et al.Transcript imaging with cDNA-AFLP: A step-by-stepprotocol[J].Plant Molecular Biology Reporter, 1998, 16:157-173
    [127]李志红,唐美玲,刘佳,等.珠眉海棠cDNA-AFLP分析体系的建立[J].核农学报,2008 ,22(5) :607-610
    [128]王关林,方宏筠.植物基因工程(第二版)[M].北京:科学出版社, 2002,210p.
    [129] Bryksin AV, Laktionov PP. Role of Glyceraldehyde_3_phosphate ehydrogenase in Vesicular Transportfrom Golgi Apparatus to Endoplasmic Reticulum[J]. Biochemistry (Moscow), 2008, 73(6): 619-625.
    [130] Hara MR, Snyder SH. Nitric Oxide–GAPDH–Siah: A novel cell death cascade[J]. Cellular andmolecular neurobiology, 2006, 26:527-538.
    [131]李洁,谢文光,沈倍奋,等.GAPDH功能多样性研究进展[J].军事医学科学院院刊,2006,30(5): 483-486.
    [132] Martinez P, Martin W, Cerff R. Structure, evolution and anaerobic regulation of a nuclear gene encodingcytosolic glyceraldehyde-3-phosphate dehydrogenase from Maize[J]. J Mol Biol.,1989,208: 551-565.
    [133] Yang Y, Kwon HB, Peng HP, et al. Stress responses and metabolic regulation of glyceraldehyde-3-phosphate dehydrogenase genes in Arabidopsis[J]. Plant Physiol , 1993,101:209–216.
    [134] Russell DA, Sachs MM Differential expression and sequence analysis of the maize glyceraldehyde-3-phosphate dehydrogenase gene family[J]. Plant cell,1989,1:793–803.
    [135] Hajirezaei1 MR, Biemelt S, Peisker M,et al. The influence of cytosolic phosphorylatingglyceraldehyde-3- phosphate dehydrogenase (GAPC) on potato tuber metabolism[J]. Journal ofexperimental botany, 2006 , 57(10): 2363–2377.
    [136]王幼宁,刘孟雨,李霞.植物3-磷酸甘油醛脱氢酶的多维本质[J].西北植物学报,2005,25(3):607-614.
    [137]刘志华,杨谦.球毛壳菌甘油醛-3-磷酸脱氢酶基因克隆及特性分析[J].微生物学报,2005,45(6):885-889.
    [138]李晓泽,刘关君,杨传平.西伯利亚蓼甘油醛-3-磷酸脱氢酶基因的cDNA克隆与序列分析[J].植物生理学通讯,2007,43(1):41-48.
    [139]朱华,李珅,赵瑞强,等.三七植物GAPDH基因克隆及序列分析[J].西北植物学报,2006,26(7):1316-1319.
    [140]岳彩凤,康国章,刘超,等.小麦GAPDH基因克隆及序列分析[J].农业生物技术科学,2008,24(4):94-98
    [141] Barsalobres-Cavallari CF, Severino FE, Maluf MP, et al. Identification of suitable internal control genesfor expression studies in Coffea arabica under different experimental conditions[J]. BMC molecularbiology, 2009, 10:1.
    [142] Iskandar HM, Simpson RS, Casu RE,et al. Comparison of reference genes for quantitative realtimepolymerase chain reaction analysis of gene expression[J].Plant Mol Biol Rep,2004, 22:325-337
    [143] Combet C, Blanchet C, Geourjon C,et al. NPS@: Network Protein Sequence Analysis [J]. TIBS, 2000,25 (3):147-150
    [144] Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling[J]. Bioinformatics, 2006 ,22:195-201.
    [145] Schwede T, Kopp J, Guex N, et al. SWISS-MODEL: an automated protein homology-modeling server[J].Nucleic Acids Research, 2003, 31: 3381-3385.
    [146] Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparativeprotein modelling[J]. Electrophoresis, 1997, 18: 2714-2723.
    [147] Petersen J, Brinkmann H, Cerff R. Origin, evolution, and metabolic role of a novel glycolytic GAPDHenzyme recruited by land plant plastids[J]. J Mol Evol, 2003, 57:16–26
    [148] Bowman JL.The YABBY gene family and abaxial cell fate[J].Current Opinion in Plant Biology, 2000,3:17–22
    [149] Bowman JL, Eshed Y, Baum SF. Establishment of polarity in angiosperm lateral organs[J].TRENDS inGenetics,2002,18(3):134-141
    [150] Pesole G, Liuni S. Internet resources for the functional analysis of 5' and 3' untranslated regions ofeukaryotic mRNA[J]. TIG,1999,15(9):378
    [151]蒋丽,齐兴云,龚化勤,等.被子植物胚胎发育的分子调控[J].植物学通报,2007,24 (3):389-398
    [152] Reymond P, Kunz B, Paul-Pletzer K, et al.Cloning of a cDNA encoding a plasma membrane-associated,uronide binding with physical properties similar to vira1 phosphoprote in movement proteins[J]. The Plant Cell, 1996, 8: 2265-2276
    [153]王景雪,张兴堂,蒋晓红,等.生物膜的生物物理观-从微区到脂筏[J].生物化学与生物物理进展, 2004,31 (11) :969-974
    [154]王大海.美洲黑杨材性侯选基因的克隆和功能分析[D].中国林业科学研究院,2008
    [155]朱炎,刘自强,高娟,等.植物组蛋白分子伴侣研究进展[J].自然科学进展,2008,18(7):734-741
    [156] Ausin I, Alonso-Blanco C, Jarillo JA, et al. Regulation of flowering time by FVE, a retinoblastoma-associated protein[J]. Nat Genet, 2004, 36:162-166
    [156] Baek IS, Park HY, You MK,et al. Functional conservation and divergence of FVE genes that controlflowering time and cold response in Rice and Arabidopsis[J]. Mol Cells ,2008, 26:368-372
    [157] Laribee NR, Shibata Y, Mersman PD, et al.CCR4/NOT complex associates with the proteasome andregulates histone methylation[J].Proc Natl Acad Sci,2007, 104(14): 5836–5841.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700