神经酰胺对神经元和成肌细胞膜钠通道的调控及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经鞘磷脂是真核动物细胞膜的主要组成成分之一,也是细胞表面特殊的结构域—脂筏—的主要组成成分。神经酰胺(ceramide)是神经鞘磷脂的代谢产物,它是一种具有多种生物功能的脂质第二信使分子,可以改变细胞膜的脂质环境,也可以通过调节细胞内信号通路影响细胞凋亡或者细胞周期。此外,在多种细胞模型中,神经酰胺类似物都可以直接调控K~+和Ca~(2+)离子通道,但它对细胞膜钠通道的调控报导很少。
     我们采用了两种细胞模型,大鼠小脑颗粒神经元(cerebellar granule neuron)和大鼠成肌细胞(Myoblast),运用全细胞电流记录方法研究了体外培养的这两种细胞模型中,神经酰胺的一种类似物,C_6-ceramide,对电压依赖性内向Na~+离子电流(I_(Na))的调控作用以及机制。实验结果显示,小脑颗粒神经元上,Na~+通道蛋白的主要亚型是NaV_(1.2),它定位在细胞膜内陷型脂筏(ceveolae)中。在1-100μM的浓度范围内,C_6-ceramide可逆性的抑制I_(Na),但是抑制程度并不和浓度成正比关系。同时,C_6-ceramide并不影响I_(Na)的稳态激活和稳态失活特性。C_6-ceramide的类似物,C_2-ceramide对I_(Na)幅度也产生类似的抑制效果。然而,非活性的神经酰胺类似物,dihydro-C_6-ceramide,则对I_(Na)没有调节作用。C_6-ceramide对I_(Na)的这些作用都可以被细胞内钙释放激动剂咖啡因(Caffeine)所模拟,而细胞内灌注Ca~(2+)拮抗剂BAPTA则可以消除神经酰胺的作用。如果在大鼠小脑颗粒神经元细胞中灌注软诺丁(Ryanodine)敏感的Ca~(2+)受体拮抗剂钌红(rutheniumred)就可以观察到I_(Na)幅度逐渐增大,并且可以阻断C_6-ceramide对I_(Na)的作用,1,4,5-三磷酸肌醇(IP_3)受体的拮抗剂xestospongin C或者肝素(heparin)则不能影响Na~+电流。如果在大鼠成肌细胞内灌注1,4,5-三磷酸肌醇(IP_3)受体的拮抗剂xestospongin C或者肝素来抑制细胞内质网/肌浆网的Ca~(2+)释放,也可以观察到I_(Na)逐渐增大,同时神经酰胺对I_(Na)的作用被消除,注入软丁受体的拮抗剂则没有这种效果。钙成像实验进一步显示,C_6-ceramide可以明显提高细胞内Ca~(2+)离子浓度。
     在两种细胞模型中细胞内灌注G蛋白激动剂GTPγS,会导致I_(Na)幅度的逐渐减小,并且显著改变Na~+电流的激活、失活特性。G蛋白抑制剂GDPβS则可以消除C_6-ceramide对I_(Na)的作用,说明C_6-ceramide对I_(Na)的抑制作用很可能是通过G蛋白和磷脂酶C(phospholipase C)途径,激活细胞内Ca~(2+)释放而实现的。在小脑颗粒神经元中,主要是通过软诺丁受体引起胞内Ca~(2+)通道的开放,而成肌细胞中则主要通过IP_3受体介导的Ca~(2+)释放而实现对I_(Na)的调节。这一现象与细胞膜表面的Ca~(2+)离子通道无关。而神经酰胺引起的颗粒神经元凋亡现象也不是通过对Na~+电流的影响实现的。
     我们的实验结果初步揭示了生物活性脂类物质可以通过一系列细胞内信号机制影响Na~+电流,但它们之间还有很多问题需要在后续研究中继续探索。
Sphingolipid is one of the major components of eukaryote membrane,and also a major ingredient of lipid raft.Ceramide is a multi-fuctional second messager as a motabolin of sphingolipid,it can alter the lipid environments of cell membrane. Ceramide can induce cell apoptosis or affect cell cycle through modulating the intracellular signal pathway.Besides,ceramide and its analogs modulate K~+ and Ca~(2+) channels directly in many cell types.While it's modulation on Na~+ channels is seldom reported.
     Our research use two cell types,the rat cerebellar granule neuron and myoblast. With the method of whole-cell patch clamp recording,we study the modulation mechanism of C_6-ceramide on voltage-dependent inward Na~+ channels in these two cell types in vitro.NaV_(1.2),which is the most prevalent subtype of Na~+ channels in cerebellar granule cell,locates in membrane lipid raft.We find this modulation is associated with membrane lipid raft.Disruption of lipid raft results in loss of modulation of C_6-ceramide significantly.Our results suggest that C_6-ceramide inhibits I_(Na) of cerebellar granule neuron rapidly and reversibly in a dose-dependent manner between 0.01-1μM,dose-independent manner when the concentration is higher, without altering its steady-state activation and inactivation.C_2-ceramide,an active analog of C_6-ceramide,shows a similar inhibitory effect on I_(Na) of granule neuron, while its inactive analog,dihydro-C_6-ceramide,fails to mimik the effect on I_(Na). Application of caffeine(1 mM) to the bath solution could stimulate release of Ca~(2+) from the endoplasmic reticulum and this caused a rapid and marked reduction of I_(Na), while intracellular infusion of 1,2-bis(2-aminophenoxy) ethane-N,N,N9, N9-tetraacetic acid(BAPTA),a fast Ca~(2+)-chelating agent,vanishes the effect of C_6-ceramide on I_(Na).infusion of ruthenium red,a ryonodine-sensitive Ca~(2+) receptor antagonist,into cerebellar granule cells results in gradual increase of I_(Na) amplitude and abolishes the inhibitory effect of C_6-ceramide on I_(Na).Xestospongin C and heparin, potent IP_3 receptor antagonists,fail to affect I_(Na).Intracellular infusion into rat myoblast with xestospongin C or heparin to block the release of Ca~(2+) from sarcoplasmic reticulum and/or endoplasmic reticulum also results in gradual increase of I_(Na) and abolishment of C_6-ceramide on I_(Na),while rethenium red fails to mimik this effect.Further investigation with Ca~(2+) imaging suggests C_6-ceramide can increase intracellular Ca~(2+) concentration significantly.
     Intracellular infusion of GTPγS,a potent agonist of G protein,can reduce I_(Na) amplitude significantly in both cell types,the activation and inactivation curves are significantly shifted.GDPβS,a potent G protein inhibitor,abolished the effects of C_6-ceramide on I_(Na).These results indicated that the inhibitory effects of C_6-ceramide on I_(Na) was a downstream reaction of the activation of G protein and phospholipase C (PLC) pathway and intracellular Ca~(2+) release.Ca~(2+) releases from ryanodine-sensitive receptor in cerebellar granule neurons and IP_3 receptor in myoblasts.Extracellular Ca~(2+) and membrane Ca~(2+) channels are not involved in this progress.And the apoptosis of cerebellar granule cells induced by C_6-ceramide is not associated with Na~+ channels.
     Our research suggests the downstream reactions of C_6-ceramide on cerebellar granule cell and myoblast,but how they interact with each other needs further investigation.
引文
[1] SCHALLER K L, CALDWELL J H. Expression and distribution of voltage-gated sodium channels in the cerebellum [J]. Cerebellum, 2003, 2(1): 2-9.
    [2] CHALFANT C E, SPIEGEL S. Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling [J]. J Cell Sci, 2005, 118(Pt 20): 4605-12.
    [3] BOLLINGER C R, TEICHGRABER V, GULBINS E. Ceramide-enriched membrane domains [J]. Biochim Biophys Acta, 2005, 1746(3): 284-94.
    [4] HANNUN Y A, BELL R M. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation [J]. Science, 1989. 243(4890): 500-7.
    [5] HANNUN Y A, LINARD1C C M. Sphingolipid breakdown products: anti-proliferative and tumor-suppressor lipids [J]. Biochim Biophys Acta, 1993, 1154(3-4): 223-36.
    [6] MERRILL A H, JR., SCHMELZ E M, DILLEHAY D L, et al. Sphingolipids-the enigmatic lipid class: biochemistry, physiology, and pathophysiology [J]. Toxicol Appl Pharmacol, 1997, 142(1): 208-25.
    [7] SERHAN C N, HAEGGSTROM J Z, LESLIE C C. Lipid mediator networks in cell signaling: update and impact of cytokines [J]. FASEBJ, 1996. 10(10): 1147-58.
    [8] SPENCE M W. Sphingomyelinases [J]. Adv Lipid Res, 1993, 26(3-23.
    [9] TESTI R. Sphingomyelin breakdown and cell fate [J]. Trends Biochem Sci, 1996, 21(12): 468-71.
    [10] BOURBON N A, YUN J, KESTER M. Ceramide directly activates protein kinase C zeta to regulate a stress-activated protein kinase signaling complex [J]. J Biol Chem, 2000. 275(45): 35617-23.
    [11] RUVOLO P P. Intracellular signal transduction pathways activated by ceramide and its metabolites [J]. Pharmacol Res, 2003, 47(5): 383-92.
    [12] SCHWARTZ P M, BORGHESANI P R, LEVY R L, et al. Abnormal cerebellar development and foliation in BDNF-/- mice reveals a role for neurotrophins in CNS patterning [J]. Neuron, 1997, 19(2): 269-81.
    [13] YU S P, YEH C H, GOTTRON F, et al. Role of the outward delayed rectifier K+ current in ceramide-induced caspase activation and apoptosis in cultured cortical neurons [J]. J Ncurochem, 1999, 73(3): 933-41.
    [14] GULBINS E. Regulation of death receptor signaling and apoptosis by ceramide [J]. Pharmacol Res, 2003, 47(5): 393-9.
    [15] LIU J, JORGENSEN M S, ADAMS J M, et al. Ceramide modulates nicotinic receptor-dependent Ca(2+) signaling in rat chromaffin cells [J]. J Neurosci Res, 2001, 66(4): 559-64.
    [16] NUMAKAWA T, NAKAYAMA H, SUZUKI S, et ai. Nerve growth factor-induced glutamate release is via p75 receptor, ceramide, and Ca(2+) from ryanodine receptor in developing cerebellar neurons [J]. J Biol Chem, 2003, 278(42): 41259-69.
    [17] CHIK C L, LI B, NEGISHI T, et al. Ceramide inhibits L-type calcium channel currents in rat pinealocytes [J]. Endocrinology, 1999, 140(12): 5682-90.
    [18] CHIK C L, LI B, KARPINSKI E, et al. Ceramide inhibits the outward potassium current in rat pinealocytes [J]. J Neurochem, 2001, 79(2): 339-48.
    [19] GULBINS E, SZABO I, BALTZER K, et ai. Ceramide-induced inhibition of T lymphocyte voltage-gated potassium channel is mediated by tyrosine kinases [J]. Proc Natl Acad Sci U S A, 1997, 94(14): 7661-6.
    [20] LI P L, ZHANG D X, ZOU A P, et al. Effect of ceramide on KCa channel activity and vascular tone in coronary arteries [J]. Hypertension, 1999, 33(6): 1441-6.
    [21] GEORGE A L, JR. Inherited disorders of voltage-gated sodium channels [J]. J Clin Invest, 2005, 115(8): 1990-9.
    [22] MEISLER M H, KEARNEY J A. Sodium channel mutations in epilepsy and other neurological disorders [J]. J Clin Invest, 2005, 115(8): 2010-7.
    [23] ZHANG Y H, VASKO M R, NICOL G D. Ceramide, a putative second messenger for nerve growth factor, modulates the TTX-resistant Na(+) current and delayed rectifier K(+) current in rat sensory neurons [J]. J Physiol, 2002, 544(Pt 2): 385-402.
    [24] SINGER S J, NICOLSON G L. The fluid mosaic model of the structure of cell membranes [J]. Science, 1972, 175(23): 720-31.
    [25] BARENHOLZ Y. Liposomology [J]. Prog Lipid Res, 2000, 39(1): 1-2.
    [26] PIKE L J. Lipid rafts: heterogeneity on the high seas [J]. Biochem J, 2004, 378(Pt 2): 281-92.
    [27] BINDER W H, BARRAGAN V, MENGER F M. Domains and rafts in lipid membranes [J]. Angew Chem Int Ed Engl, 2003, 42(47): 5802-27.
    [28] SIMONS K, IKONEN E. Functional rafts in cell membranes [J]. Nature, 1997, 387(6633): 569-72.
    [29] SIMONS K, TOOMRE D. Lipid rafts and signal transduction [J]. Nat Rev Mol Cell Biol, 2000, 1(1): 31-9.
    [30] OKAMOTO T, SCHLEGEL A, SCHERER P E, et al. Caveolins, a family of scaffolding proteins for organizing "preassembled signaling complexes" at the plasma membrane [J]. J Biol Chem, 1998, 273(10): 5419-22.
    [31] IKONEN E, PARTON R G. Caveolins and cellular cholesterol balance [J]. Traffic, 2000, 1(3): 212-7.
    [32] SPRONG H, VAN DER SLUIJS P. VAN MEER G. How proteins move lipids and lipids move proteins [J]. Nat Rev Mol Cell Biol, 2001, 2(7): 504-13.
    [33] MANES S, ANA LACALLE R, GOMEZ-MOUTON C, et al. From rafts to crafts: membrane asymmetry in moving cells [J]. Trends Immunol, 2003, 24(6): 320-6.
    [34] JOHANNES L, LAMAZE C. Clathrin-dependent or not: is it still the question? [J]. Traffic, 2002, 3(7): 443-51.
    [35] CONNER S D, SCHMID S L. Regulated portals of entry into the cell [J]. Nature, 2003, 422(6927): 37-44.
    [36] NABI I R, LE P U. Caveolae/raft-dependent endocytosis [J]. J Cell Biol, 2003, 161(4): 673-7.
    [37] FOSTER L J, DE HOOG C L, MANN M. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors [J]. Proc Natl Acad Sci U S A, 2003, 100(10): 5813-8.
    [38] WOLLMUTH L P, HILLE B. Ionic selectivity of Ih channels of rod photoreceptors in tiger salamanders [J]. J Gen Physiol, 1992, 100(5): 749-65.
    [39] BROWN A M. Regulation of heartbeat by G protein-coupled ion channels [J]. Am J Physiol, 1990, 259(6 Pt 2): H1621-8.
    [40] BROWN A M, BIRNBAUMER L. Direct G protein gating of ion channels [J]. Am J Physiol, 1988,254(3 Pt 2): H401-10.
    [41] WATKINS C S. MATHIE A. Modulation of the gating of the transient outward potassium current of rat isolated cerebellar granule neurons by lanthanum [J]. Pflugers Arch, 1994, 428(3-4): 209-16.
    [42] WATKINS C S, MATHIE A. A non-inactivating K+ current sensitive to muscarinic receptor activation in rat cultured cerebellar granule neurons [J]. J Physiol, 1996, 491 ( Pt 2)(401-12.
    [43] HU C L, LIU Z, GAO Z Y, et al. 2-iodomelatonin prevents apoptosis of cerebellar granule neurons via inhibition of A-type transient outward K+ currents [J]. J Pineal Res, 2005, 38(1): 53-61.
    [44] JIAO S, WU M M, HU C L, et al. Melatonin receptor agonist 2-iodomelatonin prevents apoptosis of cerebellar granule neurons via K(+) current inhibition [J]. J Pineal Res, 2004, 36(2): 109-16.
    [45] TANIWAKI T, YAMADA T, ASAHARA H, et al. Ceramide induces apoptosis to immature cerebellar granule cells in culture [J]. Neurochem Res, 1999, 24(5): 685-90.
    [46] TOMAN R E, MOVSESYAN V, MURTHY S K, et al. Ceramide-induced cell death in primary neuronal cultures: upregulation of ceramide levels during neuronal apoptosis [J]. J Neurosci Res, 2002, 68(3): 323-30.
    [47] VAUDRY D, FALLUEL-MOREL A, BASILLE M, et al. Pituitary adenylate cyclase-activating polypeptide prevents C2-ceramide-induced apoptosis of cerebellar granule cells [J]. J Neurosci Res, 2003, 72(3): 303-16.
    [48] BANASIAK K J, BURENKOVA O, HADDAD G G. Activation of voltage-sensitive sodium channels during oxygen deprivation leads to apoptotic neuronal death [J]. Neuroscience, 2004, 126(1): 31-44.
    [49] FRASER S P, DISS J K, CHIONI A M, et al. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis [J]. Clin Cancer Res, 2005, 11(15): 5381-9.
    [50] DING Y, BRACKENBURY W J, ONGANER P U, et al. Epidermal growth factor upregulates motility of Mat-LyLu rat prostate cancer cells partially via voltage-gated Na+ channel activity [J]. J Cell Physiol, 2008, 215(1): 77-81.
    [51] HAUFE V, CAMACHO J A, DUMAINE R, et al. Expression pattern of neuronal and skeletal muscle voltage-gated Na+ channels in the developing mouse heart [J]. J Physiol, 2005, 564(Pt 3): 683-96.
    [52] SHIBATA R, NAKAHIRA K, SHIBASAKI K, et al. A-type K+ current mediated by the Kv4 channel regulates the generation of action potential in developing cerebellar granule cells [J]. J Neurosci, 2000, 20(11): 4145-55.
    [53] PAL S, HARTNETT K A, NERBONNE J M, et al. Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels [J]. J Neurosci, 2003, 23(12): 4798-802.
    [54] DAVIES A, DOUGLAS L, HENDR1CH J, et al. The calcium channel alpha2delta-2 subunit partitions with CaV2.1 into lipid rafts in cerebellum: implications for localization and function [J]. J Neurosci, 2006, 26(34): 8748-57.
    [55] MCEWEN D P, LI Q, JACKSON S, et al. Caveolin regulates kv1.5 trafficking to cholesterol-rich membrane microdomains [J]. Mol Pharmacol, 2008, 73(3): 678-85.
    [56] VEIGA M P, ARRONDO J L, GONI F M, et al. Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases [J]. Biophys J, 1999, 76(1 Pt 1): 342-50.
    [57] LEVIN S I, KHALIQ Z M, AMAN T K, et al. Impaired motor function in mice with cell-specific knockout of sodium channel Scn8a (NaV1.6) in cerebellar purkinje neurons and granule cells [J]. J Neurophysiol, 2006, 96(2): 785-93.
    [58] SIMONS K, VAZ W L. Model systems, lipid rafts, and cell membranes [J], Annu Rev Biophys Biomol Struct, 2004, 33(269-95.
    [59] MUKHERJEE S, MAXFIELD F R. Membrane domains [J]. Annu Rev Cell Dev Biol, 2004, 20(839-66.
    [60] HOLOWKA D, GOSSE J A, HAMMOND A T, et al. Lipid segregation and IgE receptor signaling: a decade of progress [J]. Biochim Biophys Acta, 2005, 1746(3): 252-9.
    [61] GOLDSTEIN J L, BROWN M S. Molecular medicine. The cholesterol quartet [J]. Science, 2001, 292(5520): 1310-2.
    [62] LIPSKY N G, PAGANO R E. Sphingolipid metabolism in cultured fibroblasts: microscopic and biochemical studies employing a fluorescent ceramide analogue [J]. Proc Natl Acad Sci U S A, 1983, 80(9): 2608-12.
    [63] DEL RIO E, MCLAUGHLIN M, DOWNES C P, et al. Differential coupling of G-protein-linked receptors to Ca2+ mobilization through inositol(l,4,5)trisphosphate or ryanodine receptors in cerebellar granule cells in primary culture [J]. Eur J Neurosci, 1999, 11(9): 3015-22.
    [64] DOLMETSCH R E, PAJVANI U, FIFE K, et al. Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway [J]. Science, 2001, 294(5541): 333-9.
    [65] YOUNG K A, CALDWELL J H. Modulation of skeletal and cardiac voltage-gated sodium channels by calmodulin [J]. J Physiol, 2005, 565(Pt 2): 349-70.
    [66] BIELAWSKA A, CRANE H M, LIOTTA D, et al. Selectivity of ceramide-mcdiated biology. Lack of activity of erythro-dihydroceramide [J]. J Biol Chem, 1993, 268(35): 26226-32.
    [67] KOBRINSKY E, ONDRIAS K, MARKS A R. Expressed ryanodine receptor can substitute for the inositol 1,4,5-trisphosphate receptor in Xenopus laevis oocytes during progesterone-induced maturation [J]. Dev Biol, 1995, 172(2): 531-40.
    [68] NEGISHI T, CHIK C L, HO A K. Ceramide selectively inhibits calcium-mediated potentiation of beta-adrenergic-stimulated cyclic nucleotide accumulation in rat pinealocytes [J]. Biochem Biophys Res Commun, 1998, 244(1): 57-61.
    [69] MAURER J A, WENGER B W, MCKAY D B. Effects of protein kinase inhibitors on morphology and function of cultured bovine adrenal chromaffin cells: KN-62 inhibits secretory function by blocking stimulated Ca2+ entry [J]. J Neurochem, 1996, 66(1): 105-13.
    [70] CIFUENTES E, MATARAZA J M, YOSHIDA B A, et al. Physical and functional interaction of androgen receptor with calmodulin in prostate cancer cells [J]. Proc Natl Acad Sci U S A, 2004, 101(2): 464-9.
    [71] SALTHUN-LASSALLE B, H1RSCH E C, WOLFART J, et al. Rescue of mesencephalic dopaminergic neurons in culture by low-level stimulation of voltage-gated sodium channels [J]. J Neurosci, 2004, 24(26): 5922-30.
    [72] GRAVES T D, HANNA M G. Neurological channelopathies [J]. Postgrad Med J, 2005, 81(951): 20-32.
    [73] LU B X, LIU L Y, LIAO L, et al. Inhibition of Na+ channel currents in rat myoblasts by 4-aminopyridine [J]. Toxicol Appl Pharmacol, 2005, 207(3): 275-82.
    [74] BIJLENGA P, LIU J H, ESPINOS E, et al. T-type alpha 1H Ca2+ channels are involved in Ca2+ signaling during terminal differentiation (fusion) of human myoblasts [J]. Proc Natl Acad Sci U S A, 2000, 97(13): 7627-32.
    [75] BERS D M, PATTON C W, NUCCITELLI R. A practical guide to the preparation of Ca2+ buffers [J]. Methods Cell Biol, 1994,40(3-29.
    [76] KOBRINSKY E, SPIELMAN A I, ROSENZWEIG S, et al. Ceramide triggers intracellular calcium release via the IP(3) receptor in Xenopus laevis oocytes [J]. Am J Physiol, 1999, 277(4 Pt 1): C665-72.
    [77] CHEUNG W Y. Calmodulin plays a pivotal role in cellular regulation [J]. Science, 1980, 207(4426): 19-27.
    [78] HERMANN A, GORMAN A L. Effects of 4-aminopyridine on potassium currents in a molluscan neuron [J]. J Gen Physiol, 1981, 78(1): 63-86.
    [79] JENSEN J M, SHI R. Effects of 4-aminopyridine on stretched mammalian spinal cord: the role of potassium channels in axonal conduction [J]. J Neurophysiol, 2003, 90(4): 2334-40.
    [80] KIM J A, KANG Y S, JUNG M W, et al. Ca2+ influx mediates apoptosis induced by 4-aminopyridine, a K+ channel blocker, in HepG2 human hepatoblastoma cells [J]. Pharmacology, 2000, 60(2): 74-81.
    [81] WANG X Q, XIAO A Y, YANG A, et al. Block of Na+,K+-ATPase and induction of hybrid death by 4-aminopyridine in cultured cortical neurons [J]. J Pharmacol Exp Ther, 2003, 305(2): 502-6.
    [82] FORDYCE CB J R, SCHLICHTER JC. Modulation of microglia induced neurotoxicity (poster title in the meeting: K+ channel blockers reduce microglia -induced neurotoxicity) [J]. Soc Nenrosci Abstr 2002, 17): 892.
    [83] HAYES K C, POTTER P J, WOLFE D L, et al. 4-Aminopyridine-sensitive neurologic deficits in patients with spinal cord injury [J]. J Neurotrauma, 1994, 11(4): 433-46.
    [84] DAVIDSON M, ZEMISHLANY Z, MOHS R C, et al. 4-Aminopyridine in the treatment of Alzheimer's disease [J]. Biol Psychiatry, 1988, 23(5): 485-90.
    [85] YU S P. Regulation and critical role of potassium homeostasis in apoptosis [J]. Prog Neurobiol, 2003, 70(4): 363-86.
    [86] LIU L Y, HU C L, MA L J, et al. ET-1 inhibits B-16 murine melanoma cell migration by decreasing K(+) currents [J]. Cell Motil Cytoskeleton, 2004, 58(2): 127-36.
    [87] WANG X, XIAO A Y, 1CHINOSE T, et al. Effects of tetraethylammonium analogs on apoptosis and membrane currents in cultured cortical neurons [J]. J Pharmacol Exp Ther, 2000, 295(2): 524-30.
    [88] YU S P, FARHANGRAZI Z S, YING H S, et al. Enhancement of outward potassium current may participate in beta-amyloid peptide-induced cortical neuronal death [J]. Neurobiol Dis, 1998, 5(2): 81-8.
    [89] LAURITZEN I, ZANZOURI M, HONORE E, et al. K+-dependent cerebellar granule neuron apoptosis. Role of task leak K+ channels [J]. J Biol Chem, 2003, 278(34): 32068-76.
    [90] CHIN L S, PARK C C, ZITNAY K M, et al. 4-Aminopyridine causes apoptosis and blocks an outward rectifier K+ channel in malignant astrocytoma cell lines [J]. J Neurosci Res, 1997, 48(2): 122-7.
    [91] M LLER M, DIERKES, P.W., SCHLUE, W.R. Ionic mechanism of 4-aminopyridine action on leech neuropile glial cells [J]. Brain Res. 1999, 826(63-73.
    [92] MEI Y A. VAUDRY D. BAS1LLE M, et al. PACAP inhibits delayed rectifier potassium current via a cAMP/PKA transduction pathway: evidence for the involvement of I k in the anti-apoptotic action of PACAP [J]. Eur J Neurosci, 2004, 19(6): 1446-58.
    [93] MULLER M, DIERKES P W, SCHLUE W R. Ionic mechanism of 4-aminopyridine action on leech neuropile glial cells [J]. Brain Res, 1999, 826(1): 63-73.
    [94] TR1MARCHI J R. LIU L. SMITH P J, et al. Apoptosis recruits two-pore domain potassium channels used for homeostatic volume regulation [J]. Am J Physiol Cell Physiol, 2002, 282(3): C588-94.
    [95] SCHULZ J B, WELLER M, KLOCKGETHER T. Potassium deprivation-induced apoptosis of cerebellar granule neurons: a sequential requirement for new mRNA and protein synthesis, ICE-like protease activity, and reactive oxygen species [J]. J Neurosci, 1996, 16(15): 4696-706.
    [96] PAL SK D S, HARTNETT KA, LEV1TAN ES, AIZENMAN E. Involvement of the potassium channel subunit Kv2.1 in oxidative stress mediated cell death [J]. Soc Neurosci Abstr, 2002, 12(493.
    [97] HUXLEY H E, KENDREW J C. Extractability of the Lotmar-Picken material from dried muscle [J]. Nature, 1952, 170(4334): 882.
    [98] NODA M, SHIMIZU S, TANABE T, et al. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence [J]. Nature, 1984, 312(5990): 121-7.
    [99] MAKIELSKI J C, SHEETS M F, HANCK D A, et al. Sodium current in voltage clamped internally perfused canine cardiac Purkinje cells [J]. Biophys J, 1987, 52(1): 1-11.
    [100] CATTERALL W A. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels [J]. Neuron, 2000,26(1): 13-25.
    [101] GOLDIN A L, BARCHI R L, CALDWELL J H, et al. Nomenclature of voltage-gated sodium channels [J]. Neuron, 2000, 28(2): 365-8.
    [102] STUHMER W, CONTI F, SUZUKI H, et al. Structural parts involved in activation and inactivation of the sodium channel [J]. Nature, 1989, 339(6226): 597-603.
    [103] JEONG S Y, GOTO J, HASHIDA H, et al. Identification of a novel human voltage-gated sodium channel alpha subunit gene, SCN12A [J]. Biochem Biophys Res Commun, 2000, 267(1): 262-70.
    [104] ISOM L L, RAGSDALE D S, DE JONGH K S, et al. Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif [J]. Cell, 1995, 83(3): 433-42.
    [105] ISOM L L, SCHEUER T, BROWNSTE1N A B, et al. Functional co-expression of the beta 1 and type HA alpha subunits of sodium channels in a mammalian cell line [J]. J Biol Chem, 1995, 270(7): 3306-12.
    [106] OU Y, GIBBONS S J, MILLER S M, et al. SCN5A is expressed in human jejunal circular smooth muscle cells [J]. Neurogastroenterol Motil, 2002, 14(5): 477-86.
    [107] DIB-HAJJ S D, TYRRELL L, WAXMAN S G. Structure of the sodium channel gene SCNHA: evidence for intron-to-exon conversion model and implications for gene evolution [J]. Mol Neurobiol, 2002, 26(2-3): 235-50.
    [108] BRYSCH W, CREUTZFELDT O D, LUNO K, et al. Regional and temporal expression of sodium channel messenger RNAs in the rat brain during development [J]. Exp Brain Res, 1991, 86(3): 562-7.
    [109] SCHALLER K L, CALDWELL J H. Developmental and regional expression of sodium channel isoform NaCh6 in the rat central nervous system [J]. J Comp Neurol, 2000, 420(1): 84-97.
    [110] SCHALLER K L, KRZEMIEN D M, YAROWSKY P J, et al. A novel, abundant sodium channel expressed in neurons and glia [J]. J Neurosci, 1995, 15(5 Pt 1): 3231-42.
    [111]WESTENBROEK R E, MERRICK D K, CATTERALL W A. Differential subcellular localization of the RI and R1I Na+ channel subtypes in central neurons [J]. Neuron, 1989, 3(6): 695-704.
    [112] VEGA-SAENZ DE MIERA E C, RUDY B, SUG1MORI M, et al. Molecular characterization of the sodium channel subunits expressed in mammalian cerebellar Purkinje cells [J]. Proc Natl Acad Sci U S A, 1997, 94(13): 7059-64.
    [113] TZOUMAKA E, TISCHLER A C, SANGAMESWARAN L, et al. Differential distribution of the tetrodotoxin-sensitive rPN4/NaCh6/Scn8a sodium channel in the nervous system [J]. J Neurosci Res, 2000, 60(1): 37-44.
    [114] FELTS P A, YOKOYAMA S, DIB-HAJJ S, et al. Sodium channel alpha-subunit mRNAs Ⅰ, Ⅱ. Ⅲ, NaG, Na6 and hNE (PN1): different expression patterns in developing rat nervous system [J]. Brain Res Mol Brain Res, 1997, 45( 1): 71 -82.
    [115] OSORIO N, ALCARAZ G, PAD1LLA F, et al. Differential targeting and functional specialization of sodium channels in cultured cerebellar granule cells [J]. J Physiol, 2005. 569(Pt 3): 801-16.
    [116] KOLESNICK R N, PALEY A E. 1,2-Diacylglycerols and phorbol esters stimulate phosphatidylcholine metabolism in GH3 pituitary cells. Evidence for separate mechanisms of action [J]. J Biol Chem, 1987, 262(19): 9204-10.
    [117] KOLESNICK R N, CLEGG S. 1,2-Diacylglycerols, but not phorbol esters. activate a potential inhibitory pathway for protein kinase C in GH3 pituitary cells. Evidence for involvement of a sphingomyelinase [J]. J Biol Chem, 1988, 263(14): 6534-7.
    [118] KOLESNICK R N. Sphingomyelinase action inhibits phorbol ester-induced differentiation of human promyelocytic leukemic (HL-60) cells [J]. J Biol Chem, 1989,264(13): 7617-23.
    [119] BOSE R, CHEN P, LOCONTI A, et al. Ceramide generation by the Reaper protein is not blocked by the caspase inhibitor, p35 [J]. J Biol Chem, 1998. 273(44): 28852-9.
    [120] ITO A, HORIGOME K. Ceramide prevents neuronal programmed cell death induced by nerve growth factor deprivation [J]. J Neurochem, 1995, 65( 1): 463-6.
    [121] SPIEGEL S, MERRILL A H, JR. Sphingolipid metabolism and cell growth regulation [J]. FASEB J, 1996, 10(12): 1388-97.
    [122] DBAIBO G S, OBEID L M, HANNUN Y A. Tumor necrosis factor-alpha (TNF-alpha) signal transduction through ceramide. Dissociation of growth inhibitory effects of TNF-alpha from activation of nuclear factor-kappa B [J]. J Biol Chem, 1993,268(24): 17762-6.
    [123] KIM M Y, LINARDIC C, OBEID L, et al. Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma-interferon. Specific role in cell differentiation [J]. J Biol Chem, 1991, 266(1): 484-9.
    [124] MATHIAS S, DRESSLER K A, KOLESNICK R N. Characterization of a ceramide-activated protein kinase: stimulation by tumor necrosis factor alpha [J]. Proc Natl Acad Sci U S A, 1991,88(22): 10009-13.
    [125] BALLOU L R, CHAO C P, HOLNESS M A, et al. Interleukin-1-mediated PGE2 production and sphingomyelin metabolism. Evidence for the regulation of cyclooxygenase gene expression by sphingosine and ceramide [J]. J Biol Chem, 1992, 267(28): 20044-50.
    [126] SANTANA P, PENA L A, HAIMOVITZ-FRIEDMAN A, et al. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis [J]. Cell, 1996,86(2): 189-99.
    [127] HAIMOVITZ-FRIEDMAN A. Radiation-induced signal transduction and stress response [J]. Radiat Res, 1998, 150(5 Suppl): S102-8.
    [128] CHANG Y, ABE A, SHAYMAN J A. Ceramide formation during heat shock: a potential mediator of alpha B-crystallin transcription [J]. Proc Natl Acad Sci U S A, 1995, 92(26): 12275-9.
    [129] BOSE R, VERHEIJ M, HAIMOVITZ-FRIEDMAN A, et al. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals [J]. Cell, 1995, 82(3): 405-14.
    [130] BASU S, KOLESNICK R. Stress signals for apoptosis: ceramide and c-Jun kinase [J]. Oncogene, 1998, 17(25): 3277-85.
    [131] MERRILL A H, JR., SCHMELZ E M, WANG E, et al. Role of dietary sphingolipids and inhibitors of sphingolipid metabolism in cancer and other diseases [J]. J Nutr, 1995, 125(6 Suppl): 1677S-82S.
    [132] BERR1DGE M J. The Albert Lasker Medical Awards. Inositol trisphosphate, calcium, lithium, and cell signaling [J]. JAMA, 1989,262(13): 1834-41.
    [133] JAYADEV S, HAYTER H L, ANDRIEU N, et al. Phospholipase A2 is necessary for tumor necrosis factor alpha-induced ceramide generation in L929 cells [J]. J Biol Chem, 1997, 272(27): 17196-203.
    [134] JOHNS D G, OSBORN H, WEBB R C. Ceramide: a novel cell signaling mechanism for vasodilation [J]. Biochem Biophys Res Commun, 1997, 237(1): 95-7.
    [135] DOBROWSKY R T, KAMIBAYASHI C, MUMBY M C, et al. Ceramide activates heterotrimeric protein phosphatase 2A [J]. J Biol Chem, 1993, 268(21): 15523-30.
    [136] JONES M J, MURRAY A W. Evidence that ceramide selectively inhibits protein kinase C-alpha translocation and modulates bradykinin activation of phospholipase D [J]. J Biol Chem, 1995, 270(10): 5007-13.
    [137] JARVIS W D, FORNAR1 F A, JR., AUER K L, et al. Coordinate regulation of stress- and mitogen-activated protein kinases in the apoptotic actions of ceramide and sphingosine [J]. Mol Pharmacol, 1997, 52(6): 935-47.
    [138] WESTWICK J K, BIELAWSKA A E, DBAIBO G, et al. Ceramide activates the stress-activated protein kinases [J]. J Biol Chem, 1995, 270(39): 22689-92.
    [139] JOHNS D G, WEBB R C. TNF-alpha-induced endothelium-independent vasodilation: a role for phospholipase A2-dependent ceramide signaling [J]. Am J Physiol, 1998,275(5 Pt 2): H1592-8.
    [140] LEE J Y, HANNUN Y A, OBEID L M. Ceramide inactivates cellular protein kinase Calpha [J]. J Biol Chem, 1996,271(22): 13169-74.
    [141] ALI M S, SAYESK1 P P, DIRKSEN L B, et al. Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angiotensin Ⅱ ATI receptor [J]. J Biol Chem, 1997, 272(37): 23382-8.
    [142] BOFFA J J, THARAUX P L. PLACIER S, et al. Angiotensin II activates collagen type Ⅰ gene in the renal vasculature of transgenic mice during inhibition of nitric oxide synthesis: evidence for an endothelin-mediated mechanism [J]. Circulation, 1999, 100(18): 1901-8.
    [143] HANNUN Y A. The sphingomyelin cycle and the second messenger function of ceramide [J]. J Biol Chem. 1994, 269(5): 3 125-8.
    [144] SHAYMAN J A. Sphingolipids: their role in intracellular signaling and renal growth [J]. J Am Soc Nephrol, 1996,7(2): 171-82.
    [145] JOHNS D G, JIN J S, WILDE D W, et al. Ceramide-induced vasorelaxation: An inhibitory action on protein kinase C [J]. Gen Pharmacol. 1999, 33(5): 415-21.
    [146] BOKEMEYER D, SCHMITZ U, KRAMER H J. Angiotensin II-induced growth of vascular smooth muscle cells requires an Src-dependent activation of the epidermal growth factor receptor [J]. Kidney Int, 2000, 58(2): 549-58.
    [147] BENNETT M R, EVAN G I, SCHWARTZ S M. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques [J]. J Clin Invest, 1995, 95(5): 2266-74.
    [148] HERNANDEZ O M, DISCHER D J, BISHOPRIC N H, et al. Rapid activation of neutral sphingomyelinase by hypoxia-reoxygenation of cardiac myocytes [J]. Circ Res, 2000, 86(2): 198-204.
    [149] GOTTLIEB R A, BURLESON K O, KLONER R A, et al. Reperfusion injury induces apoptosis in rabbit cardiomyocytes [J]. J Clin Invest, 1994, 94(4): 1621-8.
    [150] SEMENZA G L. Cellular and molecular dissection of reperfusion injury: ROS within and without [J]. Circ Res, 2000, 86(2): 117-8.
    [151] CHARLES R, SANDIRASEGARANE L, YUN J, et al. Ceramide-coated balloon catheters limit neointimal hyperplasia after stretch injury in carotid arteries [J]. Circ Res, 2000, 87(4): 282-8.
    [152] XU Y J, PANAGIA V, SHAO Q, et al. Phosphatidic acid increases intracellular free Ca2+ and cardiac contractile force [J]. Am J Physiol, 1996, 271(2 Pt 2): H651-9.
    [153] OKAZAKI T, BELL R M, HANNUN Y A. Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation [J]. J Biol Chem, 1989, 264(32): 19076-80.
    [154] KOLESNICK R N, KRONKE M. Regulation of ceramide production and apoptosis [J]. Annu Rev Physiol, 1998, 60(643-65.
    [155] OKAZAKI T, BIELAWSKA A, BELL R M, et al. Role of ceramide as a lipid mediator of 1 alpha,25-dihydroxyvitamin D3-induced HL-60 cell differentiation [J]. J Biol Chem, 1990, 265(26): 15823-31.
    [156] HAIMOVITZ-FRIEDMAN A, KOLESNICK R N, FUKS Z. Ceramide signaling in apoptosis [J]. Br Med Bull, 1997, 53(3): 539-53.
    [157] OKAZAKI T, KONDO T, KITANO T, et al. Diversity and complexity of ceramide signalling in apoptosis [J]. Cell Signal, 1998, 10(10): 685-92.
    [158] XIA Z, DICKENS M, RA1NGEAUD J, et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis [J]. Science, 1995, 270(5240): 1326-31.
    [159] LIU J, MATHIAS S, YANG Z, et al. Renaturation and tumor necrosis factor-alpha stimulation of a 97-kDa ceramide-activated protein kinase [J]. J Biol Chem, 1994, 269(4): 3047-52.
    [160] KARASAVVAS N, ERUKULLA R K, BITTMAN R, et al. Stereospecific induction of apoptosis in U937 cells by N-octanoyl-sphingosine stereoisomers and N-octyl-sphingosine. The ceramide amide group is not required for apoptosis [J]. Eur J Biochem, 1996, 236(2): 729-37.
    [161] WOLFFE A P. The role of transcription factors, chromatin structure and DNA replication in 5 S RNA gene regulation [J]. J Cell Sci, 1994, 107 ( Pt 8)(2055-63.
    [162] YAO B, ZHANG Y, DELIKAT S, et al. Phosphorylation of Raf by ceramide-activated protein kinase [J]. Nature, 1995, 378(6554): 307-10.
    [163] BIRD T A, KYRIAKIS J M, TYSHLER L, et al. lnterleukin-1 activates p54 mitogen-activated protein (MAP) kinase/stress-activated protein kinase by a pathway that is independent of p21ras, Raf-1, and MAP kinase kinase [J]. J Biol Chem, 1994, 269(50): 31836-44.
    [164] CORONEOS E, WANG Y, PANUSKA J R, et al. Sphingolipid metabolites differentially regulate extracellular signal-regulated kinase and stress-activated protein kinase cascades [J]. Biochem J, 1996, 316 (Pt 1)( 13-7.
    [165] SAWAI H, OKAZAKI T, YAMAMOTO H, et al. Requirement of AP-1 for ceramide-induced apoptosis in human leukemia HL-60 cells [J]. J Biol Chem, 1995, 270(45): 27326-31.
    [166] VERHEIJ M, BOSE R, LIN X H, et al. Requirement for ceramide-initiated SAPK./JNK signalling in stress-induced apoptosis [J]. Nature, 1996, 380(6569): 75-9.
    [167] KOLESNICK R, GOLDE D W. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling [J]. Cell, 1994, 77(3): 325-8.
    [168] CIFONE M G, DE MARIA R, RONCAIOLI P, et al. Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase [J]. J Exp Med, 1994, 180(4): 1547-52.
    [169] HERR I, WILHELM D, BOHLER T, et al. Activation of CD95 (APO-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis [J]. EMBO J, 1997. 16(20): 6200-8.
    [170] WIEGMANN K, SCHUTZE S, MACHLEIDT T, et al. Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling [J]. Cell, 1994, 78(6): 1005-15.
    [171] FADEEL B, ZHIVOTOVSKY B, ORRENIUS S. All along the watchtower: on the regulation of apoptosis regulators [J]. FASEB J, 1999, 13(13): 1647-57.
    [172] DBA1BO G S, PERRY D K, GAMARD C J, et al. Cytokine response modifier A (CrmA) inhibits ceramide formation in response to tumor necrosis factor (TNF)-alpha: CrmA and Bcl-2 target distinct components in the apoptotic pathway [J]. J Exp Med, 1997, 185(3): 481-90.
    [173] ZHANG J, ALTER N, REED J C, et al. Bcl-2 interrupts the ceramide-mediated pathway of cell death [J]. ProcNatI Acad Sci USA, 1996, 93(11): 5325-8.
    [174] MALISAN F, TESTI R. Lipid signaling in CD95-mediated apoptosis [J]. FEBS Lett, 1999, 452(1-2): 100-3.
    [175] SCHWANDER S K, TORRES M, SADA E, et al. Enhanced responses to Mycobacterium tuberculosis antigens by human alveolar lymphocytes during active pulmonary tuberculosis [J]. J Infect Dis, 1998, 178(5): 1434-45.
    [176] MIZUSHIMA N, KOIKE R, KOHSAKA H, et al. Ceramide induces apoptosis via CPP32 activation [J]. FEBS Lett, 1996, 395(2-3): 267-71.
    [177] BARENHOLZ Y, THOMPSON T E. Sphingomyelins in bilayers and biological membranes [J]. Biochim Biophys Acta, 1980, 604(2): 129-58.
    [178] HARDER T, SIMONS K. Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains [J]. Curr Opin Cell Biol, 1997, 9(4): 534-42.
    [179] BROWN D A, LONDON E. Functions of lipid rafts in biological membranes [J]. Annu Rev Cell Dev Biol, 1998, 14(111-36.
    [180] ANDERSON R G. The caveolae membrane system [J]. Annu Rev Biochem, 1998, 67(199-225.
    [181] HUANG H W, GOLDBERG E M, Z1DOVETZKI R. Ceramides modulate protein kinase C activity and perturb the structure of Phosphatidylcholine/Phosphatidylserine bilayers [J]. Biophys J, 1999,77(3): 1489-97.
    [182] TEN GROTENHUIS E, DEMEL R A, PONEC M, et al. Phase behavior of stratum corneum lipids in mixed Langmuir-Blodgett monolayers [J]. Biophys J, 1996, 71(3): 1389-99.
    [183] LIU P, ANDERSON R G. Compartmentalized production of ceramide at the cell surface [J]. J Biol Chem, 1995, 270(45): 27179-85.
    [184] NURMINEN T A, HOLOPAINEN J M, ZHAO H, et al. Observation of topical catalysis by sphingomyelinase coupled to microspheres [J]. J Am Chem Soc, 2002, 124(41): 12129-34.
    [185] GRASSME H, JEKLE A, RIEHLE A, et al. CD95 signaling via ceramide-rich membrane rafts [J]. J Biol Chem, 2001, 276(23): 20589-96.
    [186] CREMEST1 A, PARIS F, GRASSME H, et al. Ceramide enables fas to cap and kill [J]. J Biol Chem, 2001, 276(26): 23954-61.
    [187] GRASSME H, SCHWARZ H, GULBINS E. Molecular mechanisms of ceramide-mediated CD95 clustering [J]. Biochem Biophys Res Commun, 2001, 284(4): 1016-30.
    [188] GRASSME H, CREMESTI A, KOLESNICK R, et al. Ceramide-mediated clustering is required for CD95-DISC formation [J]. Oncogene, 2003, 22(35): 5457-70.
    [189] GRASSME H, JENDROSSEK V, BOCK J, et al. Ceramide-rich membrane rafts mediate CD40 clustering [J]. J Immunol, 2002, 168(1): 298-307.
    [190] GRASSME H, JENDROSSEK V, RIEHLE A, et al. Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts [J]. Nat Med, 2003, 9(3): 322-30.
    [191] BOCK J, SZABO I, GAMPER N, et al. Ceramide inhibits the potassium channel Kv1.3 by the formation of membrane platforms [J]. Biochem Biophys Res Commun, 2003, 305(4): 890-7.
    [192] LACOUR S, HAMMANN A, GRAZIDE S, et al. Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells [J]. Cancer Res, 2004, 64(10): 3593-8.
    [193] BEZOMBES C, GRAZIDE S, GARRET C, et al. Rituximab antiproliferative effect in B-lymphoma cells is associated with acid-sphingomyelinase activation in raft microdomains [J]. Blood, 2004, 104(4): 1166-73.
    [194] ABDEL SHAKOR A B, KWIATKOWSKA K, SOBOTA A. Cell surface ceramide generation precedes and controls FcgammaRII clustering and phosphorylation in rafts [J]. J Biol Chem, 2004, 279(35): 36778-87.
    [195] CHARRUYER A, GRAZIDE S, BEZOMBES C, et al. UV-C light induces raft-associated acid sphingomyelinase and JNK activation and translocation independently on a nuclear signal [J]. J Biol Chem, 2005, 280(19): 19196-204.
    [196] HOLOPAINEN J M, SUBRAMANIAN M, KINNUNEN P K. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane [J]. Biochemistry, 1998,37(50): 17562-70.
    [197] KOLESNICK R N, GONI F M, ALONSO A. Compartmentalization of ceramide signaling: physical foundations and biological effects [J]. J Cell Physiol, 2000, 184(3): 285-300.
    [198] XU X, BITTMAN R. DUPORTAIL G, et al. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides. and ceramide [J]. J Biol Chem, 2001, 276(36): 33540-6.
    [199] MEGHA, LONDON E. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function [J]. J Biol Chem, 2004, 279(11): 9997-10004.
    [200] LIU J, OH P, HORNER T, et al. Organized endothelial cell surface signal transduction in caveolae distinct from glycosylphosphatidylinositol-anchored protein microdomains [J]. J Biol Chem, 1997, 272(11): 7211-22.
    [201] BROWN D A, ROSE J K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface [J]. Cell, 1992, 68(3): 533-44.
    [202] LISANTI M P, SCHERER P E, VIDUGIRIENE J, et al. Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease [J]. J Cell Biol, 1994, 126(1): 111-26.
    [203] SIMIONESCU N, SIMINOESCU M, PALADE G E. Permeability of muscle capillaries to small heme-peptides. Evidence for the existence of patent transendothelial channels [J]. J Cell Biol, 1975, 64(3): 586-607.
    [204] TAKEI K, HAUCKE V. Clathrin-mediated endocytosis: membrane factors pull the trigger [J]. Trends Cell Biol, 2001, 11(9): 385-91.
    [205] ANDERSON R G, KAMEN B A, ROTHBERG K G, et al. Potocytosis: sequestration and transport of small molecules by caveolae [J]. Science, 1992, 255(5043): 410-1.
    [206] MURATA M, PERANEN J, SCHREINER R, et al. VIP21/caveolin is a cholesterol-binding protein [J]. Proc Natl Acad Sci U S A, 1995, 92(22): 10339-43.
    [207] LI S, SONG K S, LISANTI M P. Expression and characterization of recombinant caveolin. Purification by polyhistidine tagging and cholesterol-dependent incorporation into defined lipid membranes [J]. J Biol Chem, 1996, 271(1): 568-73.
    [208] SMART E J, YING Y, DONZELL W C, et al. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane [J]. J Biol Chem, 1996, 271(46): 29427-35.
    [209] PAWSON T, SCOTT J D. Signaling through scaffold, anchoring, and adaptor proteins [J]. Science, 1997, 278(5346): 2075-80.
    [210] GARCIA-C ARDENA G, OH P, LIU J, et al. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling [J]. Proc Natl Acad Sci U S A, 1996, 93(13): 6448-53.
    [211] LISANTI M P, SCHERER P E, TANG Z, et al. Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis [J]. Trends Cell Biol, 1994, 4(7): 231-5.
    [212] SCHWENCK.E C, OKUMURA S, YAMAMOTO M, et al. Colocalization of beta-adrenergic receptors and caveolin within the plasma membrane [J]. J Cell Biochem, 1999, 75(1): 64-72.
    [213]OSTROM R S,VIOLIN J D,COLEMAN S,et al.Selective enhancement of beta-adrenergic receptor signaling by overexpression of adenylyl cyclase type 6:colocalization of receptor and adenylyl cyclase in caveolae of cardiac myocytes[J].Mol Pharmacol,2000,57(5):1075-9.
    [214]OSTROM R S,GREGORIAN C,DRENAN R M,et al.Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase[J].J Biol Chem,2001,276(45):42063-9.
    [215]OSTROM R S,POST S R,INSEL P A.Stoichiometry and compartmentation in G protein-coupled receptor signaling:implications for therapeutic interventions involving G(s)[J].J Pharmacol Exp Ther,2000,294(2):407-12.
    [216]STEINBERG S F.G protein-coupled receptor kinases:gotta real kure for heart failure?[J].J Am Coll Cardiol,2001,38(2):541-5.
    [217]SABOURIN T,BASTIEN L,BACHVAROV D R,et al.Agonist-induced translocation of the kinin B(1) receptor to caveolae-related rafts[J].Mol Pharmacol,2002,61(3):546-53.
    [218]FERON O,SMITH T W,MICHEL T,et al.Dynamic targeting of the agonist-stimulated m2muscarinic acetylcholine receptor to caveolae in cardiac myocytes[J].J Biol Chem.1997,272(28):17744-8.
    [219]KOUTALOS Y,YAU K W.A rich complexity emerges in phototransduction[J].Curr Opin Neurobiol,1993,3(4):513-9.
    [220]PFISTER C,BENNETT N,BRUCKERT F,et al.Interactions of a G-protein with its effector:transducin and cGMP phosphodiesterase in retinal rods[J].Cell Signal,1993,5(3):235-41.
    [221]YARFITZ S,HURLEY J B.Transduction mechanisms of vertebrate and invertebrate photoreceptors[J].J Biol Chem,1994,269(20):14329-32.
    [222]CURTIS B M,CATTERALL W A.Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules[J].Biochemistry.1984.23(10):2113-8.
    [223]BEAR C E,LI C H,KARTNER N,et al.Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator(CFTR)[J].Cell,1992,68(4):809-18.
    [224]MATSUDA J J,LEE H,SHIBATA E F.Enhancement of rabbit cardiac sodium channels by beta-adrenergic stimulation[J].Circ Res,1992,70(1):199-207.
    [225]SCHUBERT B,VANDONGEN A M,KIRSCH G E,et al.Beta-adrenergic inhibition of cardiac sodium channels by dual G-protein pathways[J].Science,1989,245(4917):516-9.
    [226] COHEN-ARMON M, SOKOI OVSKY M, DASCAL N. Modulation of the voltage-dependent sodium channel by agents affecting G-prcteins: a study in Xenopus oocytes injected with brain RNA [J]. Brain Res, 1989, 496(1-2): 197-203.
    [227] MA J Y, LI M, CATTERALL W A, et al. Modulation of brain Na-r channels by a G-protein-coupled pathway [J]. Proc Natl Acad Sci U S A, 1994, 91(25): 12351-5.
    [228] SCHRE1BMAYER W, FROHNWIESER B, DASCAL N, et al. Beta-adrenergic modulation of currents produced by rat cardiac Na+ channels expressed in Xenopus laevis oocytes [J]. Receptors Channels, 1994, 2(4): 339-50.
    [229] OHARA A, MATSUNAGA H, EATON D C. G protein activation inhibits amiloride-blockable highly selective sodium channels in A6 cells [J]. Am J Physiol, 1993, 264(2 Pt 1): C352-60.
    [230] AUS1ELLO D A, STOW J L, CANTIF.LLO H F, et al. Purified epithelial Na+ channel complex contains the pertussis toxin-sensitive G alpha i-3 protein [J]. J Biol Chem, 1992, 267(7): 4759-65
    [231] CANTIELLO H F, PATENAUDE C R, AUSIELLO D A. G protein subur.it, alpha i-3, activates a pertussis toxin-sensitive Na+ channel from the epithelial cell line, A6 [J]. J Biol Chem, 1989, 264(35): 20867-70.
    [232] CANTIELLO H F, PATENAUDE C R, CODINA J, et al. G alpha i-3 regulates epithelial Na+ channels by activation of phospholipasc A2 and lipoxygenase pathways [J]. J Biol Chem, 1990, 265(35): 21624-8.
    [233] BUBIEN J K, JOPE R S, WARNOCK D G. G-proteins modulate amiloride-sensitive sodium channels [J]. J Biol Chem, 1994,269(27): 17780-3.
    [234] VAANDRAGER A B, PLOEMACHER M C, DE JONGE H R. Phosphoinositide metabolism in intestinal brush borders: stimulation of IP3 formation by guanine nucleotides and Ca2+ [J]. Am J Physiol, 1990, 259(3 Pt 1): G410-9.
    [235] LING B N, KEMENDY A E, KOKKO K E, et al. Regulation of the amiloride-blockable sodium channel from epithelial tissue [J]. Mol Cell Biochem, 1990,99(2): 141-50.
    [236] DUCHATELLE P, OHARA A, LING B N, et al. Regulation of renal epithelial sodium channels [J]. Mol Cell Biochem, 1992, 114(1-2): 27-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700