运动和EGCG、肉碱对肥胖大鼠减肥和脂代谢及基因表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     研究运动和EGCG、肉碱对单纯性肥胖大鼠减肥和脂代谢及基因表达的作用,并探讨单纯性肥胖发生的分子学机制。
     方法:
     建立肥胖大鼠模型。研究8周高脂饮食对其体重、内脏脂肪系数、血清TG、TC HDL浓度、组织TG、肝脏PPARα、PGC-1α、AMPKα2、CPT1、MCAD表达水平的影响,然后随机选取肥胖造模成功大鼠30只进行减肥干预实验,将其分为肥胖对照组(F),运动组(S),运动+EGCG组(S+E),运动+肉碱组(S+L),运动+EGCG+肉碱干预组(S+E+L),除F组外,其他四组大鼠进行低强度有氧跑台训练。实验结束后测试各组大鼠的体重、内脏脂肪系数、血清TG、T、HDL浓度、组织TG水平、肝脏PPARα、PGC-1α、AMPKα2、CPT1、MCAD的基因及蛋白水平。
     结果:
     1.F组血清TG、TC高于正常对照组(C),HDL低于C组(P<0.05);肝脏TG较C组高(P<0.05); PPARαmRNA及蛋白、PGC-1αmRNA、AMPK a2蛋白显著低于C组.(P<0.05);
     2.与F组比较,S组大鼠体重、血清TG低于F组(P<0.05);S+E、S+L、S+E+L组大鼠体重、血清TG低于F组,同时低于S组(P<0.05);S+L、S+E+L组血清TC、肝脏TG水平低于F组(P<0.05);S+E+L组内脏脂肪系数低于F组,血清HDL水平高于F组(P<0.05)。
     3.S组大鼠肝脏PPARα、PGC-1α、AMPKα2、CPT1、MCAD的基因及蛋白水平与F组无显著差异(P>0.05); S+E、S+L、S+E+L组的PPARα、PGC-1α、AMPKα2、 CPT1、MCAD的基因及/蛋白水平较F组有显著差异(P<0.05); S+E、S+L、S+E+L组的CPTlmRNA显著高于S组(P<0.05);S+E+L组大鼠的PPARα、PGC-1α、AMPK α2、MCADmRNA显著高于S+E和/或S+L组(P<0.05)。
     结论:
     1.肥胖大鼠AMPKα2表达下降,PGC-1α、PPARα的表达减弱,同时PPAR α介导的下游靶基因CPT1转录和翻译活性下降;
     2.运动可以减肥,EGCG、肉碱和两者联用可增强运动减肥的作用,PPARα、PGC-1α、AMPKα2、CPT1、MCAD因子改变可能是其机制之一。
Objective:Study the effect of exercise and EGCG, L-carnitine on the weight loss, lipid metabolism and gene expression in obese rats, and research the mechanism of obese rats.
     Methods:Establish high-fat-diet obesity animal model in4-weeks-old male Sprague-Dawley rats. Study the effect of high-fat diet on the rats'weight, visceral fat coefficient, serum TG, TC, HDL level, the organization triglyceride level, the liver PPARα, PGC-1α, AMPKα2, CPT1, MCAD expression level. Then the50successful modeling rats were randomly divided into the obese control group(group F),the pure exercise intervention group(group S), the exercise+EGCG intervention group(group S+E), the exercise+L-carnitine intervention group(group S+L), the exercise+EGCG+L-carnitine intervention group(group S+E+L). In addition to the group F, the other four groups of rats accept low-intensity aerobic treadmill training. After7weeks, we compared the body weight, visceral fat coefficient, serum TG, TC, HDL level, organization trigiyceride level, the liver PPARa mRNA, PGC-1α mRNA, AMPK α2mRNA, CPTlmRNA, MCADmRNA and the PPAR a, PGC-1α, AMPK a2, CPT1, MCAD protein level of the five groups.
     Results:(1)The serum TG, TC level of group F was significantly higher than the normal control group(group C), the HDL level of group F was significantly lower than group C(P<0.05).The liver triglyceride level in group F was higher than group C(P<0.05).The PPARα mRNA and protein expression, the PGC-1a mRNA, the AMPK a2protein expression of the group F were significantly lower than group C(P<0.05)
     (2)Compared with group F, the weight and the serum TG level of group S were significantly lower than group F(P<0.05). The weight and the serum TG level of group S+E, S+L, S+E+L were significantly lower than group F and S(P<0.05). The serum TC level and the liver TG levels of group S+L, S+E+L were significantly lower than group F(P<0.05). The visceral fat coefficient of group S+E+L was significantly lower than group F, the serum HDL level of group S+E+L was significantly higher than group F(P<0.05)
     (3)Compared with group F, there is no significant difference of the PPAR α,the PGC-1α,the AMPK a2, the CPT1, the MCAD mRNA and protein expression in group S. The PPARα, the PGC-1α, the AMPKα2, the CPTland the MCAD mRNA/protein expression of S+E, S+L, S+E+L were significantly higer than group F. The CPT1mRNA of group S+E, S+L, S+E+L were higher than group S. The PPAR a, the PGC-1a, the AMPK a2, the MCAD mRNA of group S+E+L were also higher than group S+E/S+L or both.
     Conclusion:(1) Expression of AMPKa2decreased in obese rats, and it down-regulated PGC-1α expression, PPARα expression also decreased, while PPARα mediated downstream target gene-CPTl transcription and translation, CPT1expression declined.(2) Exercise can lose weight. The combination of EGCG or L-carnitine or both may enhance the role of exercise to lose weight. Speeding up the oxidation of fatty acid and altering the lipid metabolism related factors such as PPARα, PGC-1α, AMPKα2, CPT1.MCAD may be one of the possible mechanisms.
引文
[1]世界卫生组织:肥胖和超重(实况报道第311号)http://www.who.int/medⅠacentre/factsheets/fs311/zh/index.html,2011年3月.
    [2]张玥,牛燕媚,姜宁,等.有氧运动对C57BL/6小鼠骨骼肌PPARα及CPT-1的影响[J].中国运动医学杂志.2008,27(6):690-693.
    [3]Lee WJ, Kim M, Park HS, et al. AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARalpha and PGC-1. Biochem Biophys Res Commun.2006, 340(1):291-295.
    [4]Frier BC, Jacobs RL, Wright DC. Interactions between the consumption of a high-fat diet and fasting in the regulation of fatty acid oxidation enzyme gene expression:an evaluation of potential mechanisms. Am J Physiol Regul Integr Comp Physiol.2011,300(2):R212-21.
    [5]El Kebbaj Z, Andreoletti P, Mountassif D, et al. Differential regulation of peroxisome proliferator-activated receptor (PPAR)-alphal and truncated PPARalpha2 as an adaptive response to fasting in the control of hepatic peroxisomal fatty acid beta-oxidation in the hibernating mammal.2009,150(3):1192-1201.
    [6]Calzadilla P, Sapochnik D, Cosentino S, et al. N-Acety!cysteine Reduces Markers of Differemiat 1 on in 3T3-L1 Adipocytes. Int J Mol Sci.2011,12(10):6936-6951.
    [7]Motojirna K, Passilly P, Peters JM, et al.Expression of putative fatty acid transporter genes are regulated by peroxisome proliferatcr-aetivated receptor alpha and gamma activators in a tissue-and inducer-specific manner.Journal of Biological Chemistry.1998,273(27):16710-16714.
    [8]Zhao CY, Jiang LL.Peroxisome proliferator-activated receptor in liver diseases.Zhonghua Gan Zang Bing Za Zhi.2003,11(6):382-384.
    [9]Song S. Attia RR, Connaughton S, et al. Peroxisome proliferator activated receptor alpha (PPARalpha) and PPAR gamma coactivator (PGC-1alpha) induce carnitine palmitoyltransferase 1A (CPT-1A) via independent gene elements. Moi Cell Endocrinol.2010.325(1-2):54-63.
    [10]Seo YS, Kim JH, Jo NY, et al. PPAR agonists treatment is effective in a nonalcoholic fatty liver disease animal model by modulating fatty-acid metabolic enzymes.JGastroenterol Hepatol.2008,23(1):102-109.
    [11]Dreyer C, Krey G, Keller H. et al. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell.1992,68(5):879-887.
    [12]Marcus SL, Miyata KS, Zhang B, et al. Diverse peroxisome proliferator-activated receptors bind to the peroxisome proliferator-responsive elements of the rat hydratase/dehydrogenase and fatty acyl-CoA oxidase genes but differentially induce expression. Proc Natl Acad Sci U S A. 1993,90(12):5723-5727.
    [13]Zhang B, Marcus SL, Sajjadi FG, et al. Identification of a peroxisome proliferator-responsive element upstream of the gene encoding rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase. Proc Nat] Acad Sci U S A.1992,89(16):7541-7545.
    [14]Brandt JM, Djouadi F, Kelly DP. Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator-activated receptor alpha. J Bioi Chem.1998,273(37):23786-23792.
    [15]Watanabe K, Fujil H, Takahashi T. Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J Biol Chem.2000,275(29):22293-22299.
    [16]van der Lee KA, Vork MM, De Vries JE. et al. Long-chain fatty acid-induced changes in gene expression in neonatal cardiac myocytes. J Lipid Res.2000,41(1):41-47.
    [!7]Djouadi F, Weinheimer CJ. Saffitz JE, et al. A gender-related defect in lipid metabolism and glucose homeostas I is in peroxisome proliferator-activated receptor alpha- deficient mice. J Clin Invest.1998,102(6):1083-1091.
    [18]Leone TC, Weinheimer CJ, Kelly DP. A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response:the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci U S A.1999,96(13):7473-7478.
    [19]Gorla-Bajszczak A, Juge-Aubry C, Pernin A, et al. Conserved amino acids in the ligand-binding and tau(i) domains of the peroxisome proliferator-activated receptor alpha are necessary for heterodimerization with RXR.Mol Cell Endocrinol.1999,147(1-2):37-47.
    [20]Chevillotte E, Rieusset J, Roques M, et al. The regulation of uncoupling protein-2 gene expression by omega-6 polyunsaturated fatty acids in human skeletal muscle cells involves multiple pathways, including the nuclear receptor peroxisome proliferator-activated receptor beta. J Biol Chem.2001,276(14):10853-10860.
    [21]彭永德,陈家伦P P A R s与脂肪细胞分化及脂质代谢[J].《国外医学》内分泌学分册.1998,12(18):172-175.
    [22]Bishop-Bailey D.PPARs and angiogenesis.Biochem Soc Trans.2011,39(6):1601-1605.
    [23]Puigserver P, Wu Z, Park CW, et al. A cold inducible coactivator of nuclear receptors linked to adaptive thermogenesis.Cell.1998,92(6):829-839.
    [24]Finck BN, Kelly DP. PGC-1 coactivators:inducible regulators of energy metabolism in health and disease.J Clin Invest.2006,116(3):615-622.
    [25]Fanelli M, Filippi E, Sentinelli F, et al. The Gly482Ser missense mutation of the peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha) gene associates with reduced insulin sensitivity in normal and glucose-intolerant obese subjects.Dis Markers.2005, 21(4):175-180.
    [26]Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1.Cell.1999,98(1):115-124.
    [27]Tiraby C, Langin D.Conversion from white to brown adipocytes:a strategy for the control of fat mass?Trends Endocrinol Metab.2003,14(10):439-441.
    [28]Lin J, Handschin C, Spiegelman BM.Metabolic control through the PGC-1 family of transcription coactivators.Cell Metab,2005, 1(6):361-370.
    [29]St-Pierre J, Lin J, Krauss S, et al. Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators lalphaand lbeta (PGC-lalpha and PGC-lbeta) in muscle cells. J Biol Chem.2003,278(29):26597-26603.
    [30]Uldry M, Yang W L, St-Pierre J, et al. Complementary action of the PGC-1 coact Ⅰ vator in mitochondrial biogenesis and brown fat diffentioation. Cell Metab.2006,3(5):333-341.
    [31]Vianna C R, Huntgeburth M, Coppari R, et al. Hypomorphic mutation of PGC-1β causes mitochondrial dysfunction and liver insulin resistance.Cell Metab.2006,4(6):453-464.
    [32]Kamei Y, Ohizumi H, Fujitani Y,et al. PPARgamma coactivator lbeta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc Natl Acad Sci U S A.2003,100(21):12378-12383.
    [33]Cooper M P. Uldry M, Kajimura S, et al.Modulation of PGC-1 coactivator pathways in brown fat differentiation through LRP130.J Biol Chem.2008,283(14):31960-31967.
    [34]Louet JF, Hayhurst G, Gonzalez FJ, et al. The coactivator PGC-1 is involved in the regulation of the liver carnitine palmitoyltransferase I gene expression by cAMP in combination with HNF4a and cAMP-response element-binding protein(CREB). J Biol Chem.2002, 277(41):37991-38000.
    [35]Beg ZH, Allmann DW, Gibson DM.Modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with cAMP and wth protein fractions of rat liver cytosol.Biochem Biophys Res Commun.1973,54(4):1362-1369.
    [36]Carlson CA. Kim KH.Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J Bioi Chem.1973,248(1):378-380.
    [37]Yeh LA. Lee KH, Kim KH.Regulation of rat liver acetyi-CoA carboxyiase.Regulation of phosphorylation and inactivation of acetyl-CoA carboxylase by the adenylate energy charge. J Biol Chem.1980,255(6):2308-2314.
    [38]Luo Z, Saha AK, Xiang X, et al. AMPK, the metabolic syndrome and cancer. Pharmacol Sci. 2005,26(2):69-76.
    [39]Hong SP, Leiper FC, Woods A,et al. Activation of yeast Snfl and mammalian AMP-activated protein kinase by upstream kinases.Proc Natl Acad Sci U S A.2003,100(15):8839-8843.
    [40]Villena JA, Viollet B, Andreelli F, et al. Induced adiposity and adipocyte hypertrophy in mice lacking the AMP-activated protein kinase-alpha2 subunit. Diabetes.2004,53(9):2242-2249.
    [41]Musi N, Hirshman MF, Nygren J, et al. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes.2002,51(7):2074-2081.
    [42]Holmes BF, Kurth-Kraczek EJ, Winder WW. Chronic activat I on of 5'-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J Appl Physiol.1999, 87(5):1990-1995.
    [43]Winder WW, Hardie DG. AMP-activated protein kinase, a metabolic master switch:possible roles in type 2 diabetes. Am J Physiol.1999,277(1 Pt1):E1-10.
    [44]Hudson ER, Pan DA, James J, et al. A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr Biol.2003, 13(10):861-866.
    [45]Leclerc I, Kahn A, Doiron B, et al.The 5'-AMP-activated protein kinase inhibits the transcriptional stimulation by glucose in liver cells, acting through the glucose response complex.FEBS Lett.1998,431(2):180-184.
    [46]Minokoshi Y, Kim YB, Peroni OD, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase.Nature.2002,415(6869):339-343.
    [47]Atkinson LL, Fischer MA, Lopaschuk GD. Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis. J Biol Chem.2002,277(33):29424-29430.
    [48]Huypens P, Moens K, Heimberg H, et al. Adiponectin-mediated stimulation of AMP-activated protein kinase (AMPK) in pancreatic beta cells. Life Sci.2005,77(11):1273-1282.
    [49]Frey-Hewitt B, Vranizan KM, Dreon DM. et al.The effect of weight loss by dieting or exercise on resting metabolic rate in overweight men. Int J Obes.1990,14(4):327-334.
    [50]Hakala K, Mustajoki P, Aittomaki J. et al. Improved gas exchange during exercise after weight loss in morbid obeity. Clin Physiol.1996,16(3):229-238.
    [51]Young JC. Exercise prescription for individuals with metabolic disorders.Practical considerations. Sports Med.1995,19(1):43-54.
    [52]曲绵域,浦均宗,高云秋,等.实用运动医学.北京:北京科学技术出版社.1996:204-209.
    [53]Horowitz JF, Leone TC, Feng W, et al.Effect of endurance training on lipid metabolism in women:a potential role for PPARalpha in the metabolic response to training.Arn J Physiol Endocrinol Metab.2000,279(2):E348-355.
    [54]Watt MJ, Southgate RJ, Holmes AG, et al.Suppression of plasma free fatty acids upregulates peroxisome proliferator-activated receptor (PPAR) alpha and delta and PPAR coactivator lalpha in human skeletal muscle, but not lipid regulatory genes. J Mol Endocrinol.2004,33(2):533-544.
    [55]Amin AR, Wang D, Zhang H, et al. Enhanced anti-tumor activity by the combination of the natural compounds (-)-epigallocatechin-3-gallate and luteol I n:potential role of p53. J Biol Chem.2010,285(45):34557-34565.
    [56]Zheng J, Lee HC, Bin Sattar MM, et al. Cardioprotective effects of epigallocatechin-3-gallate against doxorubicin-induced cardiomyocyte injury.Eur J Pharmacol.2011.652(1-3):82-88.
    [57]Li Z, Wang Y, Vanhoutte PM. Epigallocatechin gallate elicits contractions of the isolated aorta of the aged spontaneously hypertensive rat. Basic Clin Pharmacol Toxicol.2011, 109(1):47-55.
    [58]Baluchnejadmojarad T, Roghani M. Chronic epiigallocatechin-3-gallate ameliorates learning and memory deficits in diabetic rats via modulation of nitric oxiide and oxidative stress.2011, 224(2):305-310.
    [59]韩超,范小兵,王少康等.表没食子儿茶素没食子酸酯对肥胖模型大鼠减肥作用的实验研究[J].现代医学.2008,36(3):197-199.
    [60]Lee MS,Kim CT,and Kim Y Green tea(一)-epigallocalechin-3-gallate reduces body weight with regulation of multiple genes expression in adipose tissue of diet-induced obese mice.Ann Nutr Mecab-2009,54(2):151-157.
    [61]Boschmann M,Thielecke F.The effects of epigallocatechin-3-gallate on thermogenesis and fat oxidation in obese men:a pilot study.J Am Coll Nutr.2007,26(4):389S-395S.
    [62]Lee MS, Kim Y (一)-Epigallocatechin-3-gallate ellhances uncoupling protein 2 gene expression in 3T3-L1 adipocytes.Biosci Biotechnol Biochem.2009,3(2):434-436.
    [63]Kao YH,Hiipakka RA,Liao S.Modulation of obesity by a green tea catechin.Am J Clin NItr.2000,72(5):1232-1234.
    [64]Murase T.Nagasawa A,SUZUki J,et al.Beriefcial efiects of tea catechins on diet-indLiced obesity: stimulation of lipid catabolism in the live.Internatiomal.Journal of Obesity.2002, 26(11):1459-1464.
    [65]Lonac MC,Richards JC,Schweder MM.et al.Influence of short-term consumption of the cafieine-free. epigallocatechin-3-gallate supplement,Teavigo, on resting metabolism and the thermic effect of feeding.Obesity(Silver Spring).2011,19(2):298--304.
    [66]Schoonjans K,Staels B,Auwerx J.ROle of the peroxisome proliferator-activated receptor (PPAR)in mediating the effects of fibrates and fatty acids on gene expression.J Lipid Res.1996, 37 (5):907-925.
    [67]葛斌.表没食子儿茶素没食子酸酯对大鼠高脂性脂肪肝的治疗作用及其机制研究[D]苏州大学2009级硕士学位论文.
    [68]Abe K,Okada N,Tanabe H,et al.Effects of chronic ingestion of catechin-rich green tea Om hepatic gene expressjon of gluconeogenic enzyrues in rats.Biomed Res.2009,30(1):25-29.
    [69]Lee K.Transactivation of peroxisome proliferator-activated receptor α by green tea extracts.J Vet Sci.2004,5(4):325-30.
    [70]Serisier S,Leray V,Poudroux.W et al.Effects of green tea on insulin sensitivity,lipid profile and expression of PPAR α and PPAR γ and their target genes in obese dogs.Br J Nutr.2008, 99(6):1208-1216.
    [71]Sae-Tan S,Grove KA,Kennett MJ,et al.(一)-Epigallocatechin-3-gallate increases the expression of genes related to fat oxidation in the skeletal muscle of high fat-fed mice.Food Funct.2011,2(2):111-116.
    [72]Chen N,Bezzina R,Hinch E,et al.Green tea,black tea,and epigallocatechin modify body composition.improve glucose tolerance,and differentially alter metabolic gene expression in rats fed a high-fat diet.Nutr Res.2009,29(11):784-793.
    [73]Lee WJ,Kim M,Park HS,et al.AMPK activalion increases fatty acid oxidalion.in skeletal musele by activating PPARalpha and PGC-1.Biochem Biophys Res Commun.2006, 340(1):291-295.
    [74]RavnsKjaer K,Boergesen M,Dalgaard L T,et al.Glucose-indLiced repression of PPARaIpha gene expression in pancreatic beta-cells involves PP2A activation and AMPK inactivation.J Mol Endocrinol.2006,36(2):289-299.
    [75]Canto C. Auwerx J.PGC-lalpha, SIRT1 and AMPK, an energy sensing network that controlsenergy expenditure.2009,20(2):98-105.
    [76]Jager S, Handschin C, St-Pierre J, et al. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1 alpha. Proc Natl Acad Sci U S A.2007, 104(29):12017-12022.
    [77]徐晓伟,王晓奎,李松.脂肪酸合成酶抑制剂的研究进展[J].国际药学研究杂志.2009,36(2):105-108.
    [78]Moon HS. Chung CS, Lee HG, et al. inhibitory effect of (-)-epigallocatechin-3-gallate on iipid accumulation of 3T3-L1 cells.Obesity (Silver Spring).2007,15(11):2571-2582.
    [79]Ikeda l, Hamamoto R, Uzu K, et al. Dietary gallate esters of tea catechins reduce deposition of visceral fat, hepatic triacylglycerol, and activities of hepatic enzymes related to fatty acid synthesis in rats.Biosci Biotechnol Biochem.2005,69(5):1049-1053.
    [80]Hung PF, Wu BT, Chen HC, et al. Antimitogenic effect of green tea (-)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the ERK and Cdk2 pathways. Am J Physiol Cell Physiol.2005.288(5):C1094-1108.
    [81]Pan MH, Lin CC, Lin JK, et al. Tea polyphenol (-)-epigallocatechin 3-gallate suppresses heregulin-betal-induced fatty acid synthase expression in human breast cancer cells by inhibiting phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase cascade signaling. J Agric Food Chem.2007,55(13):5030-5037.
    [82]Si Young Cho. Pil Joon Park, Hyun Jung Shin, et al. (-)-Catechin suppresses expression of Kruppel-like factor 7 and increases expression and secretion of adiponectin protein in 3T3-L1 cells.Am J Physiol Endocrinol Metab.2007,292(4):E1166-1172.
    [83]Hwang JT, Park IJ, Shin.JI, et al. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase.BiochemBiophysRes Commun.2005,338(2):694-699.
    [84]Kao YH, Hiipakka RA, Liao S.Modulation of endocrine systems and food intake by green tea epigallocatechin gallate.2000,141(3):980-987.
    [85]PelleymounterM A, CullenM J, BakerM B. et al. Effect of the obese gene product on body weight regulation in ob/ob mice.Science.1995,269 (5223):540-543.
    [86]Gogga P, Karbowska J, Meissner W, et al. Role of leptin in the regulation of Iipid and carbohydrate metabolism.Postepy Hig Med Dosw (Online).2011,26(65):255-262.
    [87]200Liu HS, Chen YH, Hung PF, et al. Inhibitory effect of green tea (-)-epigallocatechin gallate on resistin gene expression in 3T3-L1 adipocytes depends on the ERK pathway.Am J Physiol Endocrinol Metab.2006,290(2):E273-281.
    [88]Collins QF, Liu HY, Pi J, et al. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5'-AMP-activated protein kinase. J Biol Chem.2007, 282(41):30143-30149.
    [89]Hsieh CF, Tsuei YW, Liu CW, et al. Green tea epigallocatechin gallate inhibits insulin stimulation of adipocyte glucose uptake via the 67-kilodalton laminin receptor and AMP-activated protein kinase pathways. Planta Med.2010,76(15):1694-1698.
    [90]Bose M, Jambert JD, Ju J. et al. The Major Green Tea Polyphenol, (-)-Ep Ⅰ gallocatechin-3-Gallate, inhibits Obesity, Metabolic Syndrome, and Fatty Liver Disease in High-Fat-Fed Mice.The Journal of Nutrition and Disease.2010,7(1):1677-1683.
    [91]Klaus S, Pultz S, Thone-Reineke C, et al. Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation.International Journal of Obesity.2005,29(6):615-623.
    [92]Raederstorff DG, Schlachter MF, Elste Ⅴ, et al. Effect of EGCG on lipid absorption and plasma lipid levels in rats.J Nutr Biochem.2003,14(6):326-332.
    [93]Brooks DE, Mcintosh JE.Turnover of carnitine by rat tissues. Biochem J.1975, 148(3):439-445.
    [94]Cerreteili P, Marconi C.L-carnitine supplementation in humans.The effects on physical performance. Int J Sports Med.1990,11(1):1-14.
    [95]Mitchell ME.Carnitine metabolism in human subjects. Ⅱ. Values of carnitine in biological fluids and tissues of "normal" subjects.Am.i Clin Nutr.1978,31 (3):481-491.
    [96]Giamberardino MA, Dragani L, Valente R, et al. Effects of prolonged L-carnitine administration on delayed muscle pain and CK release after eccentric effort. Int J Sports Med. 1996,17(5):320-324.
    [97]Molyneux R, Seymour AM,Bhandari S. Value of carnitine therapy in kidney dialysis patients and effects on cardiac function from human and animal studies.Curr Drug Targets.2012, 13(2):285-293.
    [98]Kang N, Ma JH, Zhou X, et al. Effects of L-carnitine on the apoptosis of spermatogenic cells and epididymai sperm count and motility in rats with diabetes mellitus.Zhonghua Nan Ke Xue. 2011,17(5):422-426.
    [99]Crill CM, Helms RA.The use of carnitine in pediatric nutrition. Nutr Clin Pract.2007, 22(2):204-213.
    [100]周斅激.L-肉碱配合有氧运动对肥胖女性脂肪代谢的影响[J].天津体育学院学报.2004,19(4):60-62.
    [101]周书凤,何志谦,刘建平等.左旋肉碱对肥胖青少年体重综合性控制的影响[J].营养学报.1997,19(2):146-151.
    [102]张宝花.左旋肉碱对肥胖青少年体重综合性控制的影响[J].山西大同大学学报(自然科学版).2010,26(4):83-84.
    [103]Wutzke K.D, Lorenz H.The effect of 1-carnitine on fat oxidation, protein turnover, and body composition in slightly overweight subjects.Metabolism.2004,53(8):1002-1006.
    [104]Iossa S, Mollica MP, Lionetti L, et al. Acetyl-L-carnitine supplementation differently influences nutrient partitioning, serum leptin concentration and skeletal muscle mitochondrial respiration in young and old rats.J Nutr.2002,132(4):636-642.
    [105]Mingorance C, Gonzalez del Pozo M, Dolores Herrera M, et al. Oral supplementation of propionyl-L-carnitine reduces body weight and hyperinsulinaemia in obese Zucker rats.Br J Nutr. 2009.102(8):1145-1153.
    [106]Skorin C, Necochea C, Johow V, et al. Peroxisomal fatty acid oxidation and inhibitors of the mitochondrial carnitine palmitoyltransferase J in isolated rat hepatocytes. Biochem J.1992,281 (Pt2):561-567.
    [107]冯宇,郭长江,高兰兴.体内肉碱来源及其对脂类代谢的影响[J].氨基酸和生物资源.1998,20(4):48-50.
    [108]Hulver MW, Berggren JR., Cortright RN, et al.Skeletal muscle lipid metabolism with obesity.Am J Physiol Endocrinol Metab.2003,284(4):E741-747.
    [109]Noland RC, Koves TR, Seiler SE, et al. Carnitine insufficiency Caused by Aging and Overnutrition Compromises Mitochondrial Performance and Metabolic Control..1 Biol Chem. 2009,284(34):22840-22852.
    [110]Rahbar AR. Shakerhosseini R, Saadat N, et al. Effect of L-carnitine on plasma glycemic and lipidemic profile in patients with type Ⅱ diabetes mellitus. Eur J Clin Nutr.2005, 59(4):592-596.
    [111]Asai T, Okumura K, Takahashi R, et al. Combined therapy with PPARalpha agonist and L-carnitine rescues lipotoxic cardiomyopathy due to systemic carnitine deficiency. Cardiovasc Res.2006,70(3):566-577.
    [112]Lee MS, Lee HJ, Lee HS, et al. L-carnitine stirnlates lipolysis via induction of the lipolytic gene expression and suppression of the adipogenic gene expression in 3T3-L1 adipocytes.J Med Food.2006,9(4):468-473.
    [113]Pesce V, Fracasso F, Cassano P, et al. Acetyl-L-carnitine supplementation to old rats partially reverts the age-related mitochondrial decay of soleus muscle by activating peroxisome proliferator-activated receptor gamma coactivator-lalpha-dependent mitochondrial biogenesis.Rejuvenation Res.2010,13(2-3):148-151.
    [114]Cassano P, Sciancalepore AG, Pesce V, et al. Acetyl-L-carnitine feeding to unloaded rats triggers in soleus muscle the coordinated expression of genes involved in mitochondrial biogenesis.Biochim Biophys Acta.2006,1757(9-10):1421-1428.
    [115]Zhang Z, Zhao M, Li Q, et al. Acetyl-l-carnitine inhibits TNF-alpha-induced insulin resistance via AMPK pathway in rat skeletal muscle cells. FEBS Lett.2009,583(2):470-474.
    [116]Shen W, Liu K, Tian C. et al. R-alpha-lipoic acid and acetyl-L-carnitine complementarily promote mitochondrial biogenesis in murine 3T3-L1 adipocytes.Diabetologia.2008, 51(1):165-174.
    [117]曾涛,谢克勤,张翠丽,等.氯仿/甲醇匀浆测定肝脏甘油三酯含量的影响[J].卫生研究.2008,37(5):550-551.
    [118]邹大进.实用临床肥胖病学[M].北京:中国医药科技出版社.1997,57.
    [119]Reaven G, Abbasi F, McLaughlin T.Obesity, insulin resistance, and cardiovascular disease. Recent Prog Horm Res.2004,59:207-223.
    [120]Bermardis LL, Patterson DB. Correlation between 'Lee index'and carcass fat content in weanling and adult female rats with hypothalamic lesions.J Endocrinol.1968,40(4):527-528.
    [121]Timmers K, Knittle JL.Effects of undernutrition and refeeding on enzyme activities and rates of glucose catabolism in rat epididymal adipose tissue.J Nutr.1980,110(6):117611-84.
    [122]West DB, York B. Dietary fat, genetic predisposition and obesity:lessons from animal models.Am J Clin Nutr.1998,67(3 Suppl):505S-512S.
    [123]张忠英.运动减肥对肥胖儿童少年脂蛋白酯酶活性和血脂影响的研究[D].上海体育学院2010级硕士学位论文.
    [124]温俊平,林丽香,陈刚等.2型糖尿病大鼠骨骼肌基因表达谱研究[J].中华内分泌代谢杂志.2006,22,5:491.
    [125]马慧娟.高脂饮食诱导的胰岛索抵抗大鼠骨骼肌线粒体相关蛋白PGC-1 α的表达及调控[D].河北医科大学2010级博十学位论文.
    [126]殷峻,陈名道,杨颖等.小檗碱对大鼠脂代谢的影响[J].上海第二医科大学学报.2003,23,suppl:28-30.
    [127]程媛,干佑民,丁晓洁.肥胖大鼠骨骼肌AMPK表达及其与糖脂代谢的关系[J].安徽医科大学学报.2010,45(2):180-182.
    [128]任卓.二甲双胍对脂肪变性成肌细胞甘油三酯含量的影响[D].中国医科大学2010级硕士学位论文.
    [129]Cannon B, Nedergaard J. Brown adipose tissue:function and physiological significance. Physiol Rev.2004,84(1):277-359.
    [130]Takeuchi H, Matsuo T, Tokuyama K, et al. Diet-induced thermogenesis is lower in rats fed a lard diet than in those fed a high oleic acid safflower oil diet, a safflower oil diet or a linseed oil diet. J Nutr.1995,125(4):920-925.
    [131]Pomplun D, Voigt A. Schulz TJ, et al. Reduced expression of rnitochondrial frataxin in mice exacerbates diet-induced obesity. Proc Nat! Acad Sci U S A.2007,104(15).6377-6381.
    [132]Wajchenberg BL.Subcutaneous and visceral adipose tissue:their relation to the metabolic syndrome. Endocr Rev.2000,21(6):697-738.
    [133]Kersten S, Wahli W. Peroxisome proliferator activated receptor agonists.EXS.2000, 89:141-151.
    [134]Lee KY, Kim SJ, Cha YS, et al. Effect of exercise on hepatic gene expression in an obese mouse model using cDNA microarrays. Obesity.2006,14(8):1294-1302.
    [135]张玥,姜宁,苏丽,等.PPAR α与运动改善脂质代谢的关系[J].中国康复医学杂志.2008,23:495-504.
    [136]牛琼.实验性脂肪肝组织PPARS表达及干预实验的研究[D].青岛大学2003级硕十学位论文.
    [137]王斐.二甲双胍对高脂饲养大鼠肝脏AMPK和PPARS活性影响-改善脂肪肝的可能机制[D].山东大学2008级博十学位论文.
    [138]Sparks LM, Xie H, Koza RA, et al.A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes.2005, 54(7):1926-1933.
    [139]Crunkhorn S, Dearie F. Mantzoros C, et al.PGC-1 expression is reduced in obesity:potential pathogenic role of saturated fatty acids and p38 MAP kinase activation. J Biol Chem.2007, 282(21):15439-15450.
    [140]Koves TR, Li P, An J, et al. Peroxisome proliferator-activated receptor-yco-activator la-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency.J Biol Chem.2005,280(39):33588-33598.
    [141]Sparks LM, Xie H, Koza RA, et al.A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle.Diabetes.2005, 54(7):1926-1933.
    [142]McAinch AJ, Lee JS, Bruce CR, et al. Dietary regulation of fat oxidative gene expression in different skeletal muscle fiber types.Obesity Res.2003,11(12):1471-1479.
    [143]Turner N, Bruce CR, Beale SM, et al. Exess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle:Evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents.Diabetes.2007,56(8):2085-2092.
    [144]Hancock CR, Han DH, Chen M, et al. High-fat diets cause insulin resistance despite an increase in muscle mitochondria.PANS.2008,105(22):7815-7820.
    [145]Shin DJ, Campos JA, Gil G, et al. PGC-1α activates CYP7A1 and bile acid biosynthesis. J Biol Chem.2003,278(50):50047-50052.
    [146]蔡明春,黄庆愿,高钮琪AMPK与能量代谢[J].重庆医学.2004,34(1):120-122.
    [147]郭光、田荣、曲卉等.高脂饮食诱导下的肥胖和肥胖抵抗大鼠细胞形态及瘦素、AMPK表达变化的研究[J].北京体育大学学报.2011.34(3):67-70.
    [148]Miyazawa S, Furuta S, Hashimoto T.Reduction of beta-oxidation capacity of rat liver mitochondria by feeding orotic acid.Biochim Biophys Acta.1982,711(3):494-502.
    [149]胡晓倩.海参皂营对脂质代谢的影响及其机制研究[D].中国海洋大学2010级硕士学位论文.
    [150]刘倩.人谷氨酞胺:6—磷酸果糖酞胺转移酶抑制剂的筛选及Rhe I n改善胰岛素抵抗和脂代谢紊乱作用的实验研究[D].北京协和医学院2009级博十学位论文.
    [151]Takeuchi H, Matsuo T, Tokuyama K, et al. Effect of dietary fat type on beta-oxidation of brown adipose tissue and Na+ channel density of brain nerve membrane in rats.J Nutr Sci Vitaminol (Tokyo).1996,42(2):161-166.
    [152]Reddy JK, Hashimoto T. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha:an adaptive metabolic system.Annu Rev Nutr.2001,21:193-230.
    [153]Kubota N, Terauchi Y, Miki H, et al. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance.Mol Cell.1999,4(4):597-609.
    [154]张国华AMPK/PGC-1α通路与运动诱导的骨骼肌线粒体生物合成[J].广州体育学院学报.2007,27(6):100-104.
    [155]Vega RB, Huss JM, Kelly DP.The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptora in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes.Mol Cell Biol.2000,20(5):1868-1876.
    [156]Louet JF, Hayhurst G, Gonzalez FJ, et al.The coactivator PGC-1 is involved in the regulation of the liver carnitine palmitoyltransferaseigene expression by cAMP in combination with HNF4aand cAMP-response element-binding protein (CREB). J Biol Chem.2002, 277(41):37991-38000.
    [157]Koo SH, Satoh H, Herzig S,et al.PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. Nat Med.2004,10(5):530-534.
    [158]Chantre P, Lairon D.Recent findings of green tea extract AR25 (ExoliseTM) and its activity for the treatment of obesity. Phytomedicine.2002,9(1):3-8.
    [159]Bose M, Lambert JD, Ju J et al.The Major Green Tea Polyphenol, (-)-Epigallocatechin-3-Gallate. inhibits Obesity, Metabolic Syndrome, and Fatty Liver Disease in High-Fat-Fed Mice. J Nutr.2008,138(9):1677-1683.
    [160]Aoi W. Naito Y, Hang LP, et al. Regular exercise prevents high-sucrose diet-induced fatty liver via improvement of hepatic lip id metabolism. Biochem Biophys Res Commun.2011, 413(2):330-5.
    [161]Bradley NS, Snook LA, Jain SS,et al. Acute endurance exercise increases plasma membrane fatty acid transport proteins in rat and human skeletal muscle.Am J Physiol Endocrinol Metab. 2012,302(2):E183-189.
    [162]Sial S, Coggan AR, Hickner RC, et al. Training-induced alterations in fat and carbohydrate metabolism during exercise in elderly subjects. Am J Physiol.1998,274(5 Pt 1):E785-790.
    [163]吴毅,杨晓冰,孙莉敏等.运动改善糖尿病代谢作用机制的实验与临床研究[J].2002年第9届全国运动医学学术会议论文摘要汇编.P155.
    [164]李可基,李晖,张宝慧等.有氧运动升高脂质清除障碍的ApoE小鼠血脂[J].体育科学.2001,21(2):57-61.
    [165]Bandyopadhyay GK, Yu JG. Ofrecio J, et al. increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects. Diabetes.2006.55(8):2277-2285.
    [166]Kubota N, Terauchi Y, Kubota T, et al. Pioglitazone ameliorates insulin resistance and diabetes by both adiponectin-dependent and-independent pathways. J Biol Chem.2006, 281(13):8748-8755.
    [167]Nawrocki AR. Rajala MW, Tomas E, et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists. J Biol Chem.2006,281(5):2654-2660.
    [168]Chen ZP, Stephens TJ, Murthy S, et al. Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes.2003,52(9):2205-2212.
    [169]Fujii N, Hayashi T, Hirshman MF, et al. Exercise induces isoform-specific increase in 5'AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun.2000,273(3):1150-1155.
    [170]Wojtaszewski JF, Nielsen P, Hansen BF, et al. Isoform-specific and exercise intensity-dependent activation of 5'-AMP-activated protein kinase in human skeletal muscle. J Physiol.2000,528 Pt 1:221-226.
    [171]Coven DL, Hu X, Cong L, et al. Physiological role of AMP-activated protein kinase in the heart:graded activation during exercise.Am J Physiol Endocrinol Metab.2003,285(3):E629-636.
    [172]Park H, Kaushik VK, Constant S, et ai. Coordinate regulaion of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J Biol Chem.2002, 277(36):32571-32577.
    [173]De Filippis E, Alvarez G, Berria R, et al. Insulin-resistant muscle is exercise resistant: evidence for reduced response of nuclear-encoded mitochondrial genes to exercise. Am J Physiol Endocrinol Metab.2008,294(3):E607-614.
    [174]Sriwijitkamol A, Coletta DK. Wajcberg E, et a!. Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes:a time-course and dose-response study. Diabeies.2007,56(3):836-848.
    [175]Terada S, Kawanaka K, Goto M, et al.Effects of high-intensity intermittent swimming on PGC-1 alpha protein expression in rat skeletal muscle.Acta Physiol Scand.2005,184(1):59-65.
    [176]Taylor EB. Lamb JD. Hurst RW, et al. Endurance training increases skeletal muscle LK.B1 and PGC-lalpha protein abundance:effects of time and intensity.Am J Physiol Endocrinol Metab.2005,289(6):E960-968.
    [177]Pilegaard H, Saltin B, Neufer PD.Exercise induces transient transcriptional activation of the PGC-lalpha gene in human skeletal muscle. J Physiol.2003,546(Pt 3):851-858.
    [178]Baar K. Involvement of PPAR gamma co-activator-1, nuclear respiratory factors 1 and 2, and PPAR alpha in the adaptive response to endurance exercise. Proc Nutr Soc.2004, 63(2):269-273.
    [179]Cresci S, Wright I,D, Spratt JA,et al.Activation of a novel metabolic gene regulatory pathway by chronic stimulation of skeletal musele. Am J Physiol.1996,270(5 Pt 1):C 1413-1420.
    [180]陈敏.DHEA,运动通过PPAR α对大鼠肝脏、心脏及肌肉中脂肪分解的调节作用[D].苏州大学2004届硕士学位论文.
    [181]Steineger HH, Serensen HN, Tugwood JD,et al. Dexamethasone and insulin demonstrate marked and opposite regulation of the steady-state mRNA level of the peroxisomal proliferator-activated receptor (PPAR) in hepatic cells.Hormonal modulation of fatty-acid-induced transcription. Eur J Biochem.1994,225(3):967-974.
    [182]胡琴,李隆贵.心肌脂肪酸氧化酶的基因调控机制及PPAR α的利用[J].中国病理生理杂志.2002,18(12):1552-1555.
    [183]Barger PM, Kelly DP. PPAR signaling in the control of cardiac energy metabol Ⅰ sm. Trends Card I ovasc Med.2000,10(6):238-245.
    [184]Venables MC, Hulston CJ, Cox HR,et al. Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans. Am J Clin Nutr.2008,87(3):778-784.
    [185]Maki KC, Reeves MS, Farmer M, et al. Green tea catechin consumption enhances exercise-induced abdominal fat loss in overweight and obese adults. J Nutr.2009,139(2):264-270.
    [186]Hill AM, Coates AM, Buckley JD, et al. Can EGCG reduce abdominal fat in obese subjects? J Am Coll Nutr.2007,26(4):396S-402S.
    [187]Waltner-Law ME, Wang XL, Law BK, et al. Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem.2002,277(38):34933-34940.
    [188]Zheng G, Sayama K, Okubo T, et al. Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. In Vivo.2004,18(1):55-62.
    [189]宋小鸽,唐照亮,侯正明,等.茶多酚对大鼠高脂血症的预防作用[J].中医研究.1998,11(1):19-20.
    [190]Yeh CW,Chen WJ,Chiang CT.et al.Suppression of fatty acid synthase in MCF-7 breast cancer cells by tea and tea polyphenols:a possible mechanism for their hypolip I demic effects.J Pharmacogenomics.20034,3(5):267-276.
    [191]Ikeda I, Tsuda K, Suzuki Y,et al.Tea Catechins with a Galloyl Moiety Suppress Postprandial Hypertriacylglycerolemia by Delaying Lymphatic Transport of Dietary Fat in Rats.J Nutr,2005,135(2):155-159.
    [192]Choo JJ.Green tea reduces body fat accretion caused by high-fat diet in rats through beta-adrenoceptor activation of thermogenesis in brown adipose tissue.J Nutr Biochem.2003, 14(11):671-676.
    [193]Dulloo AG, Seydoux J, Girardier L, et al. Green tea and thermogenesis:interactions between catechin-polyphenols, caffeine and sympathetic activity.Int J Obes Relat Metab Disord. 2000,24(2):252-258.
    [194]李延兵,梁奕锉,秦婉文,等.左旋肉碱在超重Ⅱ型糖尿病病人中的作用[J].中山医科大学学报.2000,21(3):215.
    [195]黄宗锈,林健,林春芳.左旋肉碱对肥胖人员减肥作用的效果观察[J].预防医学论坛.2007,13(1):6-8.
    [196]Diaz M, Lopez F, Hernandez F, et al. L-Carnitine effects on chemical composition of plasma lipoproteins of rabbits fed with normal and high cholesterol diets.Lipids.2000, 35(6):627-632.
    [197]Hong YM, Kim HS, Yoon HR.Serum lipid and fatty acid profiles in adriamycin-treated rats after administration of L-carnitine.Pediatr Res.2002,51(2):249-255.
    [198]Bell FP, Vidmar TJ, Raymond TL.L-carnitine administration and withdrawal affect plasma and hepatic carnitine concentrations, plasma lipid and lipoprotein composition, and in vitro hepatic lipogenesis from labeled mevalonate and oleate in normal rabbits.J Nutr.1992, 122(4):959-966.
    [199]王秋灵.L-肉碱对耐力训练小鼠力竭运动后氧化应激和能量代谢相关酶的影响[D].华东师范大学2006届硕士学位论文.
    [200]Toby G. Bedford, Charles M. Tipton, Noela C. Wilson, et al. Maximum oxygen consumption of rats and its changes with various experimental procedures. J. Appl. Physiol.1979, 47(6):1278-1283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700