水稻WRKY转录因子OsWRKY13的功能鉴定和调控机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在植物的抗病反应中,信号分子水杨酸和茉莉酸介导着两个截然不同的抗病信号途径,而且通常认为这两个途径存在一定程度的拮抗。大量的研究表明,WRKY转录因子作为植物所特有的一类转录因子家族在上述植物抗病反应中扮演着重要的角色。白叶枯病和稻瘟病是影响水稻生产的两个重要病害,尽管目前在水稻基因组中已经鉴定了109-112个WRKY基因,但是关于此家族成员在水稻抗病反应中的作用仍然不是很清楚,特别是关于WRKY因子在抗病信号传导途径中的地位。本研究通过运用各种功能基因组学的研究手段,研究了一个受病原诱导的水稻WRKY转录因子OsWRKY13在水稻抗病反应中的主要功能。
     利用农杆菌介导的遗传转化在感病品种牡丹江8中超量表达OsWRKY13,共分离检测结果表明,无论是苗期还是成株期都增强了转基因植株对白叶枯病和稻瘟病的抗性;相反的是,反义抑制的明恢63转化植株也表现了对白叶枯病感病性的提高。采用定量RT-PCR的方法进一步检测了上述转基因植株中病程相关蛋白和其它与水杨酸及茉莉酸代谢相关的基因的表达情况。在接种前后的至少在一个检测时间点OsWRKY13超量表达植株中比对照牡丹江8聚集了更多的PR1α基因的转录本,而且反义表达植株中互补了这种表达模式;同时,PR10和JIOsPR10基因的表达量在OsWRKY13超量表达植株中比对照牡丹江8的明显要低;而对11个与水杨酸、茉莉酸或者环氧脂类信号传导途径相关基因的表达分析显示,OsWRKY13的表达量提高至少在一个时间点显著地诱导了基因CHS,PAD4和ICS1的表达,但是部分抑制基因OsWRKY13的表达量对这3个基因的表达没有影响;同时,超量表达OsWRKY13则显著抑制了基因AOS2和POX的表达,而且抑制OsWRKY13显著提高了这两个基因的表达。利用酵母单杂交实验证明了OsWRKY13对PR1α,AOS1,AOS2和LOX的启动子具有很强转录激活能力,而对ICS1,NH1和PAD4则没有;同时利用超量表达植株的核蛋白和重组蛋白OsWRKY13-GST进行的体外DNA结合和蛋白质磷酸化实验进一步表明,OsWRKY13能特异的结合到W-盒或者类W-盒上,而且这种结合受到病原物侵染的调控影响,推测这种影响部分来自对蛋白质磷酸化状态产生的改变。结合超量表达植株中水杨酸含量提高和茉莉酸含量下降的结果,我们认为OsWRKY13通过激活水杨酸信号途径和抑制茉莉酸信号传导途径,参与水稻的抗病反应。
     为了进一步分析OsWRKY13所调控的下游基因以及其调控方式,本研究对超量表达植株芯片分析中所获得的差异表达基因进行了深入的分析。首先,差异表达基因的Geneontology(GO)分类显示OsWRKY13正调控类黄酮代谢,负调控萜类和脂类代谢过程,而上述过程正好分别与水杨酸和茉莉酸的代谢途径相关;其次,进一步统计分析了差异表达基因启动子区保守顺式元件,并通过采用穷举法的方法扫描了差异表达基因启动子区域的保守模体,结果发现在上升表达的基因中显著富集了W-盒(GTTGACC),而在下降的基因中富集了MYB转录因子的结合位点,同时GCC-盒在下降基因的启动子区域中呈明显的减少趋势,并且这种顺式调控元件的变化正好与差异表达的转录因子相吻合。因此,推测OsWRKY13很可能协同MYB和AP2/ERF转录因子调控下游基因,影响类黄酮代谢和脂类代谢过程。
     此外,本研究还分析了OsWRKY13与其它水稻WRKY家族成员的关系以及与拟南芥AtWRKY70共调控的基因。结果表明,OsWRKY13超量表达后负调控许多水稻WRKY基因,特别是与ABA信号相关的;同时在拟南芥AtWRKY70与OsWRKY13参与的抗病反应中,衰老和抗氧爆破过程存在一定的保守性。
     综合上述研究结果,可以看出OsWRKY13通过复杂的调控方式,影响着水杨酸和茉莉酸合成以及类黄酮和脂类代谢过程,最后参与水稻对白叶枯病和稻瘟病的抗病反应。
During the plant defense responses, the components involved in the cross-talkbetween salicylic acid (SA)- and jasmonic acid (JA)-dependent defense pathways againstpathogens and insects have been partially revealed in dicot plants. Many evidences haveshowed that the WRKY transcription factors as unique to plants are also involved inmodulation of SA- or JA-responsive gene expression. Bacterial blight and fungal blast aretwo of the most devastating diseases of rice worldwide. Although 109-112 WRKY geneshave been identified in the rice genome, the functions of most in rice disease resistanceare unknown, especially for their role in SA- and JA-dependent signaling transductionpathways. Here we show that OsWRKY13 plays a pivotal role in rice disease resistancethrough different methods in functional genomic research.
     Overexpression of OsWRKY13 in rice susceptible cultivar Mudanjiang 8 canenhance transgenic plants resistance to bacterial blight and fungal blast, two of the mostdevastating diseases of rice worldwide, at both the seedling and adult stages. Conversely,transgenic plants of OsWRKY13-antisense suppression appeared to be more sensitive tobacterial blight (Xoo strain PXO61). Furthermore, different pathogenesis-related genes,SA synthesis-related genes and JA synthesis-related genes were examined in transgenicplants by quantitative RT-PCR. The results showed that OsWRKY13-overexpressingplants accumulated significantly more PR1αtranscripts than wild-type plants in at leastone examine time-point, and OsWRKY13-suppressed plant complemented that expressionpattern. Moreover, the analysis of eleven genes involved SA synthesis, JA synthesis oroxylipin metabolism indicated that accumulation of OsWRKY13 transcripts significantlyinduced the expression of CHS, PAD4, and ICS1 in at least one time point examined, incontrast, partially suppressing OsWRKY13 expression showed no influence on theexpression of the three genes compared with wild-type plant. Overexpressing OsWRKY13significantly repressed the expression of AOS2 and POX, while suppressing OsWRKY13expression significantly increased the expression of the two genes compared withwild-type plants. Further analysis of yeast one hybrid suggested that OsWRKY13possessed specific and strongly DNA-binding ability to the promoters of PR1α, AOS1,AOS2 and LOX, not to the promoters of ICS1, NH1 and PAD4. And the gel mobility shiftassay showed that nuclear proteins from OsWRKY13-overexpressing plants andOsWRKY13-GST fusion protein had stronger binding signal to the probe, harboring theW-like box, than that from wild type or control. Notably, that DNA-binding ability wasinfluenced by challenged bacterial pathogen certified by a in vitro phosphorylationanalysis, which suggesting the phosphorylation or de-phosphorylation status ofOsWRKY13 play a crucial role in its regulation function. Considering the increasing ofendogenous SA concentration and decreasing of JA concentration inOsWRKY13-overexpressing plants, we concluded that OsWRKY13 participate in ricedefense response as an activator of the SA-dependent pathway and a repressor of JA-dependent pathways.
     To determine more downstream OsWRKY13-regulated genes and its regulationmechanism in OsWRKY13-overexpressing plants, we performed microarray analysisusing the Affymetrix oligonucletide rice chip array. Firstly, the analysis of geneontology(GO) classification in differential expressed genes showed that OsWRKY13 activelyregulated the flavonoids metabolism and negatively regulated terpene or lipid metabolism,those of which always related to the SA or JA signaling pathways, respectively. Secondly,the statistic analysis of conserved cis-regulatory element and discovering of putativeconserved motif in the promoters of OsWRKY13 downstream genes through performingan enumerative method showed that the promoters of most OsWRKY13 up-regulatedgenes over-represented a W-box element (GTTGAC), and Myb3 binding site enriched indown-regulated genes whereas the GCC-box depleted in down-regulated genes. Thoseresults are consistent with the previous results of differential expressed transcriptionfactors. Thus, OsWRKY13 regulated the metabolism of flavonoids and lipid by regulatedthe downstream genes through interaction with other MYB and AP2/ERF transcriptionfactors.
     Otherwise, we also explored the relationship between OsWRKY13 and other riceWRKY family members as well as Arabidopsis AtWRKY70. Interestingly, OsWRKY13negatively regulation the expression of most of other rice WRKY family members,especially for those related to ABA signaling pathway. Comparing analysis indicatedthere was a putative conservation of aging and anti-oxidation burst mechanism inAtWRKY70- and OsWRKY13-mediating defense responses.
     In summary, our results showed that OsWRKY13 participated in rice resistance tobacterial blight and fungal blast by regulating SA- and JA- related signaling pathways orflavonoids and lipid metabolism, through different regulation models.
引文
1.熊敏.水稻抗病相关基因的遗传定位和分离克隆.[硕士学位论文],武汉:华中农业大学,2002
    2. Abe H, Yamaguchi-Shinozaki k, Urao T, Iwasaki T, Hosokawa D, Shinozaki K. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell, 1997, 9:1859-1868
    3. Agrawal G K, Jwa N S, Rakwal R. A novel rice (Oryza sativa L.) acidic PR1 gene highly responsive to cut, phytohormones, and protein phosphatase inhibitors. Biochem Biophys Res Commun, 2000, 274:157-165
    4. Agrawal G K, Rakwal R, Jwa N S, Agrawal V P. Signaling molecules and blast pathogen attack activates rice OsPR1a and OsPR1b genes: A model illustrating components participating during defense/stress response. Plant Physiol Biochem, 2001, 39:1095-1103
    5. Agrawal G K, Rakwal R, Jwa N S, Han K S, Agrawal V P. Molecular cloning and mRNA expression analysis of the first rice jasmonate biosynthetic pathway gene allene oxide synthase. Plant Physiol Biochem, 2002,40:771-782
    6. Alexandrova K S, Conger BV. Isolation of two somatic embryogenesis-related genes from orchardgrass (Dactylis glomerata). Plant Science, 2002, 162:301-307
    7. Altschul S F, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997,25:3389-3402
    8. Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen N H, Zhu S, Qiu JL, Micheelsen P, Rocher A, Petersen M, Newman MA, Bjorn Nielsen H, Hirt H, Somssich I, Mattsson O, Mundy J. The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J, 2005, 24:2579-2589
    9. Asai T, Tena G, Plotnikova J, Willmann M R, Chiu W L, Gomez-Gomez L, Boller T, Ausubel F M, Sheen J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 2002, 415:977-983
    10. Austin M J, Muskett P, Kahn K, Feys B J, Jones J D G, Parker J E. Regulatory role of SGT1 in early R gene-mediated plant defenses. Science, 2002, 295:2077-2080
    11. Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science, 2002, 295:2073-2076
    12. Babu M M, Iyer L M, Balaji S, Aravind L. The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons. Nucleic Acids Res, 2006, 34:6505-6520
    13. Birnbaum K, Shasha D E, Wang J Y, Jung J W, Lambert G M, Galbraith D W, Benfey P N. A gene expression map of the Arabidopsis root. Science, 2003, 302:1956-1960
    14. Blee E. Impact of phyto-oxylipins in plant defense. Trends Plant Sci, 2002, 7:315-321
    
    15. Bogs J, Ebadi A, McDavid D, Robinson S P. Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiol, 2006, 140:279-291
    
    16. Bolwell C J, Wojtaszek P. Mechanisms for the generation of reactive oxygen species in plant defence: a broad perspective. Physiol Mol Plant Pathol, 1997, 51.347-366
    
    17. Bonman J M, Vergel de, Dios T I, Khin M M. Physiologic specialization of Pyricularia oryzae in the Philippines. Plant Dis, 1986, 70:767-769
    
    18. Bowling S A, Guo A, Cao H, Gordon A S, Klessig D F, Dong X. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell, 1994, 6:1845-1857
    
    19. Brodersen P, Petersen M, Bjorn Nielsen H, Zhu S, Newman M A, Shokat K M, Rietz S, Parker J, Mundy J. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J, 2006, 47:532-546
    
    20. Bryan G T, Wu K S, Leonard F, Jia Y, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. A Single Amino Acid Difference Distinguishes Resistant and Susceptible Alleles of the Rice Blast Resistance Gene Pi-ta. Plant Cell, 2000,12:2033-2046
    
    21. Cao H, Glazebrook J, Clarke J D, Volko S, Dong X. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 1997, 88:57-63
    
    22. Chakravarthy S, Tuori R P, DAscenzo M D, Fobert P R, Despres C, Martin G B. The tomato transcription factor Pti4 regulates defence-related gene expression via GCC box and non-GCC box cis elements. Plant Cell, 2003, 15:3033-3050
    
    23. Che D, Jensen S, Cai L, Liu J S. BEST: binding-site estimation suite of tools. Bioinformatics, 2005,21:2909-2911
    
    24. Chen C, Chen Z. Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco. Plant Mol Biol, 2000,42:387-96
    
    25. Chen C, Chen Z. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol, 2002, 129:706-716
    
    26. Chen H L, Chen B T, Zhang D P, Xie Y F, Zhang Q. Pathotypes of Pyricularia grisea in rice fields of central and southern China. Plant Dis, 2001, 85:843-850
    
    27. Chen H L, Wang S P, Zhang Q F. New gene for bacterial blight resistance in rice located on chromosome 12 identified from Minghui 63, an elite restorer line. Phytopathology, 2002, 92:750-754
    
    28. Cheong Y H, Chang H S, Gupta R. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol, 2002,129:661 —677
    
    29. Chem M S, Canlas P E, Fitzgerald H A, Ronald P C. NRR, a negative regulator of disease resistance in rice that interacts with Arabidopsis NPR1 and rice NH1. Plant J, 2005a, 43:623-635
    
    30. Chem M S, Fitzgerald H A, Canlas P E, Navarre D A, Ronald P C. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant-Microbe Interact, 2005b, 18:511-520
    
    31. Chem M S, Fitzgerald H A, Yadav R C, Canlas P E, Dong X, Ronald P C. Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J, 2001, 27:101-113
    
    32. Chittoor J M, Leach J E, White F F. Differential induction of a peroxidase gene family during infection of rice by Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact, 1997, 10:861-71
    
    33. Chu Z, Ouyang Y, Zhang J, Yang H, Wang S. Genome-wide analysis of defense-responsive genes in bacterial blight resistance of rice mediated by a recessive R gene, xa13. Mol Gen Genomics, 2004, 271:111-120
    
    34. Chu Z, Peng K, Zhang L, Zhou B, Wei J, Wang S. Construction and characterization of a normalized whole-life-cycle cDNA library of rice. Chinese Science Bulletin, 2003, 48:229-235
    
    35. Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen J L, Zhang Q, Wang, S. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev, 2006, 20: 1250-1255
    
    36. Claire M M, Luca C, Elizabeth A G, Steven H. Targeting Induced Local Lesions IN Genomes (TILLING) for Plant Functional Genomics. Plant Physiol, 2000, 123:439-442
    
    37. Cormack R S, Eulgem T, Rushton P J, Kochner P, Hahlbrock K, Somssich I E. Leucine zipper-containing WRKY proteins widen the spectrum of immediate early elicitor-induced WRKY transcription factors in parsley. Biochim Biophys Acta, 2002, 1576:92-100
    
    38. Dahlquist K D, Salomonis N, Vranizan K, Lawlor S C, Conklin B R. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet, 2002, 31:19-20
    
    39. Dangl J L, McDowell J M. Two modes of pathogen recognition by plants. Proc Natl AcadSci USA, 2006, 103:8575-8576
    
    40. de Pater S, Greco V, Pham K, Memelink J, Kijne J. Characterization of a zinc-dependent transcriptional activator from Arabidopsis. Nucleic Acids Res, 1996, 24:4624-4631
    
    41. Dellagi A, Helibronn J, Avrova A O, Montesano M, Palva E T, Stewart H E, Toth I K, Cooke D E, Lyon G D, Birch P R. A potato gene encoding a WRKY-like transcription factor is induced in interactions with Erwinia carotovora subsp. atroseptica and Phytophthora infestans and is coregulated with class I endochitinase expression. Mol Plant-Microbe Interact, 2000, 13:1092-1101
    42. Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type Ⅲ effector targeted to the plant nucleus. Proc Natl Acad Sci USA, 2003, 100:8024-8029
    43. Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng D X, Bittner-Eddy P, Beynon J, Marco Y. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci USA, 2002, 99:2404-2409
    44. Despres C, Subramaniam R, Matton D P, Brisson N. The activation of the potato PR-10a gene requires the phosphorylation of the nuclear factor PBF-1. Plant Cell, 1995, 7:589-598
    45. Desveaux D, Subramaniam R, Despres C, Mess J N, Levesque C, Fobert P R, Dangl J L, Brisson N. A "Whirly" transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Dev Cell, 2004, 6:229-240
    46. Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol, 2003, 51:21-37
    47. Dong X. NPR1, all things considered. Curr Opin Plant Biol, 2004, 7:547-552
    48. Dong X. SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol, 1998, 1:316-323
    49. Duan M R, Ren H, Mao P, Wei C H, Liang Y H, Li Y, Su X D. Crystallization and preliminary X-ray analysis of the C-terminal WRKY domain of Arabidopsis thaliana WRKY1 transcription factor. Biochim Biophys Acta, 2005, 1750:14-16
    50. Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J, 2003, 33:751-63
    51. Durrant W E, Dong X. Systemic acquired resistance. Annu Rev Phytopathol, 2004, 42: 185-209
    52. Ellis C, Turner J G. The Arabidopsis mutant cevl has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell, 2001, 13:1025-1033
    53. Eulgem T, Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcription factors. Trends Plant Sci, 2000, 5:199-206
    54. Eulgem T, Rushton P J, Schmelzer E, Hahlbrook K, Somssich I E. Early nuclear events in plant defence signaling: rapid gene activation by WRKY transcription factors. EMBO J, 1999, 18:4689-4699
    55. Eulgem T, Weigman V J, Chang H S, McDowell J M, Holub E B, Glazebrook J, Zhu T, Dangl J L. Gene expression signatures from three genetically separable resistance gene signaling pathways for downy mildew resistance. Plant Physiol, 2004, 135:1129-1144
    
    56. Eulgem T. Dissecting the WRKY web of plant defense regulators. PLoS Pathog, 2006,2:1029-1030
    
    57. Falk A, Feys B J, Frost L N, Jones J D G, Daniels M J, Parker J E. EDS1, an essential component of R gene mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc Natl Acad Sci USA, 1999, 96:3292-3297
    
    58. Fan W, Dong X. In vivo interaction between NPR1 and transcription factor TGA2 leads to SA-mediated gene activation in Arabidopsis. Plant Cell, 2002, 14:1377-1389
    
    59. Feys B J, Moisan L J, Newman M A, Parker J E. Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J, 2001, 20:5400-5411
    
    60. Filichkin S A, Leonard J M, Monteros A, Liu P P, Nonogaki H. A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiol, 2004, 134:1080-1087
    
    61. Fitzgerald H A, Canlas P E, Chem M S, Ronald P C. Transgenic rice with altered TGA factor activity display enhanced tolerance to Xanthomonas oryzae pv. oryzae and reduced growth. Plant J, 2005,43:335-347
    
    62. Forouhar F, Yang Y, Kumar D, Chen Y, Fridman E, Park S W, Chiang Y, Acton T B, Montelione G T, Pichersky E, Klessig D F, Tong L. Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc Natl Acad Sci USA, 2005, Feb l;102:1773-1778
    
    63. Frey C A, Tang D, Innes R W. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci USA, 2000, 98: 373-378
    
    64. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol, 2006, 9:436-442
    
    65. Gamas P, Niebel F C, Lescure N, Cullimore J V. Use of a subtractive approach to identify new Medicago truncatula genes induced during root nodula development. Mol Plant-Microbe Interact, 1996, 9:233-242
    
    66. Glazebrook J. Genes controlling expression of defense responses in Arabidopsis-2001 status. Curr Opin Plant Biol, 2001, 4:301-308
    
    67. Gozzo F. Systemic acquired resistance in crop protection: from nature to a chemical approach. J Agric Food Chem, 2003, 51:4487-4503
    
    68. Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang G L, White F F, Yin Z. R gene expression induced by a type-Ill effector triggers disease resistance in rice. Nature, 2005, 435:1122-1125
    
    69. Guo Y, Cai Z, Gan S. Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ, 2004, 27:521-549
    70. Ham J H, Bent A. Recognition and defence signalling in plant/bacterial and fungal interactions. In: Scheel D, Wasternack C eds. Plant signal transduction. New York: Oxford University Press, 2002, 198-225
    
    71. Hammond-Kosack K, Jones J D G. Response to plant pathogens. In: Buchana B B, Gruissen W, Johes R L eds., Biochemistry and Molecular Biology of Plants. Maryland: American Society of Plant Physiologist Press, 2000, 1102-1156
    
    72. Hammond-Kosack K, Parker J E. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotech, 2003, 14:177-193
    
    73. Hara K, Yagi M, Kusano T, Sano H. Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. Mol Gen Genet, 2000,263:30-37
    
    74. Hinderhofer K, Zentgraf U. Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta, 2001, 213:469-473
    
    75. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc NatlAcadSci U S A, 2006, 103:12987-12992
    
    76. Huang T, Duman J G. Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA binding activity from winter bitter sweet nightshade, Solanum dulcamara. Plant Mol Biol, 2002,48:339-350
    
    77. Hudson M E, Quail P H. Identification of promoter motifs involved in the network of phytochrome A-regulated gene expression by combined analysis of genomic sequence and microarray data. Plant Physiol, 2003, 133:1605-1616
    
    78. Ishiguro S, Nakamura, K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 59 upstream regions of genes coding for sporamin and β-amylase from sweet potato. Mol Gen Genet, 1994, 244:563-571.
    
    79. Iyer A S, McCouch S R. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol Plant-Microbe Interact, 2004, 17:1348-1354
    
    80. Jirage D, Tootle T L, Reuber T L, Frost L N, Feys B J, Parker J E, Ausubel F M, Glazebrook J. Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc NatlAcadSci USA, 1999, 96:13583-13588
    
    81. Johnson C S, Kolevski B, Smyth D R. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell, 2002, 14:1359-1375
    
    82. Johnson C, Boden E, Desai M, Pascuzzi P, Arias J. In vivo target promoter-binding activities of a xenobiotic stressactivated TGA factor. Plant J, 2001, 28:237-243
    
    83. Journot-Catalino N, Somssich I E, Roby D, Kroj T. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell, 2006, 18:3289-3302
    
    84. Jwa N S, Agrawal G K, Rakwal R, Park C H, Prasad Agrawal. VMolecular cloning and characterization of a novel Jasmonate inducible pathogenesis-related class 10 protein gene, JIOsPR10, from rice (Oryza sativa L.) seedling leaves. Biochem Biophys Res Commun, 2001, 286:973-983
    
    85. Kalde M, Barth M, Somssich I E, Lippok B. Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Mol Plant-Microbe Interact, 2003,16:295-305
    
    86. Kankainen M, Holm L. POBO, transcription factor binding site verification with bootstrapping. Nucleic Acids Res, 2004, 32:222-229
    
    87. Kato N, Dubouzet E, Kokabu Y, Yoshida S, Taniguchi Y, Dubouzet JG, Yazaki K, Sato F. Identification of a WRKY protein as a transcriptional regulator of benzylisoquinoline alkaloid biosynthesis in Coptis japonica. Plant Cell Physiol, 2007, 48:8-18
    
    88. Kauffman H E, Reddy A P K, Hsieh S P Y, Merca S D. An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis Rep, 1973, 57:537-541
    
    89. Kazan K, Schenk P M, Wilson I, Manners J M. DNA microarrays: new tools in the analysis of plant defence responses. Mol Plant Pathol, 2003, 3:177-185
    
    90. Kim C Y, Zhang S. Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco. Plant J, 2004, 38:142-151
    
    91. Kim J A, Agrawal G K, Rakwal R, Han K S, Kim K N, Yun C H, Heu S, Park S Y, Lee Y H, Jwa N S. Molecular cloning and mRNA expression analysis of a novel rice (Oryza sativa L.) MAPK kinase kinase, OsEDRl, an ortholog of Arabidopsis AtEDRl, reveal its role in defense/stress signalling pathways and development. Biochem Biophys Res Commun, 2003, 300:868-76
    
    92. Kim K C, Fan B, Chen Z. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiol, 2006,142:1180-1192.
    
    93. Kinkema M, Fan W, Dong X. Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell, 2000,12:2339-2350
    
    94. Kroj T, Rudd J J, Nurnberger T, Gabler Y, Lee J, Scheel D. Mitogen-activated protein kinases play an essential role in oxidative burst-dependent expression of pathogenesisrelated genes in parsley. J Biol Che, 2003, 278:2256-2264
    
    95. Kunkel B N, Brooks D M. Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol, 2002, 5:325-331.
    
    96. Lagace M, Matton D P. Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense. Planta, 2004, 219:185-189
    
    97. Lebel E, Heifetz P, Thome L, Ukens S, Ryals J, Ward E. Functional analysis of regulatory sequence controlling PR-1 gene expression in Arabidopsis. Plant J, 1998, 16:223-233
    98. Lee H I, Leon J, Raskin I. Biosynthesis and metabolism of salicylic acid. Proc Natl AcadSci USA, 1995,92:4076-4079
    
    99. Lescot M, Dehais P, Moreau Y, De Moor B, Rouze P, Rombauts S. PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002,30:325-327
    
    100.Li J, Brader G, Kariola T, Tapio Palva E. WRKY70 modulates the selection of signaling pathways in plant defense. Plant J, 2006a, 46:477-491
    
    101.Li J, Brader G, Palva E T. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell, 2004,16:319-331
    102.Li Y, Lee K K, Walsh S, Smith C, Hadingham S, Sorefan K, Cawley G, Bevan M W. Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine. Genome Res, 2006b, 16:414-427
    103.Lin Y J, Zhang Q. Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep, 2005, 23:540-547
    
    104.Liu G, Holub E B, Alonso J M, Ecker J R, Fobert, P R. An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. Plant J, 2005a, 41:304-318
    105.Liu K D, Wang J, Li H B, Xu C G, Liu A M, Li X H, Zhang Q. A genome-wide analysis of wide compatibility in rice and the precise location of the S_5 locus in the molecular map. Theor Appl Genet, 1997,95:809-814
    106.Liu X Q, Bai X Q, Qian Q, Wang X J, Chen MS, Chu C C. OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1. Cell Res, 2005b, 15:593-603
    107.Liu X, Bai X, Wang X, Chu C. OsWRKY71, a rice transcription factor, is involved in rice defense response, J Plant Physiol, 2006, [Epub ahead of print]
    108.Luo H, Song F, Goodman R M, Zheng Z. Up-regulation of OsBIHD1, a rice gene encoding BELL homeodomain transcriptional factor, in disease resistance responses. Plant Biol (Stuttg), 2005a,7:459-468
    109.Luo M, Dennis E S, Berger F, Peacock WJ, Chaudhury A. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA, 2005b, 102:17531-17536
    110.Maeo K, Hayashi S, Kojima-Suzuki H, Morikami A, Nakamura K. Role of conserved residues of the WRKY domain in the DNA-binding to tobacco WRKY family proteins. Biosci Biotechnol Biochem, 2001,65:2428-2436
    111.Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton K A, Dangl J L, Dietrich R A. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet, 2000,26:403-410
    112.Mare C, Mazzucotelli E, Crosatti C, Francia E, Stanca A M, Cattivelli L. Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol Biol, 2004, 55:399-416
    113.Marzabal P, Busk P K, Ludevid M D, Torrent M. The bifactorial endosperm box of γ-zein gene: characterisation and function of the Pb3 and GZM cis-acting elements. Plant J. 1998, 16:41-52
    114.Mauch F, Mauch-Mani B, Gaille C, Kull B, Haas D, Reimmann C. Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. Plant J, 2001, 25:67-77
    115.Mei C, Qi M, Sheng G, Yang Y. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol Plant-Microbe Interact, 2006, 19:1127-1137
    116.Menke F L, Kang H G, Chen Z, Park J M, Kumar D, Klessig D F. Tobacco transcription factor WRKY1 is phosphorylated by the MAP kinase SIPK and mediates HR-like cell death in tobacco. Mol Plant-Microbe Interact, 2005, 18:1027-1034
    117.Miao Y, Laun T, Zimmermann P, Zentgraf U. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Bio, 2004, 55:853-867
    118.Mur LA, Kenton P, Atzorn R, Miersch O, Wasternack C. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol, 2006,140:249-262
    119.Mysore K S, Ryu C M. Nonhost resistance: how much do we know? Trends Plant Sci, 2004, 9:97-104
    
    120.Nandi A, Moeder W, Kachroo P, Klessig D F, Shah J. Arabidopsis ssi2-conferred susceptibility to Botrytis cinerea is dependent on EDS5 and PAD4. Mol Plant- Microbe Interact, 2005, 18:363-370
    121.Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S, Boiler T, Jones J D. The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol, 2004, 135:1113-1128
    122.Nawrath C, Metraux J P. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell, 1999,11:1393-1404
    
    123.Nishimura M, Someville S. Resisting Attack. Science, 2002, 295: 2032-2033
    124.Noutoshi Y, Ito T, Seki M, Nakashita H, Yoshida S, Marco Y, Shirasu K, Shinozaki K. A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death. Plant J, 2005, 43:873-888
    125.Oh S K, Yi S Y, Yu S H, Moon J S, Park J M, Choi D. CaWRKY2, a chili pepper transcription factor, is rapidly induced by incompatible plant pathogens. Mol Cells, 2006,22:58-64
    126.Oliver R P, Ipcho S V S. Arabidopsis pathology breathes new life into the necrotrophs-vs.-biotrophs classification of fungal pathogens. Mol Plant Pathol, 2004, 5:347-352
    127.Park C H, Kim S, Park J Y, Ahn I P, Jwa N S, Im K H, Lee Y H. Molecular characterization of a pathogenesis-related protein 8 gene encoding a class III chitinase in rice. Mol Cells, 2004, 17:144-50
    128.Park C J, Shin Y C, Lee B J, Kim K J, Kim J K, Paek K H. A hot pepper gene encoding WRKY transcription factor is induced during hypersensitive response to Tobacco mosaic virus and Xanthomonas campestris. Planta, 2006, 223:168-179
    129.Park C Y, Lee J H, Yoo J H, Moon B C, Choi M S, Kang Y H, Lee S M, Kim H S, Kang K Y, Chung W S, Lim C O, Cho M J. WRKY group IId transcription factors interact with calmodulin. FEBS Lett, 2005, 579:1545-1550
    130.Peng K M, Zhang H B, Zhang Q F. A BAC library constructed to the rice cultivar "Minghui63" for cloning genes of agronomic importance. Acta Bot Sinica, 1998, 40:1108-1114
    131.Peng Y L, Shirano Y, Ohta H, Hibino T, Tanaka K, Shibata D. A novel lipoxygenase from rice. Primary structure and specific expression upon incompatible infection with rice blast fungus. J Biol Chem, 1994, 269:3755-3761
    132.Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen H B, Lacy M, Austin M J, Parker J E, Sharma S B, Klessig D F, Martienssen R, Mattsson O, Jensen A B, Mundy J. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell, 2000,103:1111-1120
    133.Pieterse C M, Van Loon L C. NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol, 2004, 7:456-464.
    
    134.Pieterse C M, van Wees S C, van Pelt J A, Knoester M, Laan R, Gerrits H, Weisbeek P J, van Loon L C. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell, 1998, 10: 1571-1580
    135.Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R. Molecular and Biochemical mechanism associated with dormancy and drought tolerance in the desert tolerance Retama raetam. Plant J, 2002, 31:319-330
    136.Pontier D, Miao Z H, Lam E. Trans-dominant suppression of plant TGA factors reveals their negative and positive roles in plant defense responses. Plant J, 2001, 27:529-538
    137.Qiu Y, Jing S, Fu J, Li L, Yu D. Cloning and analysis of expression profile of 13 WRKY genes in rice. Chin Sci Bull, 2004, 49:2159-2168
    138.Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang G L. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006, 172:1901-1914
    139.Rakwal R, Agrawal G K, Agrawal V P. Jasmonate, salicylate, protein phosphatase 2A inhibitors and kinetin up-regulate OsPR5 expression in cut-responsive rice (Oryzasativa). J Plant Physiol, 2001a, 158:1357-1362
    140.Rakwal R, Agrawal G K, Yonekura M. Light-dependent induction of OsPRlO in rice (Oryza sativa L.) seedlings by the global stress signaling molecule jasmonic acid and protein phosphatase 2A inhibitors. Plant Sci, 2001b, 161:469-479
    141.Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M. Seraphin B. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotech, 1999, 17:1030-1032
    142.Rizhsky L, Liang H, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol, 2002, 130:1143-1151
    143.Robatzek S, Somssich I E. A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J, 2001, 28:123-133
    144.Rogers H J, Bate N, Combe J, Sullivan J, Sweetman J, Swan C, Lonsdale D M, Twell D. Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol, 2001,45:577-585
    145.Rohila J S, Chen M, Chen S, Chen J, Cerny R, Dardick C, Canlas P, Xu X, Gribskov M, Kanrar S, Zhu J K, Ronald P, Fromm M E. Protein-protein interactions of tandem affinity purification tagged protein kinase in rice. Plant J, 2006,46:1-13
    146.Rombauts S, Dehais P, Van Montagu M, Rouze P. PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res, 1999, 27:295-296
    147.Rubio V, Shen Y, Saijo Y, Liu Y, Gusmaroli G, Dinesh-Kumar S P, Deng X W. An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation. Plant J, 2005,41:767-778
    148.Rushton P J, Somssich I E. Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol, 1998, 1:311-315
    149.Rushton P J, Torres J T, Pamiske M, Wernert P, Hahlbrook K, Somssich I E. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR-1 genes. EMBO J, 1996,15:5690-5700
    150.Ryu H S, Han M, Lee S K, Cho J I, Ryoo N, Heu S, Lee Y H, Bhoo S H, Wang G L, Hahn T R, Jeon J S. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep, 2006, 25:836-847
    151.Sagasser M, Lu G H, Hahlbrock K, Weisshaar B. A. thaliana TRANSPARENT TESTA1 is involved in seed coat development and defines the WIP family of plant zinc finger proteins. Genes Dev, 2002,16:138-149
    152.Sanchez-Ballesta M T, Lluch Y, Gosalbes M J, Zacarias L, Granell A, Lafuente MT. A survey of genes differentially expressed during long-term heat induced chilling tolerance in citrus fruit. Planta, 2003,218:65-70
    153.Schaller F. Enzymes of the biosynthesis of octadecanoid derived signalling molecules. J ExpBot, 2001, 52:11-23
    154.Scheffler B E, Reddy A, Hoffmann I, Wienand U. Chalcone synthase cDNA from Rice (Oryza saliva). Plant Physiol, 1995, 109:722-722
    155.Schenk P M, Kazan K, Wilson I, Anderson J P, Richmond T, Somerville S C, Manners J M. Coordinated plant defence responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA, 2000, 97:11655-11660
    156.Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J, 2002, 31:279-292
    157.Shen Q H, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich I E, Schulze-Lefert P. Nuclear Activity of MLA Immune Receptors Links Isolate-Specific and Basal Disease-Resistance Responses. Science, 2007, 315:1098-1103
    158.Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol, 2003, 6:410-417
    159.Silverman P, Seskar M, Kanter D, Schweizer P, Metraux J P, Raskin I. Salicylic acid in rice: biosynthesis, conjugation and possible role. Plant Physiol, 1995, 108:633-639
    160.Singh K B, Foley R C, Onate-Sanchez. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol, 2002, 5:430-436
    
    161.Slaymaker D H, Navarre D A, Clark D, del Pozo O, Martin G B, Klessig D F. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci USA, 2002, 99:11640-11645
    162.Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T E, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P C.A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270: 1804-1806
    163.Soranzo N, Sari Gorla M, Mizzi L, De Toma G, Frova C. Organisation and structural evolution of the rice glutathione S-transferase gene family. Mol Genet Genomics, 2004,271:511-521
    164.Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell, 2003, 15:2076-2092
    165.Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J, 2004, 37:517-527
    166.Tameling W I, Vossen J H, Albrecht M, Lengauer T, Berden J A, Haring M A, Comelissen B J, Takken F L. Mutations in the NB-ARC domain of 1-2 that impair ATP hydrolysis cause autoactivation. Plant Physiol, 2006, 140:1233-1245
    167.Thatcher L F, Anderson J P, Singh K B. Plant defence responses: what have we learnt from Arabidopsis? Functional Plant Biology, 2006, 32:1-19
    168.Tholl D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol, 2006, 9:297-304
    169.Turck F, Zhou A F, Somssich I E. Stimulus-Dependent, Promoter-Specific Binding of Transcription Factor WRKY1 to Its Native Promoter and the Defense-Related Gene PcPR1-1 in Parsley. Plant Cell, 2004,16:2573-2585
    170.Turner J G, Ellis C, Devoto A. The jasmonate signal pathway. Plant Cell, 2002, 14Suppl:S153-164
    171.Tusher V G, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA, 2001, 98:5116-5121
    172.Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J. Acquired resistance in Arabidopsis, Plant Cell, 1992, 4:645-656
    173.Ulker B, Somssich I E. WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol, 2004, 7:491-498
    174.Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell, 1993, 5:1529-1539
    175.van der Biezen E A, Jones J D G. The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol, 1998, 8:226-227
    176.van Wees S C, Glazebrook J. Loss of non-host resistance of Arabidopsis NahG to Pseudomonas syringae — is due to degradation products of salicylic acid. Plant J, 2003, 33:733-742
    177.Vandenabeele S, Van Der Kelen K, Dat J, Gadjev I, Boonefaes T, Morsa S, Rottiers P, Slooten L, Van Montagu M, Zabeau M, Inze D, Van Breusegem F. A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci USA, 2003,100:16113-16118
    178.Verberne M C, Verpoorte R, Bol J F, Mercado-Blanco J, Linthorst H J. Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nat Biotechnol, 2000, 18:779-783
    179.Vranova E, Atichartpongkul S, Villarroel R, Van Montagu M, Inze D, Van Camp W. Comprehensive analysis of gene expression in Nicotiana tabacum leaves acclimated to oxidative stress. Proc Natl Acad Sci USA, 2002, 99:10870-10875
    180.Wang D, Amornsiripanitch N, Dong X. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoSPathog, 2006a, 2:el23
    181.Wang D, Weaver N D, Kesarwani M, Dong X. Induction of protein secretory pathway is required for systemic acquired resistance. Science, 2005, 308:1036-1040
     182. Wang G, Ding X, Yuan M, Qiu D, Li X, Xu C, Wang S. Dual function of rice OsDR8 gene in disease resistance and thiamine accumulation. Plant Mol Biol, 2006b, 60:437-449
    183.Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Lisa M, Hayasks H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 1999, 19: 55-64
    184.Wen N, Chu Z, Wang S. Three types of defense-responsive genes are involved in resistance to bacterial blight and fungal blast diseases in rice. Mol Gen Genomics, 2003,269:331-339
    185.Wheeler G L, Grant C M. Regulation of redox homeostasis in the yeast Saccharomyces cerevisiae. Physiol Plant, 2004, 120:12-20
    186.Wildermuth M C, Dewdney J, Wu G, Ausubel F M. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 2001,414:562-565
    187.Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol, 2001, 126:485-493
    188.Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Li X, Zhou D X, Wang S, ZhangQ. Development of enhancer trap lines for functional analysis of the rice genome. Plant J, 2003, 35:418-427
    189.Xie Z, Zhang Z L, Zou X, Huang J, Ruas P, Thompson D, Shen Q J. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol, 2005, 137:176-189
    190.Xie Z, Zhang Z L, Zou X, Yang G, Komatsu S, Shen Q J. Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant J, 2006, 46:231-242
    191.Xu X, Chen C, Fan B, Chen Z. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors. Plant Cell, 2006, 18:1310-1326
    192.Xu Y H, Wang J W, Wang S, Wang J Y, Chen X Y. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol, 2004, 135:507-515
    193.Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Hayami N, Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K, Yokoyama S. Solution Structure of an Arabidopsis WRKY DNA Binding Domain. Plant Cell, 2005, 17:944-956
    194.Yang P, Chen C, Wang Z, Fan B, Chen Z. A pathogen- and salicylic acid-induced WRKY DN A-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter. Plant J, 1999, 18:141-149
    195.Yang Y, Qi M, Mei C. Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J, 2004, 40:909-919
    196. Yang Z, Sun X, Wang S, Zhang Q. Genetic and physical mapping of a new gene for bacterial blight resistance in rice. Theor Appl Genet, 2003, 106:1467-1472
    197.Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z X, Kono I, Kuruta N, Yano M, Iwata N, Sasaki T. Expression of Xa1, a bacterial blight resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA, 1998, 95: 1663-1668
    198.Yu D, Chen C, Chen Z. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell, 2001, 13: 1527-1540
    199.Yuan Q, Ouyang S, Wang A, Zhu W, Maiti R, Lin H, Hamilton J, Haas B, Sultana R, Cheung F, Wortman J, Buell C R. The Institute for Genomic Research Osal Rice Genome Annotation Database. Plant Physiol, 2005,138:18-26
    200.Zeeberg B R, Feng W, Wang G, Wang M D, Fojo A T, Sunshine M, Narasimhan S, Kane D W, Reinhold W C, Lababidi S, Bussey K J, Riss J, Barrett J C, Weinstein J N. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol, 2003,4:R28
    201.Zhang James Z. Overexpression analysis of plant transcription factors. Curr Opin Plant Biol, 2003, 6:430-440
    202.Zhang Q, Saghai Maroof M A, Lu T Y, Shen B Z. Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis. Theor Appl Genet, 1992, 83:495-499
    203.Zhang Y, Wang L. The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Bio, 2005, 5:1-28
    204.Zhang Z L, Xie Z, Zou X, Casaretto J, Ho T H, Shen Q J. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol, 2004, 134:1500-1513
    205.Zhao J, Davis L C, Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv, 2005, 23:283-333.
    206.Zheng Z, Mosher S L, Fan B, Klessig D F, Chen Z. Functional analysis of Arabidopsis WRKY25 transcription factors in plant defense against Pseudomonas syringae. BMC Plant Biol, 2007, 7:2
    207.Zheng Z, Qamar S A, Chen Z, Mengiste T. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J, 2006, 48:592-605
    208.Zhou B, Peng K, Chu Z, Wang S, Zhang Q. The defense-responsive genes showingenhanced and repressed expression after pathogen infection in rice (Oryza saliva L.). Scince in China (Series C), 2002,4:449-467
    209.Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang G L. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant-Microbe Interact, 2006, 19:1216-1228
    210.Zhu Q, Dabi T, Beeche A, Yamamoto R, Lawton M A, Lamb C. Cloning and properties of a rice gene encoding phenylalanine ammonia-lyase. Plant Mol Biol, 1995,29:535-550
    211.Zhu Q, Droge-Laser W, Dixon R A, Lamb C. Transcriptional activation of plant defense genes. Curr Opin Genet Dev, 1996, 6:624-630
    212.Zou X, Seemann J R, Neuman D, Shen Q J. A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway. J Biol Chem, 2004, 279:55770-55779

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700