瘦素在人腰椎间盘髓核退变中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的
     下腰疼(Low back pain, LBP)是最常见的肌肉骨骼系统疾病,年平均发病率可高达30%,据报道大于70%的人在一生中会有下腰痛的症状。椎间盘退行性变(Intervertebral disc degeneration, IDD)是导致下腰痛以及急性椎间盘源性放射痛的最常见病因。随着社会人口老龄化进程加速,IDD患者的数量不断增加。IDD的病因及发病机制目前尚不清楚,可能的相关因素包括物理负重、损伤、震动、感染以、吸烟以及某些遗传影响等。IDD的病因复杂,其确切发病原因目前仍不清楚,目前的研究进展表明:肥胖可显著地致腰痛增加,体重指数BMI≥25kg/m2的与BMI<25kg/m2相比较,IDD发生率要高4.3倍,因此肥胖是IDD的独立发病因素之一。瘦素(1eptin)是一种分子量为16kDa的小分子蛋白,主要由白色脂肪组织分泌,能调整食欲并促进脂肪代谢,引起体重下降。文献报道,循环中瘦素的浓度与肥胖成正比,即肥胖症体内瘦素水平表达增高。近年来的研究发现,瘦素不仅参与脂肪代谢,还参与诸如免疫调节、造血、卵巢功能、肿瘤发生、转移、细胞增殖及炎症反应等多种生理病理过程,并在其中发挥着重要的负作用。已有报道,在骨关节炎患者的关节液、骨赘以及关节软骨中检测到瘦素的表达。还有研究已经证实体外培养的人椎间盘细胞能够自然分泌达到检测水平含量的Leptin蛋白。研究还报道在突出的腰椎间盘髓核细胞中检测至Leptin以及其特异性受体,并进一步证实leptin能在体外刺激椎间盘细胞增殖。这些研究成果为研究肥胖及瘦素引起腰椎间盘退行性病变的机制提供了理论依据,但瘦素是如何引起腰椎间盘退变的作用方式及其具体机制,还不明确,迄今未见有论文发表。本研究的目的为阐述瘦素在椎间盘退变中的作用及其机制。
     研究方法
     我们收集腰椎间盘髓核组织,在体外分离培养人髓核细胞并利用Real-time RT-PCR和免疫荧光染色对髓核细胞进行鉴定。以不同浓度的瘦素作用于体外培养的人髓核细胞,CCK8检测髓核细胞的增殖能力。观察在10ng/ml瘦素刺激下,髓核细胞随着时间增殖能力的变化。应用Western blot法检测髓核细胞中的p-AKT、p-ERK1/2、p-STAT3的表达水平,以Real-time RT-PCR、Western blot和免疫荧光染色观察髓核细胞cyclin D1、 PCNA和Ki-67的表达。应用JAK、P13K和MEK信号通路抑制剂AG490, Wortmannin和U0126来观察髓核细胞的增殖能力、cyclin D1、 PCNA和Ki-67的表达是否被抑制。从人的髓核组织中分离提取RNA和蛋白,Real-time RT-PCR和Western blot检测髓核组织中OBRa和OBRb的表达水平,并结合临床资料进行相关性分析。瘦素作用于体外髓核细胞后,以Real-time RT-PCR、 Western blot和免疫荧光染色观察髓核细胞的骨架蛋白F-actin、β-actin、β-tubulin和vimentin的表达变化情况。以编码YFP-RhoA-PKN-CFP融合蛋白的pRaichu-1237x质粒电转染人髓核细胞。观察在10ng/ml瘦素刺激下,RhoA蛋白的FRET信号改变。应用Western blot法检测p-LIMK1和p-Cofilin的表达变化情况,并应用免疫荧光染色观察瘦素刺激后髓核细胞内F-actin的变化情况。以RhoA和ROCK信号通路抑制剂C3exoenzyme和Y-27632观察瘦素引起的p-LIMK1、p-Cofilin和F-actin的表达变化是否被抑制。以Real-time RT-PCR和Western blot法观察瘦素刺激髓核细胞后细胞外基质Collagen I、Collagen II、MMP-2和MMP-14的表达水平,并以Western blot法检测p-JAK、p-p38、p-MEK的表达水平。
     研究结果
     我们在体外成功分离培养并鉴定了人髓核细胞,并证实CA21、cytokeratin19在髓核细胞中呈高表达,而IBSP、FBN1呈低表达。瘦素通过激活p-AKT、 p-ERK1/2、p-STAT3信号通路促进髓核细胞增殖并诱导cyclin D1、PCNA和Ki-67的表达,这些效应能被JAK、PI3K和MEK信号通路抑制剂AG490, Wortmannin和U0126所抑制。OBRa和OBRb的mRNA和蛋白在髓核组织中均有表达,且个体表达差异较大。OBRb和OBRa的表达量与年龄、疾病的类型、腰痛的时间、性别无相关性,但OBRb的表达量与体重指数呈正相关性。髓核细胞在瘦素刺激后,胞浆中F-actin微丝明显粗长,整个细胞的F-actin表达量及荧光强度明显增加,β-actin的表达量增加。Vimentin的结构无明显变化,其表达量明显上升,而β-tubulin的表达无明显变化。在lOng/ml的瘦素作用下,髓核细胞逐渐回缩伪足,FRET信号逐渐增强,并于刺激后5min时达到峰值。瘦素能刺激髓核细胞的p-LIMk1和p-confilin-2磷酸化并使其骨架蛋白F-actin重塑,这些效应能被RhoA和ROCK信号通路抑制剂C3exoenzyme和Y-27632所抑制。瘦素能激活髓核细胞p-JAK、p-p38、p-MEK的表达,并上调Collagen I、MMP-2和MMP-14的表达并抑制Collagen II的表达。
     结论
     本研究对瘦素在人椎间盘退变中的作用及分子机制进行了研究。我们的研究表明,瘦素受体OBRa和OBRb在椎间盘髓核组织中均有表达,且OBRb的表达量与体重指数呈一定的正相关性。瘦素通过激活JAK、PI3K和MEK信号通路促进髓核细胞增殖。瘦素刺激髓核细胞引起骨架蛋白F-actin、p-acth、β-tubulin和vimentin的表达发生变化。瘦素通过激活RhoA/ROCK和LMK1/Cofilin信号通路导致骨架蛋白F-actin重塑。瘦素能激活Collagen I、MMP-2和MMP-14的表达而抑制Collagen Ⅱ的表达。
Background and purpose
     Low back pain (Low back pain, LBP) is one of the most common disorders of the musculoskeletal system, with an average annual incidence rate of about30%and a lifetime prevalence of about70%. Intervertebral disc degeneration (IDD) is considered to be a major cause of LBP and acute discogenic pain. With accelerating aging process of the social population, the number of patients with IDD is increasing. Nevertheless, the exact etiology and pathogenesis of the disc degeneration remain unknown. The possible etiological factors included the body weight, injury, infection, smoking, and genetic predisposition. Research showed that obesity was an established risk factor for Low back pain. The incidence of IDD in person with body mass index, BMI≥25kg/m2was4.3times higher, than person with BMI≤25kg/m2. Obesity is one of the independent causes of IDD. Leptin (16kDa) is a small molecule protein secreted mainly by adipose tissues. It can cause weight loss by adjusting appetite and promoting fat metabolism. Study showed that the serum leptin levels were positively associated with body weight, namely the expression of leptin in obese person increased. Several recent studies indicated that leptin could not only involve in the metabolism of fat but also in other physiological and pathological processes, such as immune regulation, thermogenesis, ovarian function, tumorigenesis, metastasis, proliferation and inflammatory cell reaction. Study showed that the expression of leptin was detected in synovial fluid, osteophyte and articular cartilage in patients with osteoarthritis. And studies have confirmed that the cultured human intervertebral disc cells can naturally secreted detectable levels of Leptin. Leptin and its specific receptor were detected in NP cells of prolapsed lumbar intervertebral disc. Study confirmed that leptin could stimulate proliferation of disc cells in vitro. These researches provide the basis for further study to investigate the mechanism of leptin in the pathogenesis of IDD. However, the role of leptin in the pathogenesis of disc degeneration is not yet clear. There were no published papers before. The purpose of this study was to investigate the role of leptin in IDD and its mechanism.
     Methods
     The human NP cells were dissected from patient disc specimens and then cultured in vitro. The levels of leptin were measured by real-time PCR and immunofluorescence. The proliferation of NP cells was detected by CCK8method after being plated and treated in different concentrations of leptin. We also observed the proliferation ability of NP cells with changes in time when treated with10ng/ml of Leptin. The expression of p-AKT, p-ERK1/2, p-STAT3in NP cells were detected by Western blot. The expression of cyclin D1, PCNA and Ki-67were detected by real-time RT-PCR, Western blot and immunofluorescence staining. We also observed whether the proliferation ability of NP cells, as well as the expression of cyclin D1, PCNA and Ki-67was inhibited after being traeted by AG490, Wortmannin and U0126, which were the signal pathway inhibitors of JAK, PI3K and MEK pathway. RNA and protein were extracted and separated from NP cells, in which the expression level of OBRa and OBRb were detected by Real-time RT-PCR and Western blot. We also conduct the correlation analysis with clinical data. Immunofluorescence and real-time PCR and Western blot were performed to investigate the effect of leptin on cytoskeleton protein, such as F-actin, β-actin, β-tubulin and vimentin. We transfected pRaichu-1237x plasmid, which encodes YFP-RhoA-PKN-CFP fusion protein into human nucleus pulposus cells and observe the changes of FRET signal of RhoA protein in10ng/ml Leptin. Expression of p-LIMK1and p-Cofilin was detected by Western blot method, and the change of F-actin by leptin stimulation in NP cells was detected immunofluorescence staining. Using RhoA einhibitor C3exoenzyme or ROCK inhibitor Y-27632, we observed the changes in p-LIMK1、p-Cofilin和F-actin. After stimulated by leptin, the expression of extracellular matrix of Collagen I, Collagen II, MMP-2and MMP-14were detected by real-time RT-PCR and Western blot method and the expression of p-JAK, p-p38, p-MEK was detected by Western blot method.
     Results
     We successfully isolated and cultured human NP cells in vitro. The expression of CA21, cytokeratin19was significantly higher and the expression of IBSP, FBN1was significantly lower in NP cells. Leptin can promote the proliferation of NP cells and induce the expression of cyclin and D1, PCNA and Ki-67through the activation of p-AKT, p-ERK1/2, p-STAT3signaling pathway. These effects can be inhibited by AG490Wortmannin and U0126JAK, which were the JAK, PI3K and MEK signal pathway inhibitor respectively. Both the mRNA and protein of OBRa and OBRb were expressed in NP tissues, and the expression was individually different. OBRb expression was correlated with patients'body weight, but no correlation was found between the expression of OBRb and OBRa with age, disease types, duaration of low back pain and sex. After leptin stimulation, the cytosolic F-actin microfilaments were thicker and longer and the expression of F-actin and fluorescence intensity increased significantly. Moreover, the expression of β-actin also increased. The expression of Vimentin increased significantly without obvious change in the structure. The expression of β-tubulin had no obvious change. In10ng/ml of leptin, NP cells gradually retracted their pseudopodia and the FRET signal also increased gradually. The peak was reached at5min after the stimulation. Leptin can stimulate the phosphorylation of p-LIMkl and p-confilin-2and remodeling of the skeleton protein F-actin in NP cells. These effects can be inhibited by C3exoenzyme and Y-27632, which were the RhoA and ROCK signal pathway inhibitor. Leptin can induce the expression of p-JAK, p-p38, p-MEK and up-regulate the expression of Collagenl, MMP-2and MMP-14, while inhibiting the expression of Collagen2.
     Conclusions
     This study investigated the effects of leptin on human ICD and its possible molecular mechanism. Our study shows that both OBRa and OBRb were expressed in NP tissues, and the expression was individually different. OBRb expression was correlated with BMI. Leptin can promote the proliferation of NP cells through activation of JAK, PI3K and MEK signal pathway. Leptin can change the expression of skeleton protein F-actin, β-actin,β-tubulin and vimentin. Leptin remodel the skeleton protein F-actin through the activation of RhoA/ROCK and LIMK1/Cofilin signal pathway. Leptin can induce the expression of Collagenl, MMP-2MMP-14, while inhibiting the expression of Collagen2.
引文
1. Samartzis D, Karppinen J, Mok F, Fong DY, Luk KD, et al. (2011) A population-based study of juvenile disc degeneration and its association with overweight and obesity, low back pain, and diminished functional status. J Bone Joint Surg Am 93:662-670.
    2. Biering-Sorensen F (1983) A prospective study of low back pain in a general population. I. Occurrence, recurrence and aetiology. Scand J Rehabil Med 15:71-79.
    3. Hangai M, Kaneoka K, Kuno S, Hinotsu S, Sakane M, et al. (2008) Factors associated with lumbar intervertebral disc degeneration in the elderly. Spine J 8:732-740.
    4. Arana E, Kovacs FM, Royuela A, Estremera A, Asenjo B, et al. (2011) Modic changes and associated features in Southern European chronic low back pain patients. Spine J 11: 402-411.
    5. Raj PP (2008) Intervertebral disc:anatomy-physiology-pathophysiology-treatment. Pain Pract 8: 18-44.
    6. Korecki CL, MacLean JJ, Iatridis JC (2008) Dynamic compression effects on intervertebral disc mechanics and biology. Spine (Phila Pa 1976) 33:1403-1409.
    7. Masuda K, Oegema TR, Jr., An HS (2004) Growth factors and treatment of intervertebral disc degeneration. Spine (Phila Pa 1976) 29:2757-2769.
    8. Roughley PJ (2004) Biology of intervertebral disc aging and degeneration:involvement of the extracellular matrix. Spine (Phila Pa 1976) 29:2691-2699.
    9. Walter BA, Korecki CL, Purmessur D, Roughley PJ, Michalek AJ, et al. (2011) Complex loading affects intervertebral disc mechanics and biology. Osteoarthritis Cartilage 19: 1011-1018.
    10. Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976) 31:2151-2161.
    11. Bostman OM (1994) Prevalence of obesity among patients admitted for elective orthopaedic surgery. Int J Obes Relat Metab Disord 18:709-713.
    12. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763-770.
    13. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, et al. (1995) Leptin levels in human and rodent:measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1:1155-1161.
    14. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, et al. (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334:292-295.
    15. l'Allemand D, Schmidt S, Rousson V, Brabant G, Gasser T, et al. (2002) Associations between body mass, leptin, IGF-I and circulating adrenal androgens in children with obesity and premature adrenarche. Eur J Endocrinol 146:537-543.
    16. Housa D, Housova J, Vernerova Z, Haluzik M (2006) Adipocytokines and cancer. Physiol Res 55:233-244.
    17. Choi SS, Syn WK, Karaca GF, Omenetti A, Moylan CA, et al. (2010) Leptin promotes the myofibroblastic phenotype in hepatic stellate cells by activating the hedgehog pathway. J BiolChem 285:36551-36560.
    18. Chen C, Chang YC, Liu CL, Liu TP, Chang KJ, et al. (2007) Leptin induces proliferation and anti-apoptosis in human hepatocarcinoma cells by up-regulating cyclin D1 and down-regulating Bax via a Janus kinase 2-linked pathway. Endocr Relat Cancer 14: 513-529.
    19. Gruber HE, Ingram JA, Hoelscher GL, Hanley EN, Jr. (2007) Leptin expression by annulus cells in the human intervertebral disc. Spine J 7:437-443.
    20. Zhao CQ, Liu D, Li H, Jiang LS, Dai LY (2008) Expression of leptin and its functional receptor on disc cells:contribution to cell proliferation. Spine (Phila Pa 1976) 33: E858-864.
    21. Cottrell EC, Mercer JG (2012) Leptin receptors. Handb Exp Pharmacol:3-21.
    22. Gorska E, Popko K, Stelmaszczyk-Emmel A, Ciepiela O, Kucharska A, et al. (2010) Leptin receptors. Eur J Med Res 15 Suppl 2:50-54.
    23. Hsuchou H, Pan W, Barnes MJ, Kastin AJ (2009) Leptin receptor mRNA in rat brain astrocytes. Peptides 30:2275-2280.
    24. Denver RJ, Bonett RM, Boorse GC (2011) Evolution of leptin structure and function. Neuroendocrinology 94:21-38.
    25. Maamra M, Bidlingmaier M, Postel-Vinay MC, Wu Z, Strasburger CJ, et al. (2001) Generation of human soluble leptin receptor by proteolytic cleavage of membrane-anchored receptors. Endocrinology 142:4389-4393.
    26. Laud K, Gourdou I, Pessemesse L, Peyrat JP, Djiane J (2002) Identification of leptin receptors in human breast cancer:functional activity in the T47-D breast cancer cell line. Mol Cell Endocrinol 188:219-226.
    27. Houseknecht KL, Portocarrero CP (1998) Leptin and its receptors:regulators of whole-body energy homeostasis. Domest Anim Endocrinol 15:457-475.
    28. Johnson WE, Eisenstein SM, Roberts S (2001) Cell cluster formation in degenerate lumbar intervertebral discs is associated with increased disc cell proliferation. Connect Tissue Res 42:197-207.
    29. Studer RK, Vo N, Sowa G, Ondeck C, Kang J (2011) Human nucleus pulposus cells react to IL-6:independent actions and amplification of response to IL-1 and TNF-alpha. Spine (Phila Pa 1976)36:593-599.
    30. Hou N, Luo JD (2011) Leptin and cardiovascular diseases. Clin Exp Pharmacol Physiol 38: 905-913.
    31. Pai R, Lin C, Tran T, Tarnawski A (2005) Leptin activates STAT and ERK2 pathways and induces gastric cancer cell proliferation. Biochem Biophys Res Commun 331:984-992.
    32. Islam MS, Sjoholm A, Emilsson V (2000) Fetal pancreatic islets express functional leptin receptors and leptin stimulates proliferation of fetal islet cells. Int J Obes Relat Metab Disord 24:1246-1253.
    33. Saxena NK, Sharma D, Ding X, Lin S, Marra F, et al. (2007) Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res 67:2497-2507.
    34. Fruhbeck G (2006) Intracellular signalling pathways activated by leptin. Biochem J 393:7-20.
    35. Beccari S, Teixeira L, Rorth P (2002) The JAK/STAT pathway is required for border cell migration during Drosophila oogenesis. Mech Dev 111:115-123.
    36. Luo H, Dearolf CR (2001) The JAK/STAT pathway and Drosophila development. Bioessays 23:1138-1147.
    37. Dell'Albani P, Santangelo R, Torrisi L, Nicoletti VG, de Vellis J, et al. (2001) JAK/STAT signaling pathway mediates cytokine-induced iNOS expression in primary astroglial cell cultures. J Neurosci Res 65:417-424.
    38. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW (2002) Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285:1-24.
    39. Appleton CT, Usmani SE, Mort JS, Beier F (2010) Rho/ROCK and MEK/ERK activation by transforming growth factor-alpha induces articular cartilage degradation. Lab Invest 90: 20-30.
    40. Clark AR, Dean JL (2012) The p38 MAPK Pathway in Rheumatoid Arthritis:A Sideways Look. Open Rheumatol J 6:209-219.
    41. Schett G, Zwerina J, Firestein G (2008) The p38 mitogen-activated protein kinase (MAPK) pathway in rheumatoid arthritis. Ann Rheum Dis 67:909-916.
    42. Nakabayashi H, Shimizu K (2011) HA 1077, a Rho kinase inhibitor, suppresses glioma-induced angiogenesis by targeting the Rho-ROCK and the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signal pathways. Cancer Sci 102:393-399.
    43. Park JH, Ryu JM, Yun SP, Kim MO, Han HJ (2012) Fibronectin stimulates migration through iipid raft dependent NHE-1 activation in mouse embryonic stem cells:involvement of RhoA, Ca(2+)/CaM, and ERK. Biochim Biophys Acta 1820:1618-1627.
    44. Kim HY, Nelson CM (2012) Extracellular matrix and cytoskeletal dynamics during branching morphogenesis. Organogenesis 8:56-64.
    45. Li S, Duance VC, Blain EJ (2007) F-actin cytoskeletal organization in intervertebral disc health and disease. Biochem Soc Trans 35:683-685.
    46. Shi JW, Liu W, Zhang TT, Wang SC, Lin XL, et al. (2013) The enforced expression of c-Myc in pig fibroblasts triggers mesenchymal-epithelial transition (MET) via F-actin reorganization and RhoA/Rock pathway inactivation. Cell Cycle 12.
    47. Thirone AC, Speight P, Zulys M, Rotstein OD, Szaszi K, et al. (2009) Hyperosmotic stress induces Rho/Rho kinase/LIM kinase-mediated cofilin phosphorylation in tubular cells: key role in the osmotically triggered F-actin response. Am J Physiol Cell Physiol 296: C463-475.
    48. Antoniu SA (2012) Targeting RhoA/ROCK pathway in pulmonary arterial hypertension. Expert Opin Ther Targets 16:355-363.
    49. Zeidan A, Paylor B, Steinhoff KJ, Javadov S, Rajapurohitam V, et al. (2007) Actin cytoskeleton dynamics promotes leptin-induced vascular smooth muscle hypertrophy via RhoA/ROCK-and phosphatidylinositol 3-kinase/protein kinase B-dependent pathways. J Pharmacol Exp Ther 322:1110-1116.
    50. Hayes AJ, Benjamin M, Ralphs JR (2001) Extracellular matrix in development of the intervertebral disc. Matrix Biol 20:107-121.
    51. Inoue T, Nakamura T, Ikeda T, Takagi K (2005) Effect of extracellular matrix protein on the rate of proteoglycan synthesis in rabbit intervertebral disc cells. J Spinal Disord Tech 18: 52-57.
    52. Schram K, Ganguly R, No EK, Fang X, Thong FS, et al. (2011) Regulation of MT1-MMP and MMP-2 by leptin in cardiac fibroblasts involves Rho/ROCK-dependent actin cytoskeletal reorganization and leads to enhanced cell migration. Endocrinology 152:2037-2047.
    53. Hui W, Litherland GJ, Elias MS, Kitson GI, Cawston TE, et al. (2012) Leptin produced by joint white adipose tissue induces cartilage degradation via upregulation and activation of matrix metalloproteinases. Ann Rheum Dis 71:455-462.
    54. Li L, Mamputu JC, Wiernsperger N, Renier G (2005) Signaling pathways involved in human vascular smooth muscle cell proliferation and matrix metalloproteinase-2 expression induced by leptin:inhibitory effect of metformin. Diabetes 54:2227-2234.
    55. Navone SE, Marfia G, Canzi L, Ciusani E, Canazza A, et al. (2012) Expression of neural and neurotrophic markers in nucleus pulposus cells isolated from degenerated intervertebral disc. J Orthop Res 30:1470-1477.
    56. Dahia CL, Mahoney E, Wylie C (2012) Shh signaling from the nucleus pulposus is required for the postnatal growth and differentiation of the mouse intervertebral disc. PLoS One 7: e35944.
    57. Gokorsch S, Nehring D, Grottke C, Czermak P (2004) Hydrodynamic stimulation and long term cultivation of nucleus pulposus cells:a new bioreactor system to induce extracellular matrix synthesis by nucleus pulposus cells dependent on intermittent hydrostatic pressure. Int J Artif Organs 27:962-970.
    58. Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA (2010) Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation. Arthritis Rheum 62:3695-3705.
    59. Tzaan WC, Chen HC (2011) Investigating the possibility of intervertebral disc regeneration induced by granulocyte colony stimulating factor-stimulated stem cells in rats. Adv Orthop 2011:602089.
    60. Millecamps M, Tajerian M, Naso L, Sage EH, Stone LS (2012) Lumbar intervertebral disc degeneration associated with axial and radiating low back pain in ageing SPARC-null mice. Pain 153:1167-1179.
    61. Katz JN (2006) Lumbar disc disorders and low-back pain:socioeconomic factors and consequences. J Bone Joint Surg Am 88 Suppl 2:21-24.
    62. Inoue N, Espinoza Orias AA (2011) Biomechanics of intervertebral disk degeneration. Orthop Clin North Am 42:487-499, vii.
    63. Xu P, Ye W, Li H, Lin SH, Kuo CT, et al. (2010) Zeranol enhances leptin-induced proliferation in primary cultured human breast cancer epithelial cells. Mol Med Report 3:795-800.
    64. Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, et al. (2011) Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab 301:E567-584.
    65. Sobhani I, Bado A, Vissuzaine C, Buyse M, Kermorgant S, et al. (2000) Leptin secretion and leptin receptor in the human stomach. Gut 47:178-183.
    66. Grossmann ME, Ray A, Nkhata KJ, Malakhov DA, Rogozina OP, et al. (2010) Obesity and breast cancer:status of leptin and adiponectin in pathological processes. Cancer Metastasis Rev 29:641-653.
    67. Wu H, Huang M, Cao P, Wang T, Shu Y, et al. (2012) MiR-135a targets JAK2 and inhibits gastric cancer cell proliferation. Cancer Biol Ther 13:281-288.
    68. Ding L, Xu Y, Zhang W, Deng Y, Si M, et al. (2010) MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res 20:784-793.
    69. Pickett EA, Olsen GS, Tallquist MD (2008) Disruption of PDGFRalpha-initiated PI3K activation and migration of somite derivatives leads to spina bifida. Development 135: 589-598.
    70. Uesugi A, Kozaki K, Tsuruta T, Furuta M, Morita K, et al. (2011) The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Res 71:5765-5778.
    71. Kumar N, Robidoux J, Daniel KW, Guzman G, Floering LM, et al. (2007) Requirement of vimentin filament assembly for beta3-adrenergic receptor activation of ERK MAP kinase and lipolysis. J Biol Chem 282:9244-9250.
    72. El Messaoudi S, Fabbrizio E, Rodriguez C, Chuchana P, Fauquier L, et al. (2006) Coactivator-associated arginine methyltransferase 1 (CARM1) is a positive regulator of the Cyclin E1 gene. Proc Natl Acad Sci U S A 103:13351-13356.
    73. Lee KH, Lotterman C, Karikari C, Omura N, Feldmann G, et al. (2009) Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 9:293-301.
    74. Li Z, Shen J, Wu WK, Yu X, Liang J, et al. (2012) Leptin induces cyclin D1 expression and proliferation of human nucleus pulposus cells via JAK/STAT, PI3K/Akt and MEK/ERK pathways. PLoS One 7:e53176.
    75. Feng L, Xie Y, Zhang H, Wu Y (2012) miR-107 targets cyclin-dependent kinase 6 expression, induces cell cycle G1 arrest and inhibits invasion in gastric cancer cells. Med Oncol 29: 856-863.
    76. Gloaguen I, Costa P, Demartis A, Lazzaro D, Di Marco A, et al. (1997) Ciliary neurotrophic factor corrects obesity and diabetes associated with leptin deficiency and resistance. Proc Natl Acad Sci U S A 94:6456-6461.
    77. Carlton ED, Demas GE, French SS (2012) Leptin, a neuroendocrine mediator of immune responses, inflammation, and sickness behaviors. Horm Behav 62:272-279.
    78. Pallu S, Francin PJ, Guillaume C, Gegout-Pottie P, Netter P, et al. (2010) Obesity affects the chondrocyte responsiveness to leptin in patients with osteoarthritis. Arthritis Res Ther 12: R112.
    79. Wrann CD, Ehmer U, Lautenbach A, Kuhlmann S, Nave H (2010) Obesity and NK cells affect the expression of the long form of the leptin receptor Ob-Rb in liver of F344 rats. Exp Toxicol Pathol 62:1-8.
    80. Kim HY, Nelson C (2012) Extracellular matrix and cytoskeletal dynamics during branching morphogenesis. Organogenesis 8.
    81. Knight MM, Toyoda T, Lee DA, Bader DL (2006) Mechanical compression and hydrostatic pressure induce reversible changes in actin cytoskeletal organisation in chondrocytes in agarose. J Biomech 39:1547-1551.
    82. Fioravanti A, Nerucci F, Annefeld M, Collodel G, Marcolongo R (2003) Morphological and cytoskeletal aspects of cultivated normal and osteoarthritic human articular chondrocytes after cyclical pressure:a pilot study. Clin Exp Rheumatol 21:739-746.
    83. Trickey WR, Vail TP, Guilak F (2004) The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes. J Orthop Res 22:131-139.
    84. Capin-Gutierrez N, Talamas-Rohana P, Gonzalez-Robles A, Lavalle-Montalvo C, Kouri JB (2004) Cytoskeleton disruption in chondrocytes from a rat osteoarthrosic (OA)-induced model:its potential role in OA pathogenesis. Histol Histopathol 19:1125-1132.
    85. Blain EJ (2009) Involvement of the cytoskeletal elements in articular cartilage homeostasis and pathology. Int J Exp Pathol 90:1-15.
    86. Clark ES, Whigham AS, Yarbrough WG, Weaver AM (2007) Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Res 67:4227-4235.
    87. Li S, Jia X, Duance VC, Blain EJ (2011) The effects of cyclic tensile strain on the organisation and expression of cytoskeletal elements in bovine intervertebral disc cells:an in vitro study. Eur Cell Mater 21:508-522.
    88. Li S, Duance VC, Blain EJ (2008) Zonal variations in cytoskeletal element organization, mRNA and protein expression in the intervertebral disc. J Anat 213:725-732.
    89. Haudenschild DR, Chen J, Pang N, Steklov N, Grogan SP, et al. (2011) Vimentin contributes to changes in chondrocyte stiffness in osteoarthritis. J Orthop Res 29:20-25.
    90. Blain EJ, Gilbert SJ, Hayes AJ, Duance VC (2006) Disassembly of the vimentin cytoskeleton disrupts articular cartilage chondrocyte homeostasis. Matrix Biol 25:398-408.
    91. Colucci-Guyon E, Portier MM, Dunia I, Paulin D, Pournin S, et al. (1994) Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79:679-694.
    92. Loreto C, Musumeci G, Castorina A, Martinez G (2011) Degenerative disc disease of herniated intervertebral discs is associated with extracellular matrix remodeling, vimentin-positive cells and cell death. Ann Anat 193:156-162.
    93. Padilla-Parra S, Tramier M (2012) FRET microscopy in the living cell:different approaches, strengths and weaknesses. Bioessays 34:369-376.
    94. Zadran S, Standley S, Wong K, Otiniano E, Amighi A, et al. (2012) Fluorescence resonance energy transfer (FRET)-based biosensors:visualizing cellular dynamics and bioenergetics. Appl Microbiol Biotechnol.
    95. Nakamura T, Aoki K, Matsuda M (2005) Monitoring spatio-temporal regulation of Ras and Rho GTPase with GFP-based FRET probes. Methods 37:146-153.
    96. Yoshizaki H, Ohba Y, Kurokawa K, Itoh RE, Nakamura T, et al. (2003) Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J Cell Biol 162: 223-232.
    97. Eichorst JP, Lu S, Xu J, Wang Y (2008) Differential RhoA dynamics in migratory and stationary cells measured by FRET and automated image analysis. PLoS One 3:e4082.
    98. Kemp-O'Brien K, Parsons M (2012) Using FRET to analyse signals controlling cell adhesion and migration. J Microsc.
    99. Meyer BS, Rademann J (2012) Extra-and intracellular imaging of human matrix metalloprotease 11 (hMMP-11) with a cell-penetrating FRET substrate. J Biol Chem 287: 37857-37867.
    100. Krebs M, Held K, Binder A, Hashimoto K, Den Herder G, et al. (2012) FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca(2)(+) dynamics. Plant J 69:181-192.
    101. Rueckert C, Castro V, Gagell C, Dabrowski S, Schumann M, et al. (2012) Association between segments of zonula occludens proteins:live-cell FRET and mass spectrometric analysis. Ann N Y Acad Sci 1257:67-76.
    102. Borra R, Dong D, Elnagar AY, Woldemariam GA, Camarero JA (2012) In-cell fluorescence activation and labeling of proteins mediated by FRET-quenched split inteins. J Am Chem Soc 134:6344-6353.
    103. Zhu X, Fu A, Luo KQ (2012) A high-throughput fluorescence resonance energy transfer (FRET)-based endothelial cell apoptosis assay and its application for screening vascular disrupting agents. Biochem Biophys Res Commun 418:641-646.
    104. Yuan L, Lin W, Chen B, Xie Y (2012) Development of FRET-based ratiometric fluorescent Cu2+chemodosimeters and the applications for living cell imaging. Org Lett 14: 432-435.
    105. Zeidan A, Javadov S, Karmazyn M (2006) Essential role of Rho/ROCK-dependent processes and actin dynamics in mediating leptin-induced hypertrophy in rat neonatal ventricular myocytes. Cardiovasc Res 72:101-111.
    106. Goldhagen B, Proia AD, Epstein DL, Rao PV (2012) Elevated Levels of RhoA in the Optic Nerve Head of Human Eyes With Glaucoma. J Glaucoma 21:530-538.
    107. Gratzke C, Strong TD, Gebska MA, Champion HC, Stief CG, et al. (2010) Activated RhoA/Rho kinase impairs erectile function after cavernous nerve injury in rats. J Urol 184: 2197-2204.
    108. Liang J, Feng J, Wu WK, Xiao J, Wu Z, et al. (2011) Leptin-mediated cytoskeletal remodeling in chondrocytes occurs via the RhoA/ROCK pathway. J Orthop Res 29: 369-374.
    109. Chow SE, Wang JS, Lin MR, Lee CL (2011) Downregulation of p57kip(2) promotes cell invasion via LIMK/cofilin pathway in human nasopharyngeal carcinoma cells. J Cell Biochem 112:3459-3468.
    110. Tsuji T, Chiba K, Imabayashi H, Fujita Y, Hosogane N, et al. (2007) Age-related changes in expression of tissue inhibitor of metalloproteinases-3 associated with transition from the notochordal nucleus pulposus to the fibrocartilaginous nucleus pulposus in rabbit intervertebral disc. Spine (Phila Pa 1976) 32:849-856.
    111. Pockert AJ, Richardson SM, Le Maitre CL, Lyon M, Deakin JA, et al. (2009) Modified expression of the ADAMTS enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration. Arthritis Rheum 60:482-491.
    112. Sobajima S, Shimer AL, Chadderdon RC, Kompel JF, Kim JS, et al. (2005) Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction. Spine J 5:14-23.
    113. Chen WH, Lo WC, Lee JJ, Su CH, Lin CT, et al. (2006) Tissue-engineered intervertebral disc and chondrogenesis using human nucleus pulposus regulated through TGF-betal in platelet-rich plasma. J Cell Physiol 209:744-754.
    114. Li CQ, Huang B, Luo G, Zhang CZ, Zhuang Y, et al. (2010) Construction of collagen II/hyaluronate/chondroitin-6-sulfate tri-copolymer scaffold for nucleus pulposus tissue engineering and preliminary analysis of its physico-chemical properties and biocompatibility. J Mater Sci Mater Med 21:741-751.
    115. Wei A, Brisby H, Chung SA, Diwan AD (2008) Bone morphogenetic protein-7 protects human intervertebral disc cells in vitro from apoptosis. Spine J 8:466-474.
    116. Furukawa T, Ito K, Nuka S, Hashimoto J, Takei H, et al. (2009) Absence of biglycan accelerates the degenerative process in mouse intervertebral disc. Spine (Phila Pa 1976) 34:E911-917.
    117. Huang B, Li CQ, Zhou Y, Luo G, Zhang CZ (2010) Collagen II/hyaluronan/chondroitin-6-sulfate tri-copolymer scaffold for nucleus pulposus tissue engineering. J Biomed Mater Res B Appl Biomater 92:322-331.
    118. Rutges JP, Kummer JA, Oner FC, Verbout AJ, Castelein RJ, et al. (2008) Increased MMP-2 activity during intervertebral disc degeneration is correlated to MMP-14 levels. J Pathol 214:523-530.
    119. Koziol A, Martin-Alonso M, Clemente C, Gonzalo P, Arroyo AG (2012) Site-specific cellular functions of MT1-MMP. Eur J Cell Biol 91:889-895.
    120. Seguin CA, Pilliar RM, Madri JA, Kandel RA (2008) TNF-alpha induces MMP2 gelatinase activity and MT1-MMP expression in an in vitro model of nucleus pulposus tissue degeneration. Spine (Phila Pa 1976) 33:356-365.
    121. Shirvaikar N, Marquez-Curtis LA, Janowska-Wieczorek A (2012) Hematopoietic Stem Cell Mobilization and Homing after Transplantation:The Role of MMP-2, MMP-9, and MT1-MMP. Biochem Res Int 2012:685267.
    122. Li M, Li Z, Sun X (2008) Statins suppress MMP2 secretion via inactivation of RhoA/ROCK pathway in pulmonary vascular smooth muscles cells. Eur J Pharmacol 591:219-223.
    123. Fisher KE, Sacharidou A, Stratman AN, Mayo AM, Fisher SB, et al. (2009) MT1-MMP- and Cdc42-dependent signaling co-regulate cell invasion and tunnel formation in 3D collagen matrices. J Cell Sci 122:4558-4569.
    124. Deroanne CF, Hamelryckx D, Ho TT, Lambert CA, Catroux P, et al. (2005) Cdc42 downregulates MMP-1 expression by inhibiting the ERK1/2 pathway. J Cell Sci 118: 1173-1183.
    125. Lin HJ, Su CC, Lu HF, Yang JS, Hsu SC, et al. (2010) Curcumin blocks migration and invasion of mouse-rat hybrid retina ganglion cells (N18) through the inhibition of MMP-2,-9, FAK, Rho A and Rock-1 gene expression. Oncol Rep 23:665-670.
    1. Frymoyer JW, Cats-Baril WL (1991) An overview of the incidences and costs of low back pain. Orthop Clin North Am 22:263-271.
    2. Arana E, Kovacs FM, Royuela A, Estremera A, Asenjo B, et al. (2011) Modic changes and associated features in Southern European chronic low back pain patients. Spine J 11: 402-411.
    3. Millecamps M, Tajerian M, Naso L, Sage EH, Stone LS (2012) Lumbar intervertebral disc degeneration associated with axial and radiating low back pain in ageing SPARC-null mice. Pain 153:1167-1179.
    4. Muraki S, Akune T, Oka H, En-Yo Y, Yoshida M, et al. (2011) Health-Related Quality of Life in Subjects With Low Back Pain and Knee Pain in a Population-Based Cohort Study of Japanese Men:The Research on Osteoarthritis Against Disability Study. Spine (Phila Pa 1976)36:1312-1319.
    5. Zhang H, Yang S, Wang L, Park P, La Marca F, et al. (2011) Time course investigation of intervertebral disc degeneration produced by needle-stab injury of the rat caudal spine. J Neurosurg Spine.
    6. Hangai M, Kaneoka K, Kuno S, Hinotsu S, Sakane M, et al. (2008) Factors associated with lumbar intervertebral disc degeneration in the elderly. Spine J 8:732-740.
    7. Masuda K, Oegema TR, Jr., An HS (2004) Growth factors and treatment of intervertebral disc degeneration. Spine (Phila Pa 1976) 29:2757-2769.
    8. Johnson WE, Roberts S (2003) Human intervertebral disc cell morphology and cytoskeletal composition:a preliminary study of regional variations in health and disease. J Anat 203: 605-612.
    9. Walter BA, Korecki CL, Purmessur D, Roughley PJ, Michalek AJ, et al. (2011) Complex loading affects intervertebral disc mechanics and biology. Osteoarthritis Cartilage 19: 1011-1018.
    10. Roughley PJ (2004) Biology of intervertebral disc aging and degeneration:involvement of the extracellular matrix. Spine (Phila Pa 1976) 29:2691-2699.
    11. Li S, Jia X, Duance VC, Blain EJ (2011) The effects of cyclic tensile strain on the organisation and expression of cytoskeletal elements in bovine intervertebral disc cells:an in vitro study. Eur Cell Mater 21:508-522.
    12. Yurube T, Takada T, Suzuki T, Kakutani K, Maeno K, et al. (2012) Rat tail static compression model mimics extracellular matrix metabolic imbalances of matrix metalloproteinases, aggrecanases, and tissue inhibitors of metalloproteinases in intervertebral disc degeneration. Arthritis Res Ther 14:R51.
    13. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26: 1873-1878.
    14. Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976) 31:2151-2161.
    15. Sobajima S, Vadala G, Shimer A, Kim JS, Gilbertson LG, et al. (2008) Feasibility of a stem cell therapy for intervertebral disc degeneration. Spine J 8:888-896.
    16. Chen WH, Lo WC, Lee JJ, Su CH, Lin CT, et al. (2006) Tissue-engineered intervertebral disc and chondrogenesis using human nucleus pulposus regulated through TGF-betal in platelet-rich plasma. J Cell Physiol 209:744-754.
    17. Flagler DJ, Huang CY, Yuan TY, Lu Z, Cheung HS, et al. (2009) Intracellular Flow Cytometric Measurement of Extracellular Matrix Components in Porcine Intervertebral Disc Cells. Cell Mol Bioeng 2:264-273.
    18. Li S, Duance VC, Blain EJ (2007) F-actin cytoskeletal organization in intervertebral disc health and disease. Biochem Soc Trans 35:683-685.
    19. Battie MC, Videman T, Carragee EJ (2007) Re:Virtanen IM, Karppinen J, Taimela S, et al. Occupational and genetic risk factors associated with intervertebral disc disease. Spine 2007;32:1129-34. Spine (Phila Pa 1976) 32:2926; author reply 2926-2927.
    20. Videman T, Leppavuori J, Kaprio J, Battie MC, Gibbons LE, et al. (1998) Intragenic polymorphisms of the vitamin D receptor gene associated with intervertebral disc degeneration. Spine (Phila Pa 1976) 23:2477-2485.
    21. Battie MC, Videman T, Gill K, Moneta GB, Nyman R, et al. (1991) 1991 Volvo Award in clinical sciences. Smoking and lumbar intervertebral disc degeneration:an MRI study of identical twins. Spine (Phila Pa 1976) 16:1015-1021.
    22. Mwale F, Masuda K, Pichika R, Epure LM, Yoshikawa T, et al. (2011) The efficacy of Link N as a mediator of repair in a rabbit model of intervertebral disc degeneration. Arthritis Res Ther 13:R120.
    23. Clouet J, Pot-Vaucel M, Grimandi G, Masson M, Lesoeur J, et al. (2011) Characterization of the age-dependent intervertebral disc changes in rabbit by correlation between MRI, histology and gene expression. BMC Musculoskelet Disord 12:147.
    24. Virtanen IM, Karppinen J, Taimela S, Ott J, Barral S, et al. (2007) Occupational and genetic risk factors associated with intervertebral disc disease. Spine (Phila Pa 1976) 32: 1129-1134.
    25. Sakai Y, Matsuyama Y, Hasegawa Y, Yoshihara H, Nakamura H, et al. (2007) Association of gene polymorphisms with intervertebral disc degeneration and vertebral osteophyte formation. Spine (Phila Pa 1976) 32:1279-1286.
    26. Xu G, Mei Q, Zhou D, Wu J, Han L (2012) Vitamin D receptor gene and aggrecan gene polymorphisms and the risk of intervertebral disc degeneration - a meta-analysis. PLoS One 7:e50243.
    27. Colombini A, Cauci S, Lombardi G, Lanteri P, Croiset S, et al. (2013) Relationship between vitamin D receptor gene (VDR) polymorphisms, vitamin D status, osteoarthritis and intervertebral disc degeneration. J Steroid Biochem Mol Biol 138C:24-40.
    28. Tim Yoon S, Su Kim K, Li J, Soo Park J, Akamaru T, et al. (2003) The effect of bone morphogenetic protein-2 on rat intervertebral disc cells in vitro. Spine (Phila Pa 1976) 28: 1773-1780.
    29. MacLean JJ, Lee CR, Grad S, Ito K, Alini M, et al. (2003) Effects of immobilization and dynamic compression on intervertebral disc cell gene expression in vivo. Spine (Phila Pa 1976)28:973-981.
    30. Samartzis D, Karppinen J, Mok F, Fong DY, Luk KD, et al. (2011) A population-based study of juvenile disc degeneration and its association with overweight and obesity, low back pain, and diminished functional status. J Bone Joint Surg Am 93:662-670.
    31. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, et al. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425-432.
    32. Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, et al. (2011) Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab 301:E567-584.
    33. Hui W, Litherland GJ, Elias MS, Kitson GI, Cawston TE, et al. (2012) Leptin produced by joint white adipose tissue induces cartilage degradation via upregulation and activation of matrix metalloproteinases. Ann Rheum Dis 71:455-462.
    34. Fruhbeck G (2006) Intracellular signalling pathways activated by leptin. Biochem J 393:7-20.
    35. Carlton ED, Demas GE, French SS (2012) Leptin, a neuroendocrine mediator of immune responses, inflammation, and sickness behaviors. Horm Behav.
    36. Choi SS, Syn WK, Karaca GF, Omenetti A, Moylan CA, et al. (2010) Leptin promotes the myofibroblastic phenotype in hepatic stellate cells by activating the hedgehog pathway. J Biol Chem 285:36551-36560.
    37. Liang J, Feng J, Wu WK, Xiao J, Wu Z, et al. (2011) Leptin-mediated cytoskeletal remodeling in chondrocytes occurs via the RhoA/ROCK pathway. J Orthop Res 29:369-374.
    38. Gruber HE, Ingram JA, Hoelscher GL, Hanley EN, Jr. (2007) Leptin expression by annulus cells in the human intervertebral disc. Spine J 7:437-443.
    39. Zhao CQ, Liu D, Li H, Jiang LS, Dai LY (2008) Expression of leptin and its functional receptor on disc cells:contribution to cell proliferation. Spine (Phila Pa 1976) 33: E858-864.
    40. Raj PP (2008) Intervertebral disc:anatomy-physiology-pathophysiology-treatment. Pain Pract 8:18-44.
    41. Weiler C, Nerlich AG, Zipperer J, Bachmeier BE, Boos N (2002) 2002 SSE Award Competition in Basic Science:expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur Spine J 11:308-320.
    42. Li J, Yoon ST, Hutton WC (2004) Effect of bone morphogenetic protein-2 (BMP-2) on matrix production, other BMPs, and BMP receptors in rat intervertebral disc cells. J Spinal Disord Tech 17:423-428.
    43. Crean JK, Roberts S, Jaffray DC, Eisenstein SM, Duance VC (1997) Matrix metalloproteinases in the human intervertebral disc:role in disc degeneration and scoliosis. Spine (Phila Pa 1976) 22:2877-2884.
    44. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, et al. (1994) A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370:61-65.
    45. Seguin CA, Pilliar RM, Madri JA, Kandel RA (2008) TNF-alpha induces MMP2 gelatinase activity and MT1-MMP expression in an in vitro model of nucleus pulposus tissue degeneration. Spine (Phila Pa 1976) 33:356-365.
    46. Studer RK, Vo N, Sowa G, Ondeck C, Kang J (2011) Human nucleus pulposus cells react to IL-6:independent actions and amplification of response to IL-1 and TNF-alpha. Spine (Phila Pa 1976)36:593-599.
    47. Rutges JP, Nikkels PG, Oner FC, Ottink KD, Verbout AJ, et al. (2010) The presence of extracellular matrix degrading metalloproteinases during fetal development of the intervertebral disc. Eur Spine J 19:1340-1346.
    48. Loreto C, Musumeci G, Castorina A, Martinez G (2011) Degenerative disc disease of herniated intervertebral discs is associated with extracellular matrix remodeling, vimentin-positive cells and cell death. Ann Anat 193:156-162.
    49. Bobechko WP, Hirsch C (1965) Auto-Immune Response to Nucleus Pulposus in the Rabbit. J Bone Joint Surg Br 47:574-580.
    50. Spiliopoulou I, Korovessis P, Konstantinou D, Dimitracopoulos G (1994) IgG and IgM concentration in the prolapsed human intervertebral disc and sciatica etiology. Spine (Phila Pa 1976) 19:1320-1323.
    51. Pennington JB, McCarron RF, Laros GS (1988) Identification of IgG in the canine intervertebral disc.Spine (Phila Pa 1976) 13:909-912.
    52. Robinson GK (1992) Use of magnetic resonance imaging in the decision-making process for lumbar intervertebral disc syndrome. J Manipulative Physiol Ther 15:129-132.
    53. Bhatti I, Lee A, Lund J, Larvin M (2009) Small RNA:a large contributor to carcinogenesis? J Gastrointest Surg 13:1379-1388.
    54. Madhyastha R, Madhyastha H, Nakajima Y, Omura S, Maruyama M (2012) MicroRNA signature in diabetic wound healing:promotive role of miR-21 in fibroblast migration. Int Wound J 9:355-361.
    55. Plummer PN, Freeman R, Taft R, Vider J, Sax M, et al. (2012) MicroRNAs regulate tumor angiogenesis modulated by endothelial progenitor cells. Cancer Res.
    56. Wu JH, Gao Y, Ren AJ, Zhao SH, Zhong M, et al. (2012) Altered microRNA expression profiles in retinas with diabetic retinopathy. Ophthalmic Res 47:195-201.
    57. Zaravinos A, Radojicic J, Lambrou GI, Volanis D, Delakas D, et al. (2012) Expression of miRNAs involved in angiogenesis, tumor cell proliferation, tumor suppressor inhibition, epithelial-mesenchymal transition and activation of metastasis in bladder cancer. J Urol 188:615-623.
    58. Wang HQ, Yu XD, Liu ZH, Cheng X, Samartzis D, et al. (2011) Deregulated miR-155 promotes Fas-mediated apoptosis in human intervertebral disc degeneration by targeting FADD and caspase-3. J Pathol 225:232-242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700