肾上腺素受体β1亚型(ADRB1)在肿瘤恶病质脂肪消耗过程中的作用和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分脂肪分解通路受体在肿瘤恶病质病人脂肪组织中的表达及临床意义
     目的:检测肿瘤恶病质病人和对照组病人脂肪细胞膜上脂肪分解通路受体的表达情况,分析其与肿瘤恶病质病人脂肪分解增强的关系。
     方法:共入组34例病人,其中肿瘤恶病质12例、肿瘤对照13例、良性对照9例,术中收集腹部皮下脂肪组织标本。Real-time PCR方法检测肾上腺素受体β1亚型(ADRB1)、肾上腺素受体β2亚型(ADRB2)、肾上腺素受体β3亚型(ADRB3)、肾上腺素受体α2C亚型(ADRA2C)、心房钠尿肽受体A(NPRA)、胰岛素受体(INSR),以及激素敏感性酯酶(HSL)的mRNA水平。Western blot测定ADRB1和HSL的蛋白水平;免疫组织荧光方法进行ADRB1蛋白定位。结果:肿瘤恶病质病人脂肪组织中ADRB1和HSL的mRNA相对水平比肿瘤对照组和良性对照组升高约50%(P=0.022;P=0.013),而其他脂肪分解通路受体的mRNA相对水平没有显著改变。恶病质组ADRB1蛋白相对表达量分别是肿瘤对照组的1.5倍及良性对照组的3倍(P<0.001;P<0.001)。免疫组织荧光检测证实ADRB1蛋白表达于脂肪细胞膜。恶病质组HSL蛋白表达量是两个对照组的2-2.5倍(P<0.001;P=0.005)。ADRB1和HSL的蛋白相对表达水平呈正相关(r=0.474,P=0.005)。ADRB1蛋白相对表达水平与甘油三酯(triglyceride,TG)分解率呈正相关(r=0.406,P=0.002;r=0.435,P=0.01)。
     结论:肿瘤恶病质病人脂肪细胞膜上ADRB1蛋白表达增加,与HSL表达增强和TG分解率增强呈正相关,提示ADRB1过表达可能通过激活脂肪分解通路导致肿瘤恶病质病人脂肪消耗
     第二部分基于3T3-L1前脂肪细胞株的人类ADRB1基因稳定过表达模型的建立
     目的:利用慢病毒载体,建立基于3T3-L1前脂肪细胞株的人类ADRB1基因稳定过表达细胞模型。
     方法:利用DNA重组技术将人类ADRB1 cDNA克隆片段和慢病毒载体质粒(pLVX-IRES-ZsGreen1)连接;将重组载体和慢病毒包装质粒共转染293T细胞,在细胞中进行病毒包装;包装好的假病毒颗粒被分泌到细胞外的培养基中,质粒感染48小时收集富含慢病毒颗粒的细胞上清液,直接用于感染3T3-L1前脂肪细胞株,将ADRB1基因稳定转染进3T3-L1前脂肪细胞株。最后利用GFP流式细胞分选技术筛选稳定转染细胞株进行培养,从而建立了基于3T3-L1前脂肪细胞株的人类ADRB1基因稳定过表达模型。
     结果:Western blot检测证明,ADRB1过表达组的ADRB1蛋白相对水平较转空病毒对照组(mock组)显著增高,证明了含有ADRB1基因的慢病毒载体质粒构建、慢病毒包装、慢病毒感染3T3-L1细胞、稳定转染细胞株筛选步骤均正确。ADRB1基因随病毒DNA整合进宿主细胞基因组,使ADRB1蛋白在3T3-L1前脂肪细胞膜上稳定过表达,基于3T3-L1前脂肪细胞株的人类ADRB1基因稳定过表达模型构建成功。
     结论:建立了基于3T3-L1前脂肪细胞株的人类ADRB1基因稳定过表达细胞模型,使之模拟肿瘤恶病质病人脂肪细胞的特征性改变,为进一步研究ADRB1过表达在肿瘤恶病质脂肪消耗过程中的作用奠定了模型基础。
     第三部分脂肪细胞中ADRB1基因过表达对脂肪消耗的影响及其分子机制
     目的:利用分子生物学实验手段验证临床标本检测实验所揭示的现象,进一步研究ADRB1过表达在肿瘤恶病质脂肪消耗过程中的作用及其分子机制。
     方法:设立control组、mock组、ADRB1过表达组、抑制剂干预组。利用MDI方案诱导ADRB1稳定过表达的3T3-L1前脂肪细胞模型分化为成熟脂肪细胞,通过油红O染色实验及Western blot检测422(aP2)蛋白水平,研究ADRB1过表达对脂肪细胞分化的影响。利用Western blot方法检测ADRB1和HSL蛋白水平,研究ADRB1过表达对TG分解通路的影响;通过Western blot检测脂肪合成通路关键酶脂肪酸合成酶(fatty acid synthase, FAS)的蛋白水平,研究ADRB1过表达对TG合成过程的影响。
     结果:ADRB1过表达组中ADRB1蛋白相对水平显著高于control组和mock组,证实ADRB1过表达模型构建成功。油红O染色实验和422(aP2)蛋白水平检测证实,control组和mock组细胞能够分化,而ADRB1过表达组中脂肪细胞完全无法分化,该作用可被ADRB1抑制剂逆转。与control组和mock组相比,ADRB1过表达组中HSL蛋白相对水平显著增强、即脂肪分解通路激活,该作用可被ADRB1抑制剂逆转;ADRB1过表达组中FAS蛋白相对水平显著降低、即脂肪合成受到抑制,该作用可被ADRB1抑制剂逆转。
     结论:脂肪细胞中ADRB1过表达通过抑制TG合成、刺激TG分解、抑制脂肪细胞分化,导致肿瘤恶病质病人脂肪消耗
Part I Implication of Lipolysis-pathway Receptors in Lipolysis in Patients with Cancer Cachexia
     Objectives:To detect the expression of lipolysis-pathway receptors of adipocytes and to elucidate their implications in cancer cachectic patients.
     Methods:A total of 34 patients were recruited, including 12 cancer cachexia patients, 13 cancer controls and 9 nonmalignant controls. Gene expression levels of (31-adrenergic receptor (ADRB1),β2-adrenergic receptor (ADRB2), (33-adrenergic receptor (ADRB3), a2C-adrenergic receptor (ADRA2C), natriuretic peptide receptor A (NPRA), insulin receptor (INSR), and HSL were determined in adipose samples of 34 patients by Real-time PCR. Protein levels of AD RBI and HSL were detected by Western blot. ADRB1 Localization was performed by immunofluorescence staining.
     Results:mRNA levels of both ADRB1 and HSL were-50% elevated selectively in the cachexia group (P=0.022; P=0.013), whereas mRNA levels of the other receptors remained unchanged. ADRB1 protein level showed a 1.5 fold and 3 fold increase in the cachexia group as compared with cancer controls and nonmalignant controls (P< 0.001; P<0.001). ADRB1 was confirmed as a membrane protein in adipocytes by immuno fluorescence staining. HSL protein expression was 2-2.5 fold increased selectively in cancer cachexia group (P<0.001; P=0.005). There was a positive correlation between protein level of ADRB 1 and HSL (r=0.474, P=0.005), as well as between ADRB1 level and lipolytic rate (r=0.406, P=0.002; r=0.435, P=0.01).
     Conclusion:We found increased ADRB1 expression in adipocytes of cancer cachectic patients, which is positively correlated with elevated HSL expression and increased lipolysis rate in this pathological setting.
     Part II Establishment of Cell Model with Human ADRB1 Gene Overexpression Based on 3T3-L1 Cell Line
     Objectives:To establish an adipocyte model with stable overexpression of human ADRB1 gene based on 3T3-L1 cell line with lentiviral vector.
     Methods:Human ADRB1 cDNA and lentiviral vector (pLVX-IRES-ZsGreenl) were ligated using recombinant DNA technology. The recombinant vector and packaging plasmids were co-transfected into 293T cells for virus packaging. Packed virus particles were secreted into the medium, which was collected 48 hours after transfection and applied for infection, through which ADRB1 gene were stably transfected into 3T3-L1 preadipocyte cell line. Finally, stably transfected cell line was selected with fluorescence-activated cell sorting (FACS).
     Results:All procedures were correct including cloning of ADRB1 construct, lentiviral packaging and infection, screening of stably transfected 3T3-L1 cell line. ADRB1 gene was integrated into host cell genome with viral DNA, so that ADRB1 protein was stably overexpressed on 3T3-L1 preadipocyte cell membrane. Western blot displayed a significantly elevated protein level of ADRB1 compared with the mock group, which demonstrated that model establishment is correct.
     Conclusion:We have established an adipocyte model with stable overexpression of ADRB1 based on 3T3-L1 cell line, which laid the foundation for further studies by mimicing the pathological changes of adipocytes in cancer cachectic patients.
     Part III Implications of ADRB1 Gene Overexpression in Fat Consumption in Cancer Cachexia
     Objectives:to further investigate the implications of ADRB1 gene overexpression in fat consumption in cancer cachexia.
     Methods:An overall study of overexpression of ADRB1 gene in fat consumption in cancer cachexia and the potential mechanism was carried out through inducing 3T3-L1 prcadipocyte with ADRB1 overexpression differentiate into adipocyte by MDI-based criteria. In the study, its impact on lipolysis was evaluated by detecting protein level of HSL; that in adipocyte differentiation evaluated by oil red staining and detection of protein level of 422(aP2), molecular marker in the process; that in triglyceride (TG) synthesis evaluated by the detection of protein level of fatty acid synthase, key enzyme in fat synthesis pathway.
     Results:3T3-L1 differentiated completely in the control and mock group, but didn't in ADRB1 overexpression group, which could be attenuated by ADRB1 inhibitor with dose-effect relationship. Increased protein level of HSL and decreased level of FAS were detected in ADRB1 overexpression group, compared with the control and mock group, which could be attenuated by ADRB1 inhibitor.
     Conclusion:ADRB1 gene overexpression leads to fat consumption in cancer cachexia through inhibition of TG synthesis, stimulation of TG breakdown, and inhibition of adipocyte differentiation.
引文
[1]Lainscak M, Filippatos GS, Gheorghiade M, et al. Cachexia:common, deadly, with an urgent need for precise definition and new therapies[J]. Am J Cardiol, 2008,101(11A):8E-10E.
    [2]Morley JE, Thomas DR, Wilson MM. Cachexia:pathophysiology and clinical relevance[J]. Am J Clin Nutr,2006,83(4):735-43.
    [3]Granda-Cameron C, DeMille D, Lynch MP, et al. An interdisciplinary approach to manage cancer cachexia[J]. Clin J Oncol Nurs,2010,14(1):72-80.
    [4]Warren S. The immediate cause of death in cancer[J]. Am J Med Sci, 1932,184(5):610-5.
    [5]Tisdale MJ. Reversing Cachexia[J]. Cell,2010,142(4):511-2.
    [6]Lainscak M, Podbregar M, Anker SD. How does cachexia influence survival in cancer, heart failure and other chronic diseases?[J]. Curr Opin Support Palliat Care, 2007,1(4):299-305.
    [7]Zhou X, Wang JL, Lu J, et al. Reversal of Cancer Cachexia and Muscle Wasting by ActRIIB Antagonism Leads to Prolonged Survival [J]. Cell,2010,142(4):531-43.
    [8]Gullett NP, Hebbar G, Ziegler TR. Update on clinical trials of growth factors and anabolic steroids in cachexia and wasting[J]. Am J Clin Nutr,2010,91(4):1143S-7S.
    [9]Dahlman I, Mejhert N, Linder K, et al. Adipose tissue pathways involved in weight loss of cancer cachexia[J]. Br J Cancer,2010,102(10):1541-8.
    [10]Tan BH, Fearon KC. Cachexia:prevalence and impact in medicine[J]. Curr Opin Clin Nutr Metab Care,2008,11(4):400-7.
    [11]Murphy RA, Wilke MS, Perrine M, et al. Loss of adipose tissue and plasma phospholipids:Relationship to survival in advanced cancer patients[J]. Clin Nutr, 2009,29(4):482-7.
    [12]Agustsson T, Ryden M, Hoffstedt J, et al. Mechanism of increased lipolysis in cancer cachexia[J]. Cancer Res,2007,67(11):5531-7.
    [13]Hanahan D, Weinberg RA. Hallmarks of cancer:the next generation[J]. Cell, 2011,144(5):646-74.
    [14]Bosaeus I. Nutritional support in multimodal therapy for cancer cachexia[J]. Support Care Cancer,2008,16(5):447-51.
    [15]Fonseca-Alaniz MH, Takada J, Alonso-Vale MI, et al. Adipose tissue as an endocrine organ:from theory to practice[J]. J Pediatr (Rio J),2007,83(5 Suppl):S 192-203.
    [16]Diakowska D, Krzystek-Korpacka M, Markocka-Maczka K, et al. Circulating leptin and inflammatory response in esophageal cancer, esophageal cancer-related cachexia-anorexia syndrome (CAS) and non-malignant CAS of the alimentary tract[J]. Cytokine,2010,51(2):132-7.
    [17]Smiechowska J, Utech A, Taffet G, et al. Adipokines in patients with cancer anorexia and cachexia[J]. J Investig Med,2010,58(3):554-9.
    [18]Bing C, Trayhurn P. Regulation of adipose tissue metabolism in cancer cachexia[J]. Curr Opin Clin Nutr Metab Care,2008,11(3):201-7.
    [19]Bing C, Trayhurn P. New insights into adipose tissue atrophy in cancer cachexia[J]. Proc Nutr Soc,2009,68(4):385-92.
    [20]Bing C, Brown M, King P, et al. Increased gene expression of brown fat uncoupling protein (UCP)1 and skeletal muscle UCP2 and UCP3 in MAC 16-induced cancer cachexia[J]. Cancer Res,2000,60(9):2405-10.
    [21]Bozzetti F, Mariani L. Defining and classifying cancer cachexia:a proposal by the SCRINIO Working Group[J]. JPEN J Parenter Enteral Nutr,2009,33(4):361-7.
    [22]Stephens NA, Gallagher IJ, Rooyackers O, et al. Using transcriptomics to identify and validate novel biomarkers of human skeletal muscle cancer cachexia[J]. Genome Med,2010,2(1):1.
    [23]Tisdale MJ. Mechanisms of cancer cachexia[J]. Physiol Rev, 2009,89(2):381-410.
    [24]Ryden M, Agustsson T, Laurencikiene J, et al. Lipolysis--not inflammation, cell death, or lipogenesis-is involved in adipose tissue loss in cancer cachexia[J]. Cancer, 2008,113(7):1695-704.
    [25]Sethi JK, Vidal-Puig AJ. Thematic review series:adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation[J]. J Lipid Res, 2007,48(6):1253-62.
    [1]Granda-Cameron C, DeMille D, Lynch MP, et al. An interdisciplinary approach to manage cancer cachexia[J]. Clin J Oncol Nurs,2010,14(1):72-80.
    [2]Tisdale MJ. Cachexia in cancer patients[J]. Nat Rev Cancer,2002,2(11):862-71.
    [3]Tisdale MJ. Reversing Cachexia[J]. Cell,2010.142(4):511-2.
    [4]Bennani-Baiti N, Walsh D. What is cancer anorexia-cachexia syndrome? A historical perspective [J]. J R Coll Physicians Edinb,2009,39(3):257-62.
    [5]Lainscak M, Podbregar M, Anker SD. How does cachexia influence survival in cancer, heart failure and other chronic diseases?[J]. Curr Opin Support Palliat Care, 2007,1(4):299-305.
    [6]Gullett NP, Hebbar G, Ziegler TR. Update on clinical trials of growth factors and anabolic steroids in cachexia and wasting[J]. Am J Clin Nutr,2010,91(4):1143S-7S.
    [7]Tan BH, Fearon KC. Cachexia:prevalence and impact in medicine [J]. Curr Opin Clin Nutr Metab Care,2008,11(4):400-7.
    [8]Morley JE, Thomas DR, Wilson MM. Cachexia:pathophysiology and clinical relevance[J]. Am J Clin Nutr,2006,83(4):735-43.
    [9]Skipworth RJ, Stewart GD, Dejong CH, et al. Pathophysiology of cancer cachexia: much more than host-tumour interaction?[J]. Clin Nutr,2007,26(6):667-76.
    [10]Trayhurn P, Wood IS. Adipokines:inflammation and the pleiotropic role of white adipose tissue[J]. Br J Nutr,2004,92(3):347-55.
    [11]Fouladiun M, Korner U, Bosaeus I, et al. Body composition and time course changes in regional distribution of fat and lean tissue in unselected cancer patients on palliative care--correlations with food intake, metabolism, exercise capacity, and hormones[J]. Cancer,2005,103(10):2189-98.
    [12]Dahlman I, Mejhert N, Linder K, et al. Adipose tissue pathways involved in weight loss of cancer cachexia[J]. Br J Cancer,2010,102(10):1541-8.
    [13]Bosaeus I. Nutritional support in multimodal therapy for cancer cachexia[J]. Support Care Cancer,2008,16(5):447-51.
    [14]Murphy RA, Wilke MS, Perrine M, et al. Loss of adipose tissue and plasma phospholipids:Relationship to survival in advanced cancer patients[J]. Clin Nutr, 2009.
    [15]Lira FS, Rosa JC, Zanchi NE, et al. Regulation of inflammation in the adipose tissue in cancer cachexia:effect of exercise [J]. Cell Biochem Funct,2009,27(2):71-5.
    [16]Bing C, Russell S, Becket E, et al. Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice[J]. Br J Cancer,2006,95(8):1028-37.
    [17]Kalra PR, Tigas S. Regulation of lipolysis:natriuretic peptides and the development of cachexia[J]. Int J Cardiol,2002,85(1):125-32.
    [18]Ryden M, Agustsson T, Laurencikiene J, et al. Lipolysis--not inflammation, cell death, or lipogenesis--is involved in adipose tissue loss in cancer cachexia[J]. Cancer, 2008,113(7):1695-704.
    [19]Arner P. Human fat cell lipolysis:biochemistry, regulation and clinical role[J]. Best Pract Res Clin Endocrinol Metab,2005,19(4):471-82.
    [20]Sethi JK, Vidal-Puig AJ. Thematic review series:adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation[J]. J Lipid Res, 2007,48(6):1253-62.
    [21]Jocken JW, Blaak EE. Catecholamine-induced lipolysis in adipose tissue and skeletal muscle in obesity[J]. Physiol Behav,2008,94(2):219-30.
    [22]Lafontan M, Moro C, Berlan M, et al. Control of lipolysis by natriuretic peptides and cyclic GMP[J]. Trends Endocrinol Metab,2008,19(4):130-7.
    [23]Agustsson T, Ryden M, Hoffstedt J, et al. Mechanism of increased lipolysis in cancer cachexia[J]. Cancer Res,2007,67(11):5531-7.
    [24]Bing C, Trayhurn P. Regulation of adipose tissue metabolism in cancer cachexia[J]. Curr Opin Clin Nutr Metab Care,2008,11(3):201-7.
    [25]Robidoux J, Martin TL, Collins S. Beta-adrenergic receptors and regulation of energy expenditure:a family affair [J]. Annu Rev Pharmacol Toxicol, 2004,44:297-323.
    [26]Johnson G, Salle A, Lorimier G, et al. Cancer cachexia:measured and predicted resting energy expenditures for nutritional needs evaluation[J]. Nutrition, 2008,24(5):443-50.
    [27]Cao DX, Wu GH, Zhang B, et al. Resting energy expenditure and body composition in patients with newly detected cancer[J]. Clin Nutr,2010,29(1):72-7.
    [28]Large V, Reynisdottir S, Eleborg L, et al. Lipolysis in human fat cells obtained under local and general anesthesia[J]. Int J Obes Relat Metab Disord, 1997,21(1):78-82.
    [29]Arocho A, Chen B, Ladanyi M, et al. Validation of the 2-DeltaDeltaCt calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts[J]. Diagn Mol Pathol,2006,15(1):56-61.
    [30]Nordstrom EA, Ryden M, Backlund EC, et al. A human-specific role of cell death-inducing DFFA (DNA fragmentation factor-alpha)-like effector A (CIDEA) in adipocyte lipolysis and obesity[J]. Diabetes,2005,54(6):1726-34.
    [31]Diakowska D, Krzystek-Korpacka M, Markocka-Maczka K, et al. Circulating leptin and inflammatory response in esophageal cancer, esophageal cancer-related cachexia-anorexia syndrome (CAS) and non-malignant CAS of the alimentary tract[J]. Cytokine,2010,51(2):132-7.
    [32]Bing C, Trayhurn P. New insights into adipose tissue atrophy in cancer cachexia[J]. Proc Nutr Soc,2009,68(4):385-92.
    [33]Smiechowska J, Utech A, Taffet G, et al. Adipokines in patients with cancer anorexia and cachexia[J]. J Investig Med,2010,58(3):554-9.
    [34]Klein S, Wolfe RR. Whole-body lipolysis and triglyceride-fatty acid cycling in cachectic patients with esophageal cancer[J]. J Clin Invest,1990,86(5):1403-8.
    [35]D'Haene B, Vandesompele J, Hellemans J. Accurate and objective copy number profiling using real-time quantitative PCR[J]. Methods,2010,50(4):262-70.
    [36]Ryden M, Jocken J, van Harmelen V, et al. Comparative studies of the role of hormone-sensitive lipase and adipose triglyceride lipase in human fat cell lipolysis[J]. Am J Physiol Endocrinol Metab,2007,292(6):E 1847-55.
    [37]Stephens NA, Gallagher IJ, Rooyackers O, et al. Using transcriptomics to identify and validate novel biomarkers of human skeletal muscle cancer cachexia[J]. Genome Med,2010,2(1):1.
    [38]Tisdale MJ. Mechanisms of cancer cachexia[J]. Physiol Rev, 2009,89(2):381-410.
    [39]Tisdale MJ. Cancer cachexia[J]. Curr Opin Gastroenterol,2010,26(2):146-51.
    [40]Laag E, Majidi M, Cekanova M, et al. NNK activates ERK1/2 and CREB/ATF-1 via beta-1-AR and EGFR signaling in human lung adenocarcinoma and small airway epithelial cells[J]. Int J Cancer,2006,119(7):1547-52.
    [41]Majidi M, Al-Wadei HA, Takahashi T, et al. Nongenomic beta estrogen receptors enhance betal adrenergic signaling induced by the nicotine-derived carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in human small airway epithelial cells[J]. Cancer Res,2007,67(14):6863-71.
    [42]Thaker PH, Lutgendorf SK, Sood AK. The neuroendocrine impact of chronic stress on cancer[J]. Cell Cycle,2007,6(4):430-3.
    [43]Sood AK, Bhatty R, Kamat AA, et al. Stress hormone-mediated invasion of ovarian cancer cells[J]. Clin Cancer Res,2006,12(2):369-75.
    [44]Fu A, Li X, Zhao B. Role of betal-adrenoceptor in the basolateral amygdala of rats with anxiety-like behavior[J]. Brain Res,2008,1211:85-92.
    [45]Landen CN, Jr., Lin YG, Armaiz Pena GN, et al. Neuroendocrine modulation of signal transducer and activator of transcription-3 in ovarian cancer[J]. Cancer Res, 2007,67(21):10389-96.
    [46]Lutgendorf SK, Degeest K, Dahmoush L, et al. Social isolation is associated with elevated tumor norepinephrine in ovarian carcinoma patients[J]. Brain Behav Immun, 2011.
    [47]Lutgendorf SK, DeGeest K, Sung CY, et al. Depression, social support, and beta-adrenergic transcription control in human ovarian cancer[J]. Brain Behav Immun, 2009,23(2):176-83.
    [48]McMillan DC. Systemic inflammation, nutritional status and survival in patients with cancer[J]. Curr Opin Clin Nutr Metab Care,2009,12(3):223-6.
    [49]Dianliang Z. Probing cancer cachexia-anorexia:recent results with knockout, transgene and polymorphisms[J]. Curr Opin Clin Nutr Metab Care, 2009,12(3):227-31.
    [50]Deans DA, Tan BH, Ross JA, et al. Cancer cachexia is associated with the IL10-1082 gene promoter polymorphism in patients with gastroesophageal malignancy[J]. Am J Clin Nutr,2009,89(4):1164-72.
    [51]Bo S, Dianliang Z, Hongmei Z, et al. Association of interleukin-8 gene polymorphism with cachexia from patients with gastric cancer [J]. J Interferon Cytokine Res,2010,30(1):9-14.
    [52]Tisdale MJ. Zinc-alpha2-glycoprotein in cachexia and obesity [J]. Curr Opin Support Palliat Care,2009,3(4):288-93.
    [53]Russell ST, Tisdale MJ. The role of glucocorticoids in the induction of zinc-alpha2-glycoprotein expression in adipose tissue in cancer cachexia[J]. Br J Cancer,2005,92(5):876-81.
    [54]Tavernier G, Barbe P, Galitzky J, et al. Expression of beta3-adrenoceptors with low lipolytic action in human subcutaneous white adipocytes[J]. J Lipid Res, 1996,37(1):87-97.
    [1]Agustsson T, Ryden M, Hoffstedt J, et al. Mechanism of increased lipolysis in cancer cachexia[J]. Cancer Res,2007,67(11):5531-7.
    [2]Pettersson AT, Laurencikiene J, Mejhert N, et al. A possible inflammatory role of twistl in human white adipocytes[J]. Diabetes,2010,59(3):564-71.
    [3]Tiller G, Fischer-Posovszky P, Laumen H, et al. Effects of TWEAK (TNF superfamily member 12) on differentiation, metabolism, and secretory function of human primary preadipocytes and adipocytes[J]. Endocrinology, 2009,150(12):5373-83.
    [4]Byerley LO, Lee SH, Redmann S, et al. Evidence for a novel serum factor distinct from zinc alpha-2 glycoprotein that promotes body fat loss early in the development of cachexia[J]. Nutr Cancer,2010,62(4):484-94.
    [5]Laurencikiene J, Stenson BM, Arvidsson Nordstrom E, et al. Evidence for an important role of CIDEA in human cancer cachexia[J]. Cancer Res, 2008,68(22):9247-54.
    [6]Russell ST, Tisdale MJ. Effect of eicosapentaenoic acid (EPA) on expression of a lipid mobilizing factor in adipose tissue in cancer cachexia[J]. Prostaglandins Leukot Essent Fatty Acids,2005,72(6):409-14.
    [7]Russell ST, Tisdale MJ. The role of glucocorticoids in the induction of zinc-alpha2-glycoprotein expression in adipose tissue in cancer cachexia[J]. Br J Cancer,2005,92(5):876-81.
    [8]Bing C, Bao Y, Jenkins J, et al. Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia[J]. Proc Natl Acad Sci U S A,2004,101(8):2500-5.
    [9]Inadera H, Nagai S, Dong HY, et al. Molecular analysis of lipid-depleting factor in a colon-26-inoculated cancer cachexia model[J]. Int J Cancer,2002,101(1):37-45.
    [10]Nara-Ashizawa N, Akiyama Y, Maruyama K, et al. Lipolytic and lipoprotein lipase (LPL)-inhibiting activities produced by a human lung cancer cell line responsible for cachexia induction[J]. Anticancer Res,2001,21 (5):3381-7.
    [11]Morley JE, Thomas DR, Wilson MM. Cachexia:pathophysiology and clinical relevance[J]. Am J Clin Nutr,2006,83(4):735-43.
    [12]Skipworth RJ, Stewart GD, Dejong CH, et al. Pathophysiology of cancer cachexia:much more than host-tumour interaction?[J]. Clin Nutr,2007,26(6):667-76.
    [13]Bing C, Russell S, Becket E, et al. Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice[J]. Br J Cancer,2006,95(8):1028-37.
    [14]Ryden M, Agustsson T, Laurencikiene J, et al. Lipolysis--not inflammation, cell death, or lipogenesis--is involved in adipose tissue loss in cancer cachexia[J]. Cancer, 2008,113(7):1695-704.
    [15]Senior K. Why is progress in treatment of cancer cachexia so slow?[J]. Lancet Oncol,2007,8(8):671-2.
    [16]Bing C, Trayhurn P. Regulation of adipose tissue metabolism in cancer cachexia[J]. Curr Opin Clin Nutr Metab Care,2008,11(3):201-7.
    [17]Zennou V, Petit C, Guetard D, et al. HIV-1 genome nuclear import is mediated by a central DNA flap[J]. Cell,2000,101(2):173-85.
    [18]Wu X, Wakefield JK, Liu H, et al. Development of a novel trans-lentiviral vector that affords predictable safety[J]. Mol Ther,2000,2(1):47-55.
    [1]Tan BH, Fearon KC. Cachexia:prevalence and impact in medicine[J]. Curr Opin Clin Nutr Metab Care,2008,11(4):400-7.
    [2]Morley JE, Thomas DR, Wilson MM. Cachexia:pathophysiology and clinical relevance[J]. Am J Clin Nutr,2006,83(4):735-43.
    [3]Skipworth RJ, Stewart GD, Dejong CH, et al. Pathophysiology of cancer cachexia: much more than host-tumour interaction?[J]. Clin Nutr,2007,26(6):667-76.
    [4]Zuijdgeest-van Leeuwen SD, van den Berg JW, Wattimena JL, et al. Lipolysis and lipid oxidation in weight-losing cancer patients and healthy subjects[J]. Metabolism, 2000,49(7):931-6.
    [5]Kalra PR, Tigas S. Regulation of lipolysis:natriuretic peptides and the development of cachexia[J]. Int J Cardiol,2002,85(1):125-32.
    [6]Ryden M, Agustsson T, Laurencikiene J, et al. Lipolysis--not inflammation, cell death, or lipogenesis--is involved in adipose tissue loss in cancer cachexia[J]. Cancer, 2008,113(7):1695-704.
    [7]Agustsson T, Ryden M, Hoffstedt J, et al. Mechanism of increased lipolysis in cancer cachexia[J]. Cancer Res,2007,67(11):5531-7.
    [8]Qian SW, Li X, Zhang YY, et al. Characterization of adipocyte differentiation from human mesenchymal stem cells in bone marrow[J]. BMC Dev Biol,2010,10:47.
    [9]Huang HY, Li X, Liu M, et al. Transcription factor YY1 promotes adipogenesis via inhibiting CHOP-10 expression[J]. Biochem Biophys Res Commun, 2008,375(4):496-500.
    [10]Jiang L, Zhang NX, Mo W, et al. Rehmannia inhibits adipocyte differentiation and adipogenesis[J], Biochem Biophys Res Commun,2008,371(2):185-90.
    [11]Li X, Kim JW, Gronborg M, et al. Role of cdk2 in the sequential phosphorylation/activation of C/EBPbeta during adipocyte differentiation[J]. Proc Natl Acad Sci U S A,2007,104(28):11597-602.
    [12]Li X, Huang HY, Chen JG, et al. Lactacystin inhibits 3T3-L1 adipocyte differentiation through induction of CHOP-10 expression[J]. Biochem Biophys Res Commun,2006,350(1):1-6.
    [13]Bing C, Russell S, Becket E, et al. Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice[J]. Br J Cancer,2006,95(8):1028-37.
    [14]Senior K. Why is progress in treatment of cancer cachexia so slow?[J]. Lancet Oncol,2007,8(8):671-2.
    [15]Bing C, Trayhurn P. Regulation of adipose tissue metabolism in cancer cachexia[J], Curr Opin Clin Nutr Metab Care,2008,11(3):201-7.
    [16]Wang S, Soni KG, Semache M, et al. Lipolysis and the integrated physiology of lipid energy metabolism[J]. Mol Genet Metab,2008,95(3):117-26.
    [17]Ryden M, Jocken J, van Harmelen V, et al. Comparative studies of the role of hormone-sensitive lipase and adipose triglyceride lipase in human fat cell lipolysis[J]. Am J Physiol Endocrinol Metab,2007,292(6):E 1847-55.
    [18]Hale LP, Price DT, Sanchez LM, et al. Zinc alpha-2-glycoprotein is expressed by malignant prostatic epithelium and may serve as a potential serum marker for prostate cancer[J]. Clin Cancer Res,2001,7(4):846-53.
    [19]Mandrup S, Lane MD. Regulating adipogenesis[J]. J Biol Chem, 1997,272(9):5367-70.
    [20]鞠大鹏,詹丽杏.脂肪细胞分化及其调控的研究进展[J].中国细胞生物学学报,2010,32(5):690-5.
    [21]Tisdale MJ. Mechanisms of cancer cachexia[J]. Physiol Rev, 2009,89(2):381-410.
    [22]Deans DA, Tan BH, Ross JA, et al. Cancer cachexia is associated with the IL10-1082 gene promoter polymorphism in patients with gastroesophageal malignancy [J]. Am J Clin Nutr,2009,89(4):1164-72.
    [23]Stephens NA, Gallagher IJ, Rooyackers O, et al. Using transcriptomics to identify and validate novel biomarkers of human skeletal muscle cancer cachexia[J]. Genome Med,2010,2(1):1.
    [1]Lainscak M, Filippatos GS, Gheorghiade M, et al. Cachexia:common, deadly, with an urgent need for precise definition and new therapies[J]. Am J Cardiol, 2008,101(11A):8E-10E.
    [2]Morley JE, Thomas DR., Wilson MM. Cachexia:pathophysiology and clinical relevance[J]. Am J Clin Nutr,2006,83(4):735-43.
    [3]Granda-Cameron C, DeMille D, Lynch MP, et al. An interdisciplinary approach to manage cancer cachexia[J]. Clin J Oncol Nurs,2010,14(1):72-80.
    [4]Tisdalc MJ. Cachexia in cancer patients [J]. Nat Rev Cancer,2002,2(11):862-71.
    [5]Tisdale MJ. Molecular pathways leading to cancer cachexia[J]. Physiology (Bethesda),2005,20:340-8.
    [6]Tisdale MJ. Reversing Cachexia[J]. Cell,2010,142(4):511-2.
    [7]Bennani-Baiti N, Walsh D. What is cancer anorexia-cachexia syndrome? A historical perspective [J]. J R Coll Physicians Edinb,2009,39(3):257-62.
    [8]Lainscak M, Podbregar M, Anker SD. How does cachexia influence survival in cancer, heart failure and other chronic diseases?[J]. Curr Opin Support Palliat Care, 2007,1(4):299-305.
    [9]Zhou X, Wang JL, Lu J, et al. Reversal of Cancer Cachexia and Muscle Wasting by ActRIIB Antagonism Leads to Prolonged Survival[J]. Cell,2010,142(4):531-43.
    [10]Gullett NP, Hebbar G, Ziegler TR. Update on clinical trials of growth factors and anabolic steroids in cachexia and wasting[J]. Am J Clin Nutr,2010,91 (4):1143S-7S.
    [11]Skipworth RJ, Stewart GD, Dejong CH, et al. Pathophysiology of cancer cachexia:much more than host-tumour interaction?[J]. Clin Nutr,2007,26(6):667-76.
    [12]Senior K. Why is progress in treatment of cancer cachexia so slow?[J]. Lancet Oncol,2007,8(8):671-2.
    [13]Lieffers JR, Mourtzakis M, Hall KD, et al. A viscerally driven cachexia syndrome in patients with advanced colorectal cancer:contributions of organ and tumor mass to whole-body energy demands[J]. Am J Clin Nutr,2009,89(4):1173-9.
    [14]Cao DX, Wu GH, Zhang B, et al. Resting energy expenditure and body composition in patients with newly detected cancer[J]. Clin Nutr,2010,29(1):72-7.
    [15]Xu WP, Cao DX, Lin ZM, et al. Analysis of energy utilization and body composition in kidney, bladder, and adrenal cancer patients [J]. Urol Oncol.
    [16]Dodesini AR, Benedini S, Terruzzi I, et al. Protein, glucose and lipid metabolism in the cancer cachexia:A preliminary report[J]. Acta Oncol,2007,46(1):118-20.
    [17]Tisdale MJ. Cancer cachexia[J]. Curr Opin Gastroenterol,2010,26(2):146-51.
    [18]Hanahan D, Weinberg RA. Hallmarks of cancer:the next generation[J]. Cell, 2011,144(5):646-74.
    [19]Fearon KC. Cancer cachexia:developing multimodal therapy for a multidimensional problem[J]. Eur J Cancer,2008,44(8):1124-32.
    [20]Murphy KT, Lynch GS. Update on emerging drugs for cancer cachexia[J]. Expert Opin Emerg Drugs,2009,14(4):619-32.
    [21]Ogiwara H, Takahashi S, Kato Y, et al. Diminished visceral adipose tissue in cancer cachexia[J]. J Surg Oncol,1994,57(2):129-33.
    [22]Avram AS, Avram MM, James WD. Subcutaneous fat in normal and diseased states:2. Anatomy and physiology of white and brown adipose tissue[J]. J Am Acad Dermatol,2005,53(4):671-83.
    [23]Cinti S. The adipose organ[J]. Prostaglandins Leukot Essent Fatty Acids, 2005,73(1):9-15.
    [24]Dahlman I, Mejhert N, Linder K, et al. Adipose tissue pathways involved in weight loss of cancer cachexia[J]. Br J Cancer,2010,102(10):1541-8.
    [25]Giacosa A, Frascio F, Sukkar SG, et al. Food intake and body composition in cancer cachexia[J]. Nutrition,1996,12(1 Suppl):S20-3.
    [26]Tan BH, Fearon KC. Cachexia:prevalence and impact in medicine[J]. Curr Opin Clin Nutr Metab Care,2008,11(4):400-7.
    [27]Thompson MP, Cooper ST, Parry BR, et al. Increased expression of the mRNA for hormone-sensitive lipase in adipose tissue of cancer patients[J]. Biochim Biophys Acta,1993,1180(3):236-42.
    [28]Agustsson T, Ryden M, Hoffstedt J, et al. Mechanism of increased lipolysis in cancer cachexia[J]. Cancer Res,2007,67(11):5531-7.
    [29]Slaviero KA, Read JA, Clarke SJ, et al. Baseline nutritional assessment in advanced cancer patients receiving palliative chemotherapy [J]. Nutr Cancer, 2003,46(2):148-57.
    [30]Trayhurn P, Wood IS. Adipokines:inflammation and the pleiotropic role of white adipose tissue[J], Br J Nutr,2004,92(3):347-55.
    [31]Bosaeus I. Nutritional support in multimodal therapy for cancer cachexia[J]. Support Care Cancer,2008,16(5):447-51.
    [32]Murphy RA, Wilke MS, Perrine M, et al. Loss of adipose tissue and plasma phospholipids:Relationship to survival in advanced cancer patients[J]. Clin Nutr, 2009.
    [33]Murphy RA, Wilke MS, Perrine M, et al. Loss of adipose tissue and plasma phospholipids:Relationship to survival in advanced cancer patients[J]. Clin Nutr, 2009,29(4):482-7.
    [34]Diakowska D, Krzystek-Korpacka M, Markocka-Maczka K, et al. Circulating leptin and inflammatory response in esophageal cancer, esophageal cancer-related cachexia-anorexia syndrome (CAS) and non-malignant CAS of the alimentary tract[J]. Cytokine,2010,51(2):132-7.
    [35]Bing C, Trayhurn P. New insights into adipose tissue atrophy in cancer cachexia[J]. Proc Nutr Soc,2009,68(4):385-92.
    [36]Finley DS, Calvert VS, Inokuchi J, et al. Periprostatic adipose tissue as a modulator of prostate cancer aggressiveness[J]. J Urol,2009,182(4):1621-7.
    [37]Lira FS, Rosa JC, Zanchi NE, et al. Regulation of inflammation in the adipose tissue in cancer cachexia:effect of exercise[J]. Cell Biochem Funct,2009,27(2):71-5.
    [38]Smiechowska J, Utech A, Taffet G, et al. Adipokines in patients with cancer anorexia and cachexia[J]. J Investig Med,2010,58(3):554-9.
    [39]Fouladiun M, Korner U, Bosaeus I, et al. Body composition and time course changes in regional distribution of fat and lean tissue in unselected cancer patients on palliative care--correlations with food intake, metabolism, exercise capacity, and hormones[J]. Cancer,2005,103(10):2189-98.
    [40]Bozzetti F, Mariani L. Defining and classifying cancer cachexia:a proposal by the SCRINIO Working Group[J]. JPEN J Parenter Enteral Nutr,2009,33(4):361-7.
    [41]Acharyya S, Guttridge DC. Cancer cachexia signaling pathways continue to emerge yet much still points to the proteasome[J]. Clin Cancer Res, 2007,13(5):1356-61.
    [42]Argiles JM, Lopez-Soriano FJ, Busquets S. Mechanisms to explain wasting of muscle and fat in cancer cachexia[J]. Curr Opin Support Palliat Care, 2007,1(4):293-8.
    [43]Bing C, Brown M, King P, et al. Increased gene expression of brown fat uncoupling protein (UCP)1 and skeletal muscle UCP2 and UCP3 in MAC 16-induced cancer cachexia[J]. Cancer Res,2000,60(9):2405-10.
    [44]Bing C, Trayhurn P. Regulation of adipose tissue metabolism in cancer cachexia[J]. Curr Opin Clin Nutr Metab Care,2008,11(3):201-7.
    [45]Zuijdgeest-van Leeuwen SD, van den Berg JW, Wattimena JL, et al. Lipolysis and lipid oxidation in weight-losing cancer patients and healthy subjects[J]. Metabolism,2000,49(7):931-6.
    [46]Ryden M, Agustsson T, Laurencikiene J, et al. Lipolysis--not inflammation, cell death, or lipogenesis-is involved in adipose tissue loss in cancer cachexia[J]. Cancer, 2008,113(7):1695-704.
    [47]Tisdale MJ. Mechanisms of cancer cachexia[J]. Physiol Rev, 2009,89(2):381-410.
    [48]Mandrup S, Lane MD. Regulating adipogenesis[J]. J Biol Chem, 1997,272(9):5367-70.
    [49]Bing C, Russell S, Becket E, et al. Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice[J]. Br J Cancer,2006,95(8):1028-37.
    [50]Hale LP, Price DT, Sanchez LM, et al. Zinc alpha-2-glycoprotein is expressed by malignant prostatic epithelium and may serve as a potential serum marker for prostate cancer[J]. Clin Cancer Res,2001,7(4):846-53.
    [51]Bing C, Taylor S, Tisdale MJ, et al. Cachexia in MAC 16 adenocarcinoma: suppression of hunger despite normal regulation of leptin, insulin and hypothalamic neuropeptide Y[J]. J Neurochem,2001,79(5):1004-12.
    [52]Yoshikawa T, Noguchi Y, Satoh S, et al. Insulin resistance and the alterations of glucose transporter-4 in adipose cells from cachectic tumor-bearing rats[J]. JPEN J Parenter Enteral Nutr,1997,21(6):347-9.
    [53]Inadera H, Nagai S, Dong HY, et al. Molecular analysis of lipid-depleting factor in a colon-26-inoculated cancer cachexia model[J]. Int J Cancer,2002,101 (1):37-45.
    [54]Thompson MP, Koons JE, Tan ET, et al. Modified lipoprotein lipase activities, rates of lipogenesis, and lipolysis as factors leading to lipid depletion in C57BL mice bearing the preputial gland tumor, ESR-586[J]. Cancer Res,1981,41(8):3228-32.
    [55]Forest C, Tordjman J, Glorian M, et al. Fatty acid recycling in adipocytes:a role for glyceroneogenesis and phosphoenolpyruvate carboxykinase[J]. Biochem Soc Trans,2003,31(Pt 6):1125-9.
    [56]Arner P. Human fat cell lipolysis:biochemistry, regulation and clinical role[J]. Best Pract Res Clin Endocrinol Metab,2005,19(4):471-82.
    [57]Sethi JK, Vidal-Puig AJ. Thematic review series:adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation[J]. J Lipid Res, 2007,48(6):1253-62.
    [58]Jocken JW, Blaak EE. Catecholamine-induced lipolysis in adipose tissue and skeletal muscle in obesity [J]. Physiol Behav,2008,94(2):219-30.
    [59]Lafontan M, Moro C, Berlan M, et al. Control of lipolysis by natriuretic peptides and cyclic GMP[J]. Trends Endocrinol Metab,2008,19(4):130-7.
    [60]Zimmermann R, Strauss JG, Haemmerle G, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase[J]. Science,2004,306(5700):1383-6.
    [61]Large V, Peroni O, Letexier D, et al. Metabolism of lipids in human white adipocyte[J]. Diabetes Metab,2004,30(4):294-309.
    [62]Lafontan M, Berlan M. Fat cell adrenergic receptors and the control of white and brown fat cell function[J]. J Lipid Res,1993,34(7):1057-91.
    [63]Robidoux J, Martin TL, Collins S. Beta-adrenergic receptors and regulation of energy expenditure:a family affair[J]. Annu Rev Pharmacol Toxicol, 2004,44:297-323.
    [64]Langin D, Lucas S, Lafontan M. Millennium fat-cell lipolysis reveals unsuspected novel tracks[J]. Horm Metab Res,2000,32(11-12):443-52.
    [65]Holm C. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis[J]. Biochem Soc Trans,2003,31(Pt 6):1120-4.
    [66]Sengenes C, Berlan M, De Glisezinski I, et al. Natriuretic peptides:a new lipolytic pathway in human adipocytes[J]. Faseb J,2000,14(10):1345-51.
    [67]Moro C, Klimcakova E, Lafontan M, et al. Phosphodiesterase-5A and neutral endopeptidase activities in human adipocytes do not control atrial natriuretic peptide-mediated lipolysis[J]. Br J Pharmacol,2007,152(7):1102-10.
    [68]Navegantes LC, Sjostrand M, Gudbjornsdottir S, et al. Regulation and counterregulation of lipolysis in vivo:different roles of sympathetic activation and insulin[J]. J Clin Endocrinol Metab,2003,88(11):5515-20.
    [69]Drott C, Svaninger G, Lundholm K. Increased urinary excretion of cortisol and catecholami-NES in malnourished cancer patients[J]. Ann Surg,1988,208(5):645-50.
    [70]Klein S, Wolfe RR. Whole-body lipolysis and triglyceride-fatty acid cycling in cachectic patients with esophageal cancer[J]. J Clin Invest,1990,86(5):1403-8.
    [71]Marcinkiewicz A, Gauthier D, Garcia A, et al. The phosphorylation of serine 492 of perilipin a directs lipid droplet fragmentation and dispersion[J]. J Biol Chem, 2006,281(17):11901-9.
    [72]Brasaemle DL, Levin DM, Adler-Wailes DC, et al. The lipolytic stimulation of 3T3-L1 adipocytes promotes the translocation of hormone-sensitive lipase to the surfaces of lipid storage droplets[J]. Biochim Biophys Acta,2000,1483(2):251-62.
    [73]Haemmerle G, Lass A, Zimmermann R, et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase[J]. Science, 2006,312(5774):734-7.
    [74]Arner P, Langin D. The role of neutral lipases in human adipose tissue lipolysis[J]. Curr Opin Lipidol,2007,18(3):246-50.
    [75]Ryden M, Jocken J, van Harmelen V, et al. Comparative studies of the role of hormone-sensitive lipase and adipose triglyceride lipase in human fat cell lipolysis[J]. Am J Physiol Endocrinol Metab,2007,292(6):E1847-55.
    [76]Lass A, Zimmermann R, Haemmerle G, et al. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome[J]. Cell Metab,2006,3(5):309-19.
    [77]Kalra PR, Tigas S. Regulation of lipolysis:natriuretic peptides and the development of cachexia[J]. Int J Cardiol,2002,85(1):125-32.
    [78]Hyltander A, Daneryd P, Sandstrom R, et al. Beta-adrenoceptor activity and resting energy metabolism in weight losing cancer patients [J]. Eur J Cancer, 2000,36(3):330-4.
    [79]Tavernier G, Barbe P, Galitzky J, et al. Expression of beta3-adrenoceptors with low lipolytic action in human subcutaneous white adipocytes [J]. J Lipid Res, 1996,37(1):87-97.
    [80]Barbe P, Millet L, Galitzky J, et al. In situ assessment of the role of the beta 1-beta 2-and beta 3-adrenoceptors in the control of lipolysis and nutritive blood flow in human subcutaneous adipose tissue[J]. Br J Pharmacol,1996,117(5):907-13.
    [81]Collins S, Surwit RS. The beta-adrenergic receptors and the control of adipose tissue metabolism and thermogenesis[J]. Recent Prog Horm Res,2001,56:309-28.
    [82]Arch JR. beta(3)-Adrenoceptor agonists:potential, pitfalls and progress[J]. Eur J Pharmacol,2002,440(2-3):99-107.
    [83]Fonseca-Alaniz MH, Takada J, Alonso-Vale MI, et al. Adipose tissue as an endocrine organ:from theory to practice[J]. J Pediatr (Rio J),2007,83(5 Suppl):S192-203.
    [84]Wozniak SE, Gee LL, Wachtel MS, et al. Adipose tissue:the new endocrine organ? A review article[J]. Dig Dis Sci,2009,54(9):1847-56.
    [85]Fruhbeck G, Gomez-Ambrosi J, Muruzabal FJ, et al. The adipocyte:a model for integration of endocrine and metabolic signaling in energy metabolism regulation[J]. Am J Physiol Endocrinol Metab,2001,280(6):E827-47.
    [86]Rajala MW, Scherer PE. Minireview:The adipocyte--at the crossroads of energy homeostasis, inflammation, and atherosclerosis[J]. Endocrinology, 2003,144(9):3765-73.
    [87]Trayhurn P, Bing C. Appetite and energy balance signals from adipocytes[J]. Philos Trans R Soc Lond B Biol Sci,2006,361(1471):1237-49.
    [88]Kerem M, Ferahkose Z, Yilmaz UT, et al. Adipokines and ghrelin in gastric cancer cachexia[J]. World J Gastroenterol,2008,14(23):3633-41.
    [89]Duncan RE, Sarkadi-Nagy E, Jaworski K, et al. Identification and functional characterization of adipose-specific phospholipase A2 (AdPLA)[J]. J Biol Chem, 2008,283(37):25428-36.
    [90]Jaworski K, Ahmadian M, Duncan RE, et al. AdPLA ablation increases lipolysis and prevents obesity induced by high-fat feeding or leptin deficiency [J]. Nat Med, 2009,15(2):159-68.
    [91]Hirai K, Hussey HJ, Barber MD, et al. Biological evaluation of a lipid-mobilizing factor isolated from the urine of cancer patients[J]. Cancer Res, 1998,58(11):2359-65.
    [92]Cifuentes M, Rojas CV. Antilipolytic effect of calcium-sensing receptor in human adipocytes[J]. Mol Cell Biochem,2008,319(1-2):17-21.
    [93]Tisdale MJ. Zinc-alpha2-glycoprotein in cachexia and obesity[J]. Curr Opin Support Palliat Care,2009,3(4):288-93.
    [94]Bing C, Bao Y, Jenkins J, et al. Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia[J]. Proc Natl Acad Sci U S A,2004,101(8):2500-5.
    [95]Bao Y, Bing C, Hunter L, et al. Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed and secreted by human (SGBS) adipocytes [J]. FEBS Lett, 2005,579(1):41-7.
    [96]Sanchez LM, Chirino AJ, Bjorkman P. Crystal structure of human ZAG, a fat-depleting factor related to MHC molecules[J]. Science,1999,283(5409):1914-9.
    [97]Russell ST, Zimmerman TP, Domin BA, et al. Induction of lipolysis in vitro and loss of body fat in vivo by zinc-alpha2-glycoprotein[J]. Biochim Biophys Acta, 2004,1636(1):59-68.
    [98]Todorov PT, McDevitt TM, Meyer DJ, et al. Purification and characterization of a tumor lipid-mobilizing factor[J]. Cancer Res,1998,58(11):2353-8.
    [99]Russell ST, Tisdale MJ. Effect of eicosapentaenoic acid (EPA) on expression of a lipid mobilizing factor in adipose tissue in cancer cachexia[J]. Prostaglandins Leukot Essent Fatty Acids,2005,72(6):409-14.
    [100]Gohda T, Makita Y, Shike T, et al. Identification of epistatic interaction involved in obesity using the KK/Ta mouse as a Type 2 diabetes model:is Zn-alpha2 glycoprotein-1 a candidate gene for obesity?[J]. Diabetes,2003,52(8):2175-81.
    [101]Russell ST, Hirai K, Tisdale MJ. Role of beta3-adrenergic receptors in the action of a tumour lipid mobilizing factor[J]. Br J Cancer,2002,86(3):424-8.
    [102]McDermott LC, Freel JA, West AP, et al. Zn-alpha2-glycoprotein, an MHC class I-related glycoprotein regulator of adipose tissues:modification or abrogation of ligand binding by site-directed mutagenesis[J]. Biochemistry,2006,45(7):2035-41.
    [103]Argiles JM, Busquets S, Toledo M, et al. The role of cytokines in cancer cachexia[J]. Curr Opin Support Palliat Care,2009,3(4):263-8.
    [104]Dianliang Z. Probing cancer cachexia-anorexia:recent results with knockout, transgene and polymorphisms[J]. Curr Opin Clin Nutr Metab Care, 2009,12(3):227-31.
    [105]Deans DA, Tan BH, Ross JA, et al. Cancer cachexia is associated with the IL10-1082 gene promoter polymorphism in patients with gastroesophageal malignancy [J]. Am J Clin Nutr,2009,89(4):1164-72.
    [106]Bo S, Dianliang Z, Hongmei Z, et al. Association of interleukin-8 gene polymorphism with cachexia from patients with gastric cancer [J]. J Interferon Cytokine Res,2010,30(l):9-14.
    [107]Ryden M, Arvidsson E, Blomqvist L, et al. Targets for TNF-alpha-induced lipolysis in human adipocytes[J]. Biochem Biophys Res Commun, 2004,318(l):168-75.
    [108]Arner P. Insulin resistance in type 2 diabetes-role of the adipokines[J]. Curr Mol Med,2005,5(3):333-9.
    [109]Tansey JT, Sztalryd C, Hlavin EM, et al. The central role of perilipin a in lipid metabolism and adipocyte lipolysis[J]. IUBMB Life,2004,56(7):379-85.
    [110]Busquets S, Sanchis D, Alvarez B, et al. In the rat, tumor necrosis factor alpha administration results in an increase in both UCP2 and UCP3 mRNAs in skeletal muscle:a possible mechanism for cytokine-induced thermogenesis?[J]. FEBS Lett, 1998,440(3):348-50.
    [111]Karayiannakis AJ, Syrigos KN, Polychronidis A, et al. Serum levels of tumor necrosis factor-alpha and nutritional status in pancreatic cancer patients[J]. Anticancer Res,2001,21(2B):1355-8.
    [112]Mader S, Lee H, Pause A, et al. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins[J]. Mol Cell Biol,1995,15(9):4990-7.
    [113]Trujillo ME, Sullivan S, Harten I, et al. Interleukin-6 regulates human adipose tissue lipid metabolism and leptin production in vitro[J]. J Clin Endocrinol Metab, 2004,89(11):5577-82.
    [114]Zaki MH, Nemeth JA, Trikha M. CNTO 328, a monoclonal antibody to IL-6, inhibits human tumor-induced cachexia in nude mice[J]. Int J Cancer, 2004,111(4):592-5.
    [115]Krzystek-Korpacka M, Matusiewicz M, Diakowska D, et al. Impact of weight loss on circulating IL-1, IL-6, IL-8, TNF-alpha, VEGF-A, VEGF-C and midkine in gastroesophageal cancer patients[J]. Clin Biochem,2007,40(18):1353-60.
    [116]Iwase S, Murakami T, Saito Y, et al. Steep elevation of blood interleukin-6 (IL-6) associated only with late stages of cachexia in cancer patients[J]. Eur Cytokine Netw, 2004,15(4):312-6.
    [117]Kuroda K, Nakashima J, Kanao K, et al. Interleukin 6 is associated with cachexia in patients with prostate cancer[J]. Urology,2007,69(1):113-7.
    [118]Stephens NA, Gallagher IJ, Rooyackers O, et al. Using transcriptomics to identify and validate novel biomarkers of human skeletal muscle cancer cachexia[J]. Genome Med,2010,2(1):1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700