Visfatin基因过表达对大鼠胰岛素敏感性,FGF-21及脂代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:构建大鼠内脏脂肪素(visfatin)基因pcDNA3.1(+)真核表达载体并转入大鼠,观察visfatin基因过表达对正常饮食及高脂饮食大鼠胰岛素敏感性,FGF-21和糖脂代谢的影响。
     方法:1、构建pcDNA3.1(+)– visfatin真核表达质粒。2、将pcDNA3.1(+)-visfatin质粒转入正常饮食(NT组)及高脂饮食(HT组)大鼠,并以正常饮食pcDNA3.1(+)空质粒(NC组)为对照,采用正糖-高胰岛素钳夹技术评价大鼠胰岛素敏感性改变,同时测定血糖、血脂、血浆visfatin和FGF-21的变化。3、用dot-blot方法测定肝脏、脂肪、肌肉组织IRS1的磷酸化水平。4、用RT-RCR和Westernblot方法测定肝脏和脂肪组织脂代谢相关基因及蛋白水平的变化。
     结果:1、成功构建了重组质粒pcDNA3.1(+)- visfatin。2、质粒转染后3天,NT组和HT组大鼠血浆visfatin水平均明显升高(P<0.01),NT组血浆基础胰岛素水平明显降低(P<0.05),葡萄糖输注率较转染前显著升高(P<0.01)。肝脏、脂肪、肌肉组织IRS1磷酸化的水平明显增高(P<0.05),NT组和HT组大鼠肝脏PPARγmRNA的表达均明显升高(分别为P<0.05和P<0.01),NT组大鼠脂肪组织PPARγmRNA亦显著升高(P<0.01),而HT组则仅有升高趋势(P>0.05);3、与质粒转染前相比,各处理组大鼠血浆总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)水平明显降低(P<0.05)。SREBP2 mRNA表达均明显高于对照组(P<0.05), NT组HMG CoA还原酶mRNA水平明显高于NC组和HT组(P<0.05),NC组与HT组无明显差异;4、NT组大鼠脂肪组织ATGL mRNA及蛋白水平均明显高于NC组和HT组(P<0.05),且HT组高于NC组,但无统计学意义。5、与质粒转染前比较,NT组大鼠血浆FGF-21水平明显下降(P<0.05),而HT组大鼠血浆FGF-21水平明显升高(P<0.05);肝脏FGF-21 mRNA及蛋白水平变化与血浆FGF-21变化趋势一致。
     结论:1、成功构建了重组质粒pcDNA3.1(+)-visfatin。2、重组质粒使血浆visfatin水平明显升高,增强了大鼠胰岛素敏感性,血浆总胆固醇水平明显下降,并提高了脂肪组织ATGL mRNA及蛋白水平,同时对FGF-21的表达产生极大的影响。
Objective: To construct the eukaryotic expression vector of visfatin (pcDNA3.1 (+)-visfatin) and transfect it into normal and high fat-diet rats; To investigate the effect of visfatin gene overexpression on insulin sensitivity, glucose and lipid metabolism and cytokine in these rats.
     Methods: 1. The recombinant vector (pcDNA3.1 (+)-visfatin) was constructed and transfected into normal and high-fat diet rats. 2. The euglycemic-hyperinsulinemic clamp experiments were performed for evaluation the change of insulin sensitivity. The effect of visfatin was evaluated on plasma glucose, lipid level, and FGF-21. 3. The phosphorylation state of IRS1 in liver, skeletal muscle and adipose tissues were determined by dot-blot. 4. The expression of lipid metabolism related mRNA and protein, such as HMG CoA reductase, SREBP2, PEPCK, SCD1 in liver and ATGL, HSL in adipose tissue, was analyzed by RT-PCR and western blot.
     Results: 1. Recombinant pcDNA3.1 (+)-visfatin was successfully constructed. 2. Plasma visfatin levels and glucose infusion rates(GIR) were significantly increased of NT and HT rats after 3 days of pcDNA3.1 (+)-visfatin transfection(P<0.01). Plasma fasting insulin were decreased in NT rats(P<0.05). The pIRS1 levels in hepatic, adipose and muscle tissue were significantly increased of NT and HT rats than that of NC rats(P<0.05). Hepatic PPARγmRNA levels of NT and HT rats were significantly higher than that of NC rats(P<0.05 and P<0.01). adipic PPARγmRNA levels of NT rats were significantly increased (P<0.05),and that of HT rats were higher than NC rats but no statistical difference . 3. Total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) were significantly decreased of NT and HT rats after 3 days of pcDNA3.1 (+)-visfatin transfection(P<0.05). Hepatic SREBP2 mRNA levels of NT and HT rats were significantly higher than that of NC rats(P<0.05). HMG CoA reductase of NT rats were significantly higher than that of NC and HT rats(P<0.05), and there is no statistical difference between NC and HT rats. 4. Adipic ATGL mRNA levels of NT rats were significantly higher than that of NC and HT rats(P<0.05), and that of HT rats were higher than NC rats but no statistical difference . 5.After 3 days of pcDNA3.1 (+)-visfatin transfection plasma FGF-21 were decreased in NT rats,however, FGF-21 were increased in HT rats(P<0.05). The diversity of hepatic FGF-21 mRNA and protein levels was similar to that of plasma FGF-21.
     Conclusion: 1.The eukaryotic expression vector of pcDNA3.1 (+)-visfatin was successfully constructed. 2. The transfection of pcDNA3.1 (+)-visfatin increase plasma visfatin levels, improve insulin sensitivity and decrease plasma total cholesterol. Visfatin overexpression is effective in increasing the expression of adipic ATGL mRNA and protein levels, and influencing expression of FGF-21.
引文
[1] Trayhum P, Beattie JH. Physiological role of adipose tissue:white adipose tissue as all endocrine and secretory organ [J]. Proc Nutr Soc, 2001, 60: 329-339.
    [2] Koerner A, Kratzsch J, and Kiess W. Adipocytokines: leptin-the classical, resistin-the controversial, adiponectin-the promising, and more to come [J]. Best Pract Res Clin Endocrinol Metab. 2005 Dec; 19(4):525-46.
    [3] Garg A. Adipose tissue dysfunction in obesity and lipodystrophy [J]. Clin Cornerstone. 2006; 8 Suppl 4:S7-S13.
    [4] Bergman RN, Kim SP, Hsu IR, et al. Abdominal obesity: role in the pathophysiology of metabolic disease and cardiovascular risk [J]. Am J Med. 2007; 120(2 Suppl 1):S3-8.
    [5] Fukuhara A, Matsuda M, Nishizawa M, et a1. Visfatin:A protein secreted by visceral fat that mimics the
    [14] 萨姆布鲁克,等著. 黄培堂,等译. 分子克隆实验指南 [M] 第 3 版,北京:科学出版社,2002:68-99;884;960-961:1271-1313。
    [15] 姜泊, 张亚力, 周元 主编. 分子生物学常用实验方法 [M] 北京:人民军医出版社,1997: 152-162。
    [16] 卢圣栋。现代分子生物学技术. [M] 北京:北京协和医科大学出版社,1997: 132-155。
    [17] Segawa K, Fukuhara A, Hosogai N, et al. Visfatin in adipocytes is upregulated by hypoxia through HIF1α-dependent mechanism. [J] Biochem. Biophys. Res. Commun, 2006, 349: 875-882.
    [18] 杨刚毅,张凌,李伶,等. 吡格列酮对脂质诱导胰岛素抵抗大鼠的影响及其机制研究. [J] 中华内分泌代谢杂志, 2006, 22:273-276.
    [19] 余鹰 周鸣 等. pcDNA3.1 表达载体转染对细胞生长的影响. [J] 生物技术, 2001, 11(1): 1-3
    [20] 杨刚毅,Peter Chung, Guenther Boden. 清醒大鼠胰岛素钳夹术及其糖代谢变化[J]。基础医学与临床, 2003, 23: 341-344.
    [21] Kraegen EW, James DE, Benner SP, et al. In vivo insulin sensitivity in the rat determined by euglycemic clamp.[J] Am J Physical, 1983, 245: E1
    [22] Varma V,Yao-Borengasser A, Rasouli N, et al. Human visfatin expression: relationship to insulin sensitivity, intramyocellular lipids, and inflammation.J Clin Endocrinol Metab. 2007 Feb;92(2):666-72.
    [23] 杨媚,杨刚毅,李伶,等。不同糖耐量个体血浆内脂素水平的变化。中华内分泌代谢杂志。2006,22:245-247
    [24] Esposito DL, Li Y, Cama A. et al.Tyr(612) and Tyr(632) in human insulin receptor substrate-1 are important for full activation of insulin-stimulated phosphatidylinositol3-kinase activity and translocation of GLUT4 in adipose cells. [J]. Endocrinology. 2001 Jul;142(7):2833-40.
    [25] Carpenter CL, Duckworth BC, Auger KR. et a1. Purification and characterization of phosphoinositide 3-kinase from rat liver. [J]. J Biol Chem. 1990 Nov 15;265(32):19704-11
    [26] Sharma AM, Staels B. Peroxisome proliferator-activated receptor gamma and adipose tissue--understanding obesity-related changes in regulation of lipid andglucose metabolism.J Clin Endocrinol Meta.2007 Feb;92(2):386-95.
    [27] Kralisch S, Klein J, Lossner U, et a1. Hormonal regulation of the novel adipoeytokine visfatin in 3T3 一 L1 adipocytes. J Endocrinol, 2005, 185: R1-8.
    [28] Jacqueline M,Antonio J Vidal-Puig. An update on visfatin/pre-B cell colony-enhancing factor,an ubiquitously expressed, illusive cytokine that is regulated in obesity. Curr Opin Lipidol. 2006 Apr;17(2):128-31.
    [29] Dogru T, Sonmez A, Tasci I et al . Plasma visfatin levels in patients with newly diagnosed and untreated type 2 diabetes mellitus and impaired glucose tolerance. Diabetes Res Clin Pract. 2007, 76:24–29
    [30] Ping Wang ,Marleen M. J. van Greevenbroek, Freek G. Bouwman et al. The circulating PBEF/NAMPT/visfatin level is associated with a beneficial blood lipid profile.2007,454:971-976
    [31] Brown MS,Goldstein JL.A proteolytic pathway that controls the cholesterol content of memb ranes,cells,and blood l J].Proc Natl Acad Sci U S A,1999,96(20):l104l 一 11048
    [32] Adams CM, Brown MS,Go ldstein JL, et a1 .Cholesterol and 25 一 hydr0xych 0lester0l inhibit activation of SREBPs by different mechanisms,both involving SCAP and Insigs[J].Biol Chem,2004,279(5):52772.
    [33] Radhakrishnan A,Sun LP,Kwon HJ,et a1.Direct binding of cholesterol to the purified memb rane region of SCAP : mechanism for a sterol—sensing domain[J].Mol Cel,2004,15:259—268.
    [34] Gutiérrez-Juárez R, Pocai A, Mulas C, et a1.Critical role of stearoyl-CoA desaturase-1 (SCD1) in the onset of diet-induced hepatic insulin resistance. J Clin Invest. 2006 Jun;116(6):1686-95.
    [35] Flowers JB, Rabaglia ME, Schueler KL, et a1.Loss of stearoyl-CoA desaturase-1 improves insulin sensitivity in lean mice but worsens diabetes in leptin-deficient obese mice.Diabetes. 2007 May;56(5):1228-39. Epub 2007 Mar 16.
    [36] Watt MJ, van Denderen BJ, Castelli LA, et a1.Adipose Triglyceride Lipase Regulation of Skeletal Muscle Lipid Metabolism and Insulin Responsiveness.Mol Endocrinol. 2008 Jan 17;
    [37] Schweiger M, Schreiber R, Haemmerle G, et a1.Adipose triglyceride lipase andhormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism.J Biol Chem. 2006 Dec 29;281(52):40236-41. Epub 2006 Oct 30.
    [38] Kim JY, Tillison K, Lee JH, et a1.The adipose tissue triglyceride lipase ATGL/PNPLA2 is downregulated by insulin and TNF-alpha in 3T3-L1 adipocytes and is a target for transactivation by PPARgamma.Am J Physiol Endocrinol Metab. 2006 Jul;291(1):E115-27. Epub 2006 May 16.
    [39] Yeaman SJ. Hormone-sensitive lipase--new roles for an old enzyme.Biochem J. 2004 Apr 1;379(Pt 1):11-22.
    [40] Kharitonenkov A, Shiyanova TL, Koester A, et al. FGF-21 as a novel metabolic regulator. J Clin Invest, 2005, 115: 1627-1635.
    1. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG: Central nervous system control of food intake. Nature404 :661 –671,2000.
    2.Barish, G. D., Narkar, V. A., Evans, R. M. (2006). PPARdelta: a dagger in the heart of the metabolic syndrome.. J. Clin. Invest. 116: 590-597.
    3.Friedman, JM. Modern science versus the stigma of obesity. Nat Med. 2004; 10: 563-569.
    4. A. Bartolomucci, G. La Corte, R. Possenti, V. Locatelli, etc. TLQP-21, a VGF-derived peptide, increases energy expenditure and prevents the early phase of diet induced obesity, Proc. Natl. Acad. Sci. USA 103 (2006) 14584–14589.
    5. Salton SR, Ferri GL, Hahm S, Snyder SE, Wilson AJ, Possenti R, Levi A (2000) VGF: a novel role for this neuronal and neuroendocrine polypeptide in the regulation of energy balance. Front Neuroendocrinol 21: 199-219.
    6. Hahm S, Fekete C, Mizuno TM, Windsor J, Yan H, Boozer CN, Lee C, Elmquist JK, Lechan RM, Mobbs CV, and Salton SR. VGF is required for obesity induced by diet, gold thioglucose treatment, and agouti and is differentially regulated in pro-opiomelanocortin- and neuropeptide Y-containing arcuate neurons in response to fasting. J Neurosci 22: 6929–6938, 2002.
    7. Fliers E, Kreier F, Voshol PJ, Havekes LM, Sauerwein HP, Kalsbeek A, Buijs RM, Romijn JA. White adipose tissue: getting nervous. J.Neuroendocrinol. 2003, 15:1005-1010.
    8. Bowers, RR, Festuccia, WT, Song, CK, Shi, H, Migliorini, RH & Bartness, TJ. (2004) Sympathetic innervation of white adipose tissue and its regulation of fat cell number .Am J Physiol 286, R1167–R1175.
    9. Larsen, TM, Toubro, S, van Baak, MA, Gottesdiener, KM, Larson, P, Saris, WHM & Astrup, A. (2002) Effect of a 28-d treatment with L-796568, a novel ?3-adrenergic receptor agonist, on energy expenditure and body composition in obese men. Am J Clin Nutr 76, 780–788.
    10. Bachman, E.S., Dhillon, H., Zhang, C.Y., Cinti, S., Bianco, A.C., Kobilka, B.K. & Lowell, B.B. (2002) BetaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297, 843-845.
    11. Bowers, RR, Festuccia, WT, Song, CK, Shi, H, Migliorini, RH & Bartness, TJ. (2004) Sympathetic innervation of white adipose tissue and its regulation of fat cell number .Am J Physiol 286, R1167–R1175.
    12. Bartolomucci A, Rigamonti AE, Bulgarelli I, Torsello A, Locatelli V, Pavone F, Levi A, Possenti R, Muller EE, Moles A. Chronic intracerebroventricular TLQP-21 delivery does not modulate the GH/IGF-1-axis and muscle strength in mice.Growth Horm IGF Res. 2007 Apr 2.
    13. Jethwa PH, Warner A, Nilaweera KN, Brameld JM, Keyte JW, Carter WG, Bolton N, Bruggraber M, Morgan PJ, Barrett P, Ebling FJ. VGF-derived peptide, TLQP-21, regulates food intake and body weight in Siberian hamsters. Endocrinology. 2007 Apr 26;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700