过氧化物酶体增殖物激活受体γ在动脉粥样硬化中的分子作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     过氧化物酶体增殖物激活受体(PPARs)是核受体超家族成员,有PPARα、PPARγ和PPARβ/δ3种亚型,这三种亚型由不同的基因编码,但它们的蛋白质结构十分相似。PPARs与配体结合后,与视黄酸类受体形成二聚体,然后与所调节基因的启动子上游的过氧化物酶体增殖物反应元件(即PPRE,是一段DNA序列,它与增殖物结合后可以调节一些基因的表达)结合而发挥转录调控作用。过氧化物酶体增殖物激活受体γ(PPARγ)是PPARs中最具脂肪组织特异性的成员,它能够调节脂质代谢、脂肪细胞分化和胰岛素敏感性。PPARγ基因分为PPARγ1、PPARγ2、PPARγ3,位于第3号染色体2带5区位点上,由6个外显子编码,三种亚型有共同的外显子,不同之处在它们的5’端,各自具有自身的启动子。虽然不同的PPARγ组织分布均很广,但它们都表达在大肠、脂肪组织中,近期研究表明,它尚在单核/巨噬细胞、泡沫细胞、心脏血管平滑肌细胞、内皮细胞、动脉粥样硬化、肿瘤病灶中表达。胰岛素增敏剂噻唑烷二酮类药物是其高效配体。
     动脉粥样硬化是一种多因素疾病,可以引起心脏、脑等重要脏器缺血甚至梗死。动脉粥样硬化斑块病变的形成包括单核/巨噬细胞、T细胞的聚集,泡沫细胞的形成、平滑肌细胞的迁移和增殖,以及细胞碎片堆积、纤维帽的形成。最近研究发现PPARγ在动脉粥样硬化损伤处和泡沫细胞中都有较高的表达,并与肥胖相关的代谢性疾病,如高脂血症、胰岛素抵抗和冠心病等发病有关。
     研究目的
     本文拟从基因水平研究PPARγ与动脉粥样硬化的关系。首先从人群的基因多态性研究入手,了解该基因C161→T基因多态性与冠状动脉粥样硬化性心脏病患者冠脉病变程度和糖脂代谢的关系;然后建立心梗的动物模型,观察PPARγ激动剂马来酸罗格列酮对心肌梗死大鼠血流动力学、梗死面积、心肌细胞凋亡率的影响,研究组织PPARγ基因表达对大鼠心肌梗死的作用;再从细胞水平给予罗格列酮干预,观察其对PPARγ与ET-1表达水平的影响,了解两个基因之间的相关性,同时观察炎症因子TNF-α与PPARγ的关系,了解PPARγ对内皮功能有无保护作用以及对炎症反应的作用;最后选择siRNA方法减少PPARγ的表达量,观察ET-1的变化,从另一方面了解二者之间的关系。
     研究方法
     1、运用聚合酶链式反应及限制酶片段长度多态性技术分析292例研究对象(包括89例正常健康人,203例冠心病患者)中PPARγC161→T基因多态性;结合放射免疫技术检测血浆胰岛素水平,HOMA方法评价胰岛素抵抗状况,冠状动脉造影检查冠状动脉病变,采用Gensini积分评估冠脉病变的程度,以及临床常规检测项目:空腹、餐后2小时血糖、血脂、身高、体重等指标,综合分析基因频率、等位基因频率分布及不同基因型与临床资料、生化指标的关系,并对该基因突变的危险性进行评价。
     2、结扎大鼠左冠状动脉主干制作心肌梗死模型,分为非罗格列酮治疗组(AMIA)和罗格列酮(5mg.kg~(-1)/天)治疗组(AMIB),以假手术(Sham)组作为对照组,手术过程中仅穿线绕过冠状动脉而不结扎。通过MP-150生理记录仪检测血流动力学变化,HE染色检测梗死面积,流式细胞术检测心肌细胞凋亡率,RT-PCR检测心肌组织PPARγ基因表达,观察罗格列酮对上述指标的影响。
     3、采用罗格列酮干预体外培养的人正常脐静脉内皮细胞以及AngⅡ诱导的脐静脉内皮细胞24小时,通过RT-PCR、适时定量PCR(quantitative real-time PCR)检测PPARγ及ET-1的mRNA表达量,采用Western blot法检测PPARγ及ET-1前体的蛋白质表达水平。同时用ELISA法检测内皮细胞TNF-α的分泌量。
     4、采用siRNA Expression Cassette方法干预体外培养的人正常脐静脉内皮,通过RT-PCR、real-time PCR及Western blot法检测PPARγ及ET-1的mRNA、蛋白质表达水平。
     结果
     1、PPARγC161-T基因多态性与冠状动脉粥样硬化性心脏病患者冠脉病变程度和糖脂代谢的关系
     (1)正常组T等位基因频率为0.213,C等位基因频率为0.787;冠心病组T等位基因频率为0.192,C等位基因频率为0.808;两组间基因型频率及C、T等位基因频率分布无显著性差异(P>0.05)。存在冠状动脉病变的冠心病组以CC基因型为主,与T等位基因携带者(CT+TT)相比较差异有显著性(P<0.05),且T等位基因携带者(OR:0.56,95%CI:0.24-0.63)冠心病危险性低于CC基因型(OR:1.92,95%CI:1.09-2.54)。
     (2)142例做过冠脉造影的冠心病患者的冠脉病变程度经Gensini积分评估后,发现CC型评分明显高于CT及TT型(P<0.05)。
     (3)冠心病患者中CC基因型的apoB明显高于T等位基因携带者(CT+TT)(1.02±0.22与0.94±0.23,P<0.05),胰岛素抵抗指数差异无显著性(P>0.05)。
     2、PPARγ激动剂罗格列酮对心梗大鼠心脏血流动力学、组织变化、心肌细胞调亡及PPARγ基因表达的影响
     (1)大鼠心梗之后心功能下降,AMIA组与假手术组比较MAP、LVSP和±dp/dt均明显减少,分别为105.60±10.71与124.17±7.18,130.63±7.24与150.34±6.82,3805.30±244.86与5940.83±400.77,2749.00±131.45与4634.75±333.96,LVEDP增高((15.5±2.35与4.52±0.57,P<0.05)。
     (2)罗格列酮治疗14天后,与AMIA组比较LVEDP下降(10.14±2.28与15.5±2.35),心梗面积减少33%,病理组织学改变较AMIA组明显减轻。
     (3)大鼠心肌梗死后心肌细胞凋亡率较假手术组升高21.15倍,经罗格列酮治疗14日后,心肌细胞凋亡率较AMIA组明显降低(16.04±2.26与26.44±3.51,p<0.01)。
     (4)经罗格列酮治疗后,心肌梗死大鼠心肌组织PPARγ基因表达量较AMIA及假手术组明显增加(2.352±0.159,1.574±0.196与0.491±0.078,p<0.001)。
     3、罗格列酮干预体外培养的人正常脐静脉内皮细胞以及AngⅡ诱导的脐静脉内皮细胞后对PPARγ、ET-1基因表达及TNF-α分泌的影响。
     (1)罗格列酮干预正常细胞后使PPARγmRNA和蛋白质水平表达量上调,ET-1mRNA及ET-1前体蛋白表达量减少(p<0.001),mRNA及蛋白表达量的变化之间均有一定的相关性(r=0.914,p=0.011;r=0.999,p=0.028)。
     (2)AngⅡ刺激脐静脉内皮细胞后PPARγmRNA及蛋白表达量上调,ET-1mRNA及ET-1前体蛋白表达量也上调;加入罗格列酮24小时后PPARγ表达量明显上调,而ET-1表达量明显下调(p<0.05)。
     (3)AngⅡ刺激内皮细胞后TNF-α分泌量呈浓度依赖性增高(p<0.05);加入罗格列酮后TNF-α分泌量明显减少(p<0.05)。
     4、针对PPARγ基因设计的siRNA Expression Cassette 1(1326)使PPARγmRNA及蛋白表达量下调,ET-1mRNA表达量增多,二者之间mRNA表达量的灰度比值变化有相关性(r=0.995,p=0.042),siRNA Expression Cassette 2、3、4片段未能发挥抑制效应。
     结论
     1、在中国汉族冠心病及正常人群中PPARγC161→T基因型频率分布及等位基因频率分布无显著性差异;做过冠脉造影的冠心病患者中,CC基因型患者Gensini积分明显高于CT+TT型,提示C等位基因可能与冠脉疾病严重程度相关联;PPARγC161→T与冠心病有重要的相关性,T等位基因携带者可以减少冠心病的危险性。
     2、罗格列酮能有效降低大鼠心肌梗死后心肌细胞凋亡,减少心肌梗死面积,这可能与其增加梗死后心肌组织中PPARγ基因表达量,发挥了PPARγ对心肌细胞及局部血管的保护作用有关。
     3、罗格列酮可以通过增加PPARγ的表达量在转录水平和翻译水平抑制ET-1及其前体在人脐静脉内皮细胞的基因表达,还可以抑制人脐静脉内皮细胞炎症因子TNF-α的分泌。
     4、干扰RNA片段siRNA Expression Cassette 1(1326)对PPARγ的基因表达有抑制作用,可以在转录水平抑制PPARγ在人脐静脉内皮细胞的基因表达,同时使ET-1基因表达上调。
Objectives
    The nuclear receptor superfamily of PPARs consists of isoform α, γ, and β/δ. Although these different members are encoded by separate genes, they have a similar protein structures. PPARs regulate gene expression by binding as heterodimers with retinoid X receptors (RXRs) to specific PPAR response elements (PPRE) in the promoter regions of specific target genes. PPARγ is found predominantly in adipose tissue, where it plays a crucial role in adipocyte differentiation, lipid metabolism and insuline resistance. The PPARγ gene, located at 3p25-24, gives rise to three distinct mRNAs, i.e. PPARγ1, PPARγ2 and PPARγ3. All three PPARγ subtypes contain the common exons 1-6, each differs in their 5' ends and each is under control of their own promoter. PPARγ is mainly expressed in the intestine and in the adipose tissue. Furthermore, PPARγ is expressed in vascular cells including endothelial cells, smooth muscle cells, monocyte/macrophage cells and foam cells. It can be detected out in atherosclerosis and tumor tissue. The antidiabetic glitazones are high-affinity agonists of PPARγ.
    Atherosclerosis is a multifactorial disease which may result in ischemia of the heart and brain, and infarction. The formation of atherosclerotic lesions involves attraction of monocytes/macrophages and T lymphocytes. Intermediate and advanced lesions typically consist of lipid-laden monocytes/ macrophages (foam cells), migrating and proliferating smooth muscle cells, and the accumulation of cell debris and/or the presence of fibrous caps. Recent studies showed that PPARγ expressed in atherosclerotic lesions and macrophage foam cells, and was associated with obesity-related metabolic diseases such as hyperlipidemia, insulin resistance, and coronary artery disease (CAD).
    Our objective in this study was to explore the relationship between PPARγ and ET-1 in gene level. At first, we investigated the PPARγC161→T substitution in our well-characterized hospital- based patients of coronary artery disease, in order to observe the relation between PPARγ gene C161→T polymorphisms and the severity of coronary lesion, and the relationship of the polymorphisms with lipid and glucose metabolism in Han Race Chinese. Secondly we established a model of myocardial infarction in rat to observe the effect of PPARγ agonist Rosiglitazone maleate on the ventricular haemodynamics, the histological change, the apoptosis level of cardiomyocytes and PPARγ gene expression after myocardial infarction in rats. Thirdly, we studied the effects of Rosiglitazone on the expression of PPARγ and endothelin-1 (ET-1). We wanted to understand the relationship between the two genes, observe the relation between PPARγ and inflammation elements, such as Tumor Necrosis Factor-α (TNF-α), and understand the effects of PPARγ in protecting the function of endothelial cell and reducing the inflammation response. At last, we observed the expression of ET-1 under the condition that the expression of PPARγ was reduced with the siRNA technique, and by this way we reconfirmed the correlation of the two genes from another way.
    Methods
    1、 292 subjects were investigated in this study, including 89 healthy persons, 203 cases diagnosed as CAD. PPARγC161→T gene polymorphism was determined by polymerase chain reaction and restriction fragment length polymorphisms, the blood glucose and the blood lipoprotein were detected, and body height and body weight were measured. The coronary artery lesions were detected by coronary angiography and analysed quantitatively by Gensini score method. The risk factors of CAD were estimated, and the frequencies of PPARγC161→T genotypes and the "T" allele in the CAD and healthy groups were observed.
    2、Acute myocardial infarction (AMI) model of rat was established by ligation of the left coronary artery. AMI rats were divided into two groups: AMIA group (AMI rats without any treatment) and AMIB group (AMI rats were treated with PPARγ agonist thiazolidinedione - Rosiglitazone 5mg.kg~(-1)/day). The rats in sham group underwent the same procedures but without tying the LAD artery. The infarct size and the changes of the cardiac structure after infarction were assessed by the method of hematoxylin-eosin stain. The cardiac function was evaluated by the physiological signal recording system. The apoptosis level was examined with the method of flow cytometry. The expression of PPARγ was examined by RT-PCR.
    3、 At 24 hour after administrated of Rosiglitazone, the mRNA of PPARγ and ET-1 were determined by RT-PCR and quantitative real-time PCR, the protein of PPARγ and ET-1 precursor were detected by western-blot in the normal and the Angiotensin II (AngII) induced human umbilic vein endothelial cell ( HUVEC) in vitro. The secretion of TNF-α in HUVEC was measured with ELISA.
    4、The HUVEC was intervened with siRNA Expression Cassette segments in vitro, 24 hours later, the mRNA of PPARγ and ET-1 were detected with RT-PCR, quantitative real-time PCR, the protein of PPARγ was measured with western-blot.
    Results
    1、Relationship of PPARγC161-T gene polymorphism and coronary artery disease
    (1) In normal healthy group, "T" allele frequency was 0.213, "C" allele frequency was 0.787, and in CAD group "T" allele frequency was 0.192, "C" allele frequency was 0.808. There was no significant difference between the two groups.
    (2) There was a significant association between PPARγC161→T genotypes and the number of significantly disease vessels. "T" allele carriers were far more frequent in patients without than those with significantly diseased vessels (P<0.05), and the CAD risk in the "T" allele carries (OR: 0.56, 95%CI: 0.24-0.63) was much lower than that in the CC homozygote (OR: 1.92, 95%CI:1.09 -2.54). The results showed that Gensini score in patients with CC genotype were markedly higher than that in patients with 'T'allele (p<0.05).
    (3) apoB was obviously higher in patients with CC homozygote than those with "T" allele carriers (1.02±0.22 与 0.94±0.23,P<0.05), and there was no different in HOMA IR.
    2、 The influences of Rosiglitazone on the ventricular haemodynamics, the histological change, the apoptosis level of cardiomyocytes, and PPARγ gene expression in Rats'myocardial infarction models
    (1) The cardiac function declined after AMI. AMIA group compared with the sham group, MAP, LVPSP and ±dp/dt_(max) declined (105.60±10.71 VS 124.17±7.18, 130.63±7.24 VS 150.34±6.82, 3805.30±244.86 VS 5940.83±400.77, -2749.00±131.45 VS ~4634.75± 333.96,p<0.05, respectively), but LVEDP rised significantly (15.5±2.35 VS 4.52±0.57,P<0.05).
    (2) After 14 days treatmented by Rosiglitazone, the LVEDP declined (10.14±2.28 VS 15.5±2.35, p<0.05), and infarct size decreased 33% compared with AMIA group. The change of the cardiac structure after infarction in AMIB group was better than in AMIA group.
    (3) AMIA rats' apoptosis level was as high as 21.15-fold of the sham group. Compared with AMIA group, after 14 days treatment by Rosiglitazone, the apoptosis level was decreased significantly (16.04±2.26 VS 26.44±3.51,p<0.05).
    (4) Compared with AMIA group and the sham group, expression of PPARγ was increased obviously in AMIB group (2.352±0.159 VS 1.574±0.196 VS 0.491±0.078, p<0.001).
    3、 The effect of Rosiglitazone on gene expression of the nomal and Ang II - induced human umbilia vein endothelial cell in vitro
    (1) The mRNA and protein expression levels of PPARγ were increased significantly by Rosiglitazone, on the contrary, the level of ET-1 mRNA and its precursor pretein expression reduced (p<0.001). There was relationship between two genes expression ( r=o.914, p=0.011; r=0.999, p=0.028).
    (2) The mRNA expression of PPARγ and ET-1, and the protein expression of PPAR-γ and ET-1 precursor were markedly increased in HUVEC stimulated by Ang II as compared with that in the control group. 24 hours after administration of Rosiglitazone, the mRNA expression and protein expression of PPARγ rised, at the same time the expression of ET-1 reduced (P<0.05).
    (3) The secretion of TNF-α increased by Ang II in a dose- dependent manner; and restrained by Rosiglitazone (p<0.05).
    4、siRNA Expression Cassette 1(1326) down-regulated the mRNA and protein espression of PPARγ and up-regulated ET-1 gene mRNA expression at the same time. A link was found between two genes(r=0.995, p=0.042).
    Conclusion
    1、 In the Han race Chinese, the distributing trend of PPARγC161→T gene polymorphism in the healthy group is as the same as that in the patients with CAD group; The Gensini score of the coronary artery angiography in persons with CC genotype are significantly higher than that in the persons with "T" allele. It means that there is a lower risk of CAD in the patients with "T" allele.
    2、Rosiglitazone can decrease infarct size and apoptosis level of AMI in rats. The effect of Rosiglitazone may be associated with the increase of PPARγ gene expression, which can protect the function of cardiac muscle cell and vascularity.
    3、 The expression of PPARγ in the mRNA and protein level can be enhanced, the ET-1 gene expression in the mRNA level and ET-1 precursor expression in the protein level, and TNF-α secreted from the vascular wall can be suppressed by Rosiglitazone through the way of increased PPARγ gene expression in HUVEC.
    4、siRNA Expression Cassette 1(1326) can cause an inhibition of PPARγ expression which lead to an increase of ET-1 expression. Therefore, both of PPARγ and ET-1 play a key role in formation of the Atherosclorsis.
引文
1. Martin G, Schoonjans K, Staels B, Auwerx J. PPARy activators improve glucose homeostasis by stimulating fatty acid uptake in the adipocytes. Atherosclerosis,1998, 137: 75-80.
    
    2. Fajas L, Auboeuf D, Raspe E, et al. The organization, promoter analysis and expression of the human PPARgamma gene. J Biol Chem, 1997, 272: 18779-18789.
    
    3. Saladin R, Fajas L, Danas S, et al. Differential regulation of perxisome proliferator activated receptor gammal (PPARgammal) and PPARgamma2 messenger RNA expression in the early stages of adipogenesis. Cell Growth Differ, 1999, 10: 43-48.
    
    4. Kliewer SA, Willson TM. The nuclear receptor PPARgamma-bigger than fat. Curr Opin Genet Dev, 1998, 8: 576-581.
    
    5. Vidal-Puig A, Considine RV, Jimenez-Linan M, et al. Peroxisome prolif erator-activated receptor gene expression in human tissues. Effects of obesity, weight loss,and regulatin by insulin and glucocorticoids. J Clin Invest, 1997, 99: 2416-2422.
    
    6. Ricote M, Li A, Andrew C, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature, 1998, 391: 79-82.
    
    7. Li AC, Brown KK, Silvestre MJ, et al. Peroxisome proliferators activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor deficient-mice. J Clin Invest, 2000, 106: 523-531.
    
    8. Ishibashi M, Egashira K, Hiase K, et al. Antiinflammatory and antiatherio sclerotic effecs of pioglitazone. Hypertension, 2002, 40(5): 687-693.
    
    9. Deeb SS, Fajas L, Nemoto M, et al. A Prol2Ala substitution in PPARgamma2 associated with decreased receptor receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet, 1998, 20: 284-287.
    
    10. Wang XL, Oosterh J, Duarte N. Peroxisome proliferator-activated receptorγ C161→T polymorphism and coronary artery disease. Circ Res, 1999, 44: 588-594.
    
    11. Sam F, Sawyer D B, Chang D L, et al. Progressive left ventricular remodeling and apoptosis late after myocardial infarction in mouse heart. Am J Physiol Heart Circ Physiol, 2000, 48: 422-428.
    12. Caldwell SH, Argo CK, Al-Osaimi AM. Therapy of NAFLD: Insulin Sensitizing Agents. J Clin Gastroenterol. 2006, 40: 61-66.
    
    13. Lehrke M, Lazar MA. The many faces of PPARgamma. Cell, 2005, 123(6): 993-999.
    
    14. Issemann I, Green S. Activation of a number of the steroid receptor superfamily by peroxisome. Nature, 1990, 347: 645-650.
    
    15. Campbell IW. The Clinical Significance of PPAR Gamma Agonism. Curr Mol Med, 2005, 5(3): 349-363.
    
    16. Dashwood MR, Tsui JC. Endothelin-1 and atherosclerosis: potential complications associated with endothelin-receptor blockade. Atheosclerosis, 2002, 160(2):297-304.
    
    17. Ihling C, Bohrmann B, Schaefer HE. Endothelin-1 and endothelin converting enzyme-1 in human aherosclerosis- noveltargets for pharmacotherapy in atherosclerosis. Curr Vasc Pharmacol.2004, 2(3): 249-258.
    
    18. Naito Y, Yoshikawa T. Thiazolidinediones: a new class of drugs for the therapy of ischemia-reperfusion injury. Drugs Today, 2004, 40 (5): 423-430.
    
    19. Delerive P, Martin- Nizard F, Chinetti G, et al. Peroxisome proliferator- activated receptor activators inhibit thrombin-induced endothelin-1 production in human\ vascular endothelial cells by inhibiting the activator protein-1 signaling pathway.Circ Res, 1999, 85(5): 394-402.
    
    20. Martin-Nizard F, Furman C, Delerive P. Peroxisome Proliferator-activated Receptor Activators inhibit Oxidized Low-density Lipoprotein-induced Endothelin-1 Secretion in Endothelial cells. Journal of cardiovascular Pharmacology, 2002, 40: 822-831.
    
    21. Brogelli L, Parenti A, Ledda F. Inhibition of vascular smooth muscle cell growth by angiotensin type 2 receptor stimulation for in vitro organ culture model. J Cardio Pharma, 2002, 39: 739-745.
    
    22. Sijen T. Plasterk R H. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature, 2003, 426: 310-314.
    1. Martin G, Schoonjans K, Staels B, Auwerx J. PPARγ activators improve glucose homeostasis by stimulating fatty acid uptake in the adipocytes. Atherosclerosis,1998, 137: 75-80.
    
    2. Fajas L, Auboeuf D, Raspe E, et al. The organization, promoter analysis and expression of the human PPARgamma gene. J Biol Chem, 1997, 272: 18779-18789.
    
    3. Saladin R, Fajas L, Danas S, et al. Differential regulation of perxisome proliferator activated receptor gamma1 (PPARgamma1) and PPARgamma2 messenger RNA expression in the early stages of adipogenesis. Cell Growth Differ,1999, 10: 43-48.
    
    4. Kliewer SA, Willson TM. The nuclear receptor PPARgamma-bigger than fat. Curr Opin Genet Dev, 1998, 8: 576-581.
    
    5. Vidalpuig A, Considine RV, Jimenezlinan M, et al. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss,and regulatin by insulin and glucocorticoids. J Clin Invest, 1997, 99: 2416-2422.
    
    6. Ricote M, Li A, Andrew C, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature, 1998: 391: 79-82.
    
    7. Li AC, Brown KK, Silvestre MJ, et al. Peroxisome proliferators activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor deficientmice. J Clin Invest, 2000, 106: 523-531
    
    8. Ishibashi M, Egashira K, Hiase K, et al. Antiinflammatory and antiatherio sclerotic effecs of pioglitazone. Hypertension, 2002, 40(5): 687-693.
    
    9. Deeb SS, Fajas L, Nemoto M, et al. A Prol2Ala substitution in PPARgamma2 associated with decreased receptor receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet, 1998, 20: 284-287.
    
    10. Wang XL, Oosterh J, Duarte M. Peroxisome proliferator-activated receptor γ C161→T polymorphism and coronary artery disease. Circ Res, 1999, 44: 588-594.
    
    11. Issemann I, Green S. Activation of a number of the steroid receptor superfamily by peroxisome. Nature, 1999, 347: 645-650.
    12. Vamecq J, Latruffen N. Medical significance of peroxisome proliferators -activated receptor. Lancet, 1999, 354: 141-148.
    
    13. Ehee EJ, OH KW, Lee WY, et al, Effects of two common polymorphisms of peroxisome proliferator-activated receptor-gamma gene on metabolic syndrome.Arch Med Res, 2006, 37(1): 86-94.
    
    14. Fruchart JC, Duriez P, Staels B. Peroxisome proliferator-activated receptor-alpha activators regulate genes governing liporprotain metabolism, vascular inflammation and atherosclerosis. Curr Opin Lipidol, 1999, 10: 245-257.
    
    15. Halabi CM, Sigmund CD. Peroxisome proliferator-activated receptor- gamma and its agonists in hypertension and atherosclerosis: mechanisms and clinical implications.Am J Cardiovasc Drugs, 2005, 5(6):389-398.
    
    16. Gervois P, Torra IP, Furchart JC, et al. Regulation of lipid and lipoprotein metabolism by PPAR activators.Clin Chern. Lab Med, 2000, 38: 3-11.
    
    17. Law RE, Meehan WP, Xi Xp, et al. Troglitazone inhibits vascular smooth muscle growth and intimal hyperplasia. J Clin Invest, 1996, 98: 1897-1950.
    
    18. Kersten S, Desvergne B, Wabli W. Roles of PPARs in health and diseasa. Nature,2000,450:421-424.
    
    19. Delerive P, Martin-Nizard F, Chinetti G, et al. Peroxisome proliferator- activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway.Circ Res. 1999, 85(5): 394-402.
    
    20. Delerive P, De Bosscher K, Besnard S, et al. Peroxisome proliferator- activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross = talk with transcription factors NF-KappaB and Ap-1. J Biol Chem,1999,274:32048-32054.
    
    21. Marx N, Sukhova GK, Collins T, et al. PPARa activators inhibit cytokine- induced vascular cell adhesion molecule expression in human endothelial cells. Circulation,1999,99:3123-3131.
    
    22. Eberardt W, Akool E, Rebhan J. Inhibition of cytokine inducedmatrix metallop roteinase 9 expression by peroxisome proliferaor activated receptor alpha agonists is indirect and due to a NO mediated reduction of mRNA stability. J Biol Chem, 2002, 277(36): 33518-33528.
    23. Lizard G, Gambert P. Implication and mode of action of infectious agents in the formation of atheromatous plaques, infection and atherosclerosis. Pathol Biol, 2001,49(10): 824-829.
    
    24. Ozeke O, Aras D, Deveci B, et al. Comparison of presence and extent of coronary narrowing in patients with left bundle branch block without diabetes mellitus to patients with and without left bundle branch block but with diabetes mellitus. Am J Cardiol, 2006, 97(6): 857-859.
    1. Sam F, Sawyer D B, Chang D L, et al. Progressive left ventricular remodeling and apoptosis late after myocardial infarction in mouse heart. Am J Physiol Heart Circ Physiol, 2000, 48: 422-428.
    
    2. Caldwell SH, Argo CK, Al-Osaimi AM. Therapy of NAFLD: Insulin Sensitizing Agents. J Clin Gastroenterol, 2006, 40:61-66.
    
    3. Lehrke M, Lazar MA. The many faces of PPARgamma.Cell, 2005, 123(6) :993 -999.
    
    4. Donald O, Jan K, Sefano C, et al. Transplanted Adult Bone Marrow Cells Repair Myocardial Infarcts in Mice. Annals of the New York Academy of Sciences, 2001,938:221-230.
    
    5. Min JY, Yang Y, Converso KL, et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J Appl Physiol, 2002, 92: 288-296.
    
    6. Yang F, Yang XP, Liu YH, et al. Ac-SDKP Reverses Inflammation and Fibrosis in Rats With Heart Failure After Myocardial Infarction. Hypertension, 2004, 43:229-236.
    
    7. Matthias N, Kai H, Daniela F, et al. Time course of right ventricular remodeling in rats with experimental myocardial infarction. Am J Physiol Heart Circ Physiol,2003, 284: 241-248.
    
    8. Li RK, Mickle D, Weisel RD, et al. Optimal time for cardiomyocyte transplantation to maximize myocardial function after left ventricular injury. Ann Thorac Surg, 2001, 72: 1957-1963.
    
    9. Liu YH, Yang XP, Nass O, et al. Chronic heart failure induced by coronary artery ligation in Lewis inbred rats. Am J Physiol Heart Circ Physiol, 1997, 272:722-727.
    
    10. Smith SI. PPAR-g receptor agonists—a review of their role in diabetic management in Trinidad and Tobago. Mol Cell Biochem, 2004, 263(2): 189-210.
    11. Bishop-Bailey D. Peroxisome proliferator-activated receptors in the cardiovascular system. Brit J Pharmacol, 2000, 129(5): 823-834.
    
    12. Chen J, Li D, Zhang X, et al. Tumor necrosis factor-alpha-induced apoptosis of human coronary artery endothelial cells: modulation by the peroxisome proliferator-activated receptor-gamma ligand pioglitazone. J Cardiovasc pharmacol Ther, 2004, 9(1): 35-41.
    
    13. Sheng ZD, Christine Y, Ivashchenko, et al. Cardio myocyte- Specific Knockout and Agonist of Peroxisome Proliferator-γ Activated Receptor- α—Both Induce Cardiac Hypertrophy in Mice. Circ Res, 2005, 97: 372-379.
    
    14. Nicole SW, Yoshiyuki H, Michelle C, et al. Ligands of the peroxisome proliferator-activatedreceptor reduce myocardial infarct size. The FASEB Journal,2002, 16: 1027-1040.
    
    15. Pfeffer JM, Pfeffer MA, Fletcher PJ, et al. Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol Heart Circ Physiol, 1991, 260:1406-1414.
    
    16. Braunwald E. Heart disease: A text book of Cardiolvascular Medicine. 1997, W.B.Saunders Co., Philadelphia, Pennsylvania.
    
    17. Low WY, chen Z, Guth B, et al. Mechanisms of augmented segment shortening in nonischemic areas during acute ischemia of the canine left ventricle. Circ Res,1985,56:351-358.
    
    18. Saraste A, Pulkki K, Kallajoki M, et al. Apoptosis in human acute myocardial infarction. Circulation, 1997, 95: 320-323.
    
    19. Bialik S, Geenen DL, Sasson IE, et al. Myocyte apoptosis dviring acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J Clin Invest, 1997, 100: 1363-1372.
    
    20. Yaoita H, Ogawa K, Maehara K, et al. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation, 1998, 97: 276-281.
    
    21. Misao J, Hayakawa Y, Ohno M, et al. Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation, 1996, 94: 1506-1512.
    
    22. Kajstura J, Cheng W, Reiss K, et al. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest, 1996, 74:86-107.
    
    23. Cheng, W, Kajstura J, Nitahara JA, et al. Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res, 1996, 226: 316-327.
    
    24. Olivetti G, Quaini F, Sala R, et al. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol, 1996, 28: 2005-2016.
    
    25. Flora S, Douglas BS, Donny LF, et al. Progressive left ventricular remodeling and apoptosis late after myocardial infarction in mouse heart. Am J Physiol Heart Circ Physiol, 2000, 279: 422-428.
    
    26. Li, B, Li Q, Wang X, et al. Coronary constriction impairs cardiac function and induces myocardial damage and ventricular remodeling in mice. Am J Physiol Heart Circ Physiol, 1997, 273: 2508-2519.
    
    27. Ehara M, Hasegawa K,Ono K, et al. Activators of PPARc antagonize protection of cardiacmyocytes by endothelin-1. Biochemical and Biophysical Research Communications, 2004, 321: 345-349.
    
    28. Cheng W, Li B, Kajstura J, et al. Stretch induced programmed myocyte cell death.J Clin Invest, 1995, 96: 2247-2259.
    
    29. Bardales RH, Hailey S, Xie SS, et al. In situ apoptosis assay for the detection of early acute myocardial infarction. Am J Pathol, 1996, 149: 821-829
    
    30. Guerra S, Leri A, Wang X, et al. Myocyte death in the failing human heart is gender dependent. Circ Res, 1999, 85: 856-866
    1. Issemann I, Green S. Activation of a number of the steroid receptor superfamily by peroxisome. Nature, 1990, 347(3): 645-650.
    
    2. Campbell IW. The Clinical Significance of PPAR Gamma Agonism. Curr Mol Med, 2005, 5(3): 349-363.
    
    3. Dashwood MR, Tsui JC. Endothelin-1 and atherosclerosis: potential complications associated with endothelin-receptor blockade. Atheosclerosis,2002, 160(2): 297-304
    
    4. Ihling C, Bohrmann B, Schaefer HE. Endothelin-1 and endothelin converting enzyme-1 in human aherosclerosis-noveltargets for pharmacotherapy in atherosclerosis. Curr Vasc Pharmacol, 2004, 2(3): 249- 258.
    
    5. Naito Y, Yoshikawa T. Thiazolidinediones: a new class of drugs for the therapy of ischemia-reperfusion injury. Drugs Today, 2004, 40 (5): 423-430.
    
    6. Delerive P, Martin- Nizard F, Chinetti G, et al. Peroxisome proliferator- activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway.Circ Res, 1999, 85(5): 394-402.
    
    7. Martin-Nizard F, Furman C, Delerive P. Peroxisome Proliferator-activated Receptor Activators inhibit Oxidized Low-density Lipoprotein-induced Endothelin-1 Secretion in Endothelial cells. Journal of cardiovascular Pharmacology, 2002, 40(3): 822-831.
    
    8. Brogelli L, Parenti A, Ledda F. Inhibition of vascular smooth muscle cell growth by angiotensin type 2 receptor stimulation for in vitro organ culture model. J Cardio Pharma, 2002, 39(2): 739-745.
    
    9. Ricote M, Li AC, Willson TM, et al. The peroxisome proliferators activated receptor-γ is a negative regulator of macrophage activation. Nature, 1998, 391:82-86.
    10. Halabi CM, Sigmund CD. Peroxisome proliferator-activated receptor-gamma and its agonists in hypertension and atherosclerosis: mechanisms and clinical implications. Am J Cardiovasc Drugs. 2005, 5(6): 389-398.
    11. Roberts AW, Thomas A, Rees A, Evans M. Peroxisome proliferator-activated receptor-gamma agonists in atherosclerosis: current evidence and future directions. Curt Opin Lipidol, 2003, 14(6): 567-573.
    12.刘国祥.内皮细胞和细胞外基质的粘附对内皮细胞功能的影响.国外医学.临床生物化学与检验学分册,2003,3:123-124.
    13. Plitzky J. Peroxisome proliferator-activated receptors in endothelial cell biology. Curr Opin Lipidol, 2001, 12(5): 511-518.
    14. CominaciniL, Garbin U, PasiniAF, et al. The expression of adhension molecules on endothelial cells in inhibited by troglitazone through its antioxidant activity. Cell Adhension Commun, 1999, 7:223-231.
    15. Giannessi D, Del RS, Vitale RL. The role of endothelins and their receptors in heart failure. Pharmacological Research, 2001, 43(2): 1006-1012.
    16. Schiffrin EL. Role of endothelin-1 in hypertension and vascular disease. Am J Hypertens, 2001, 14: 83-89.
    17. Duerrschmidt N, Wippich N, Goettsch W, et al. Endothelin-1 induces NAD(P)H oxidase in human endothelial cells. Biochem Biophys Res Commun, 2000, 269: 713-717.
    18. Luft FC, Mervaala E, Muller DN, et al. Hypertension-induced end-organ-damage: A new transgenic approach to an old problem. Hypertension, 1999, 33:212-218.
    19. Browatzki M, Schmidt J, Kubler W, Kranzhofer R. Endothelin-1 induces interleukin-6 release via activation of the transcriptionfactor NF-kappaB in human vascular smooth muscle cells. Basic Res Cardiol, 2000, 95: 98-105.
    20. Haynes WG, Webb DJ. Endothelin as a regulator of cardiovascular function in health and disease. J Hypertens, 1998, 16: 1081-1098.
    21. Rajagopalan S, Laursen JB, Borthayre A, et al. Role for endothelin-1 in angiotensin II-mediated hypertension. Hypertension, 1997, 30: 29-34.
    
    22. Moreau P, Uscio LV, Shaw S ,et al. Angiotensin II increases tissue endothelin and induces vascular hypertrophy: reversal by ET(A)- receptor antagonist. Circulation, 1997, 96: 1593-1597.
    
    23. Rossi GP, Sacchetto A, Rizzoni D, et al. Blockade of angiotensin II type1 receptor and not of endothelin receptor prevents hypertension and cardiovascular disease in transgenic (mREN2)27 rats via adrenocortical steroid-independent mechanisms. Arterioscler Thromb Vasc Biol, 2000, 20: 949-956.
    
    24. Muller DN, Mervaala EM, Schmidt F, et al. Effect of bosentan on NF-kappaB inflammation and tissue factor in angiotensin II-induced endorgan damage.Hypertension, 2000, 36: 282-290.
    
    25. Calabro P, Samudio I, Safe Sh, Willerson JT, Yeh ET. Inhibition of tumor necrosis factor-alpha induced endothelial cell activation by a new class of PPAR-gamma agonists. An in vitro study showing receptor- independent effects. J Vasc Res,2005, 42(6): 509-516.
    
    26. Benkirane K, Viel EC, Amiri F, Schiffrin EL. Peroxisome proliferator- activated receptor gamma regulates angiotensin II-stimulated phos phatidylinositol3-kinase and mitogen-activated protein kinase in blood vessels in vivo.Hypertension, 2006, 47(1): 102-108.
    
    27. Unes F, Quartey El, kiguwa S, Partridge M. Expression of TNF and the 55-kDa TNF receptor in epidermis, oral mucosa, lichen planus and squamous cell carcinoma. Oral Dis, 1996, 2(1): 25-31.
    
    28. Ringseis R, Muller A, Herter C, et al. Isomers inhibit TNFalpha-induced eicosanoid release from human vascular smooth muscle cells via a PPARgamma ligand-like action. Biochim Biophys Acta, 2005, 29: 132-140.
    
    29. Cheng ZJ, Vapaatalo H, Mervaala E. Angiotensin II and vascular inflammation.Med Sci Monit, 2005, 11(6): 194-205.
    
    30. Diep QN, El MabroukM, Cohn JS, et al. Structure, endothelial function, cell growth, and inflammation in blood vessels of angiotension II infused rat: role of peroxisome p roliferator activated recep tor gamma. Circulation, 2002, 105:2296-2302.
    
    31. Liu D, Zeng BX, Zhang SH, Yao SL. Rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma, reduces pulmonary inflammatory response in a rat model of endotoxemia. Inflamm Res, 2005, 54(11): 464- 470.
    
    32. Kanie N, Matsumoto T, Kobayashi T, Kamata K. Relationship between peroxisome proliferator-activated receptors (PPAR alpha and PPAR gamma) and endothelium-dependent relaxation in streptozotocin- induced diabetic rats.Br J Pharmacol, 2003, 140(1): 23-32.
    
    33. Mauricio J.Reginato, Sam uelL, et al. Prostaglandins promote and block adipogenesis through opposing effects on peroxisome proliferators activated receptor. J Biol, 2001, 273(4), 1855-1858.
    
    34. Liu JJ, Huang RW, Lin DJ, et al. Angiotensin II and endothelin-1 regulate MAPkinases through different redox-dependent mechanisms in human vascular smooth muscle cells. J Hypertens, 2004, 22(6): 1141-1146.
    
    35. Calnek D, Mazzella L, Roser S, et al. Peroxisome poliferator activated receptorligands increase release of nitric oxide from endothelial cells. Arterioscler Thromb V asc Biol, 2003, 23(1): 52-57.
    1. Hammond SM, Bernstein E, Beach D, et al. An RNA-directed nuclease mediates posttranscription algene silencing in Drosophila cells. Nature, 2000, 404(6775):293-296.
    
    2. Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409(6818): 363-366.
    
    3. Yang D, Lu H, Erickson JW. Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophilaembryos.CurrBi-o,2000, 10(19): 1191-1200.
    
    4. Qinghua Liu, Tim A R, Savitha K, et al. a Bridge Between the Initiation and Effector Steps of the Drosophila RNAi Pathway. Science, 2003, 301(26): 1921-1925.
    
    5. Baulcombe D. RNA silencing.Current Biology, 2002, 12: 82-84.
    
    6. Sijen T, Plasterk RH. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature , 2003, 426: 310-314.
    
    7. Verrier E, Wang L, Wadham C, et al. PPAR{ gamma} agonists ameliorate endothelial cell activation via inhibition of diacylglycerol protein kinase C signaling pathway. Role of Diacylglycerol Kinase .Cire Res, 2004, 94 (11):1515-1522.
    
    8. Law RE, Meehan WP, Xi Xp, et al. Troglitazone inhibits vascular smooth muscle growth and intimal hyperplasia. J Clin Invest, 1996, 98: 1897-1950.
    
    9. Marx N, Sukhova K, Collins T, et al. PPARa activators inhibit cytokine- induced vascular cell adhesion molecule expression in human endothelial cells. Circulation,1999,99:3123-3131.
    
    10. Kersten S, Desvergne B, Wabli W. Roles of PPARs in health and diseasa. Nature,2000,450:421-424.
    
    11. Eberardt W, Akool S, Rebhan J. Inhibition of cytokine inducedmatrix metallop roteinase 9 expression by peroxisome proliferaor activated receptor alpha agonists is indirect and due to a NO mediated reduction ofmRNA stability. J Biol Chem.2002, 277(36): 33518-33528.
    
    12. Daniela C, Haitang L, John J.R. Functional siRNA expression from transfected PCR products. RNA, 2002, 8: 1454-1460.
    
    13. Cynthia PP, Paul DG, Shirley XL, et al. Localized Expression of Small RNA Inhibitors in Human Cells. Molecular Therapy, 2003, 7(2): 237-247.
    1. Schiffrin EL. Role of endothelin-1 in hypertension and vascular disease. Am J Hypertens, 2001, 14: 83- 89.
    
    2. Duerrschmidt N, Wippich N, Goettsch W, et al. Endothelin-1 induces NAD(P)H oxidase in human endothelial cells. Biochem Biophys Res Commun,2000,269:713-717.
    
    3. Luft FC, Mervaala E, Muller DN, et al. Hypertension-induced end-organ damage: A new transgenic approach to an old problem. Hypertension, 1999,33:212-218.
    
    4. Browatzki M, Schmidt J, Kubler W, Kranzhofer R. Endothelin-1 induces interleukin- 6 release via activation of the transcriptionfactor NF- kappaB in human vascular smooth muscle cells. Basic Res Cardiol, 2000, 95: 98-105.
    
    5. Benkirane K, Viel EC, Amiri F, Schiffrin EL. Peroxisome proliferator-activated receptor gamma regulates angiotensin II-stimulated phos phatidylinositol 3-kinase and mitogen-activated protein kinase in blood vessels in vivo. Hypertension, 2006, 47(1): 102-108.
    
    6. Liu D, Zeng BX, Zhang SH, Yao SL. Rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma, reduces pulmonary inflammatory response in a rat model of endotoxemia. Inflamm Res, 2005,54(11): 464-470.
    
    7. Kanie N, Matsumoto T, Kobayashi T, Kamata K. Relationship between peroxisome proliferator-activated receptors (PPAR alpha and PPAR gamma) and endothelium-dependent relaxation in streptozotocin- induced diabetic rats.Br J Pharmacol, 2003, 140(1): 23-32.
    
    8. Mauricio J. Reginato, Sam uelL, et al. Prostaglandins promote and block adipogenesis through opposing effects on peroxisome proliferators activated receptor. J Biol, 273(4), 1855-1858.
    9. Liu JJ, Huang RW, Lin DJ, et al. Angiotensin II and endothelin-1 regulate MAPkinases through different redox-dependent mechanisms in human vascular smooth muscle cells. J Hypertens, 2004, 22(6): 1141-1146.
    
    10. Ricote M, Li AC, Willson TM, et al. The peroxisome proliferators activated receptor-y is a negative regulator of macrophage activation. Nature, 1998,391: 82-86.
    
    11. Calnek D, Mazzella L, Roser S, et al. Peroxisome poliferator activated receptor ligands increase release of nitric oxide from endothelial cells.Arterioscler Thromb V asc Biol, 2003, 23(1): 52-57.
    1. Vamecq J, Latruffen N. Medical significance of peroxisome proliferator-activated receptor. Lancet, 1999, 354: 141-148.
    
    2. Robyr D, Wolffe AL, Wahli W. Nuclear hormone receptor coregulators in action: Diversity for shared tasks. Mol Endocrinol, 2000, 14: 329-347.
    
    3. Reaven RM. Role of insulin resistance in human disease. Dibetes, 1988, 37:1595-1602.
    
    4. Hsueh WA, Law RE. Insulin signaling in the arterial wall. Am J Cardiol, 1999, 84:21-24.
    
    5. Diep QN, Mabrouk M, Cohn JS, et al. Structure, endothelial function, cell growth, and inflammation in blood vessels of angiotension II infused rat: role of peroxisome proliferaor activated receptor gamma. Circulation, 2002, 105: 2296-2302.
    
    6. Sidhu JS, Cowan D, Kaski JC, et al. The effects of rosiglitazone, a peroxisome proliferator activated receptar gamma agonist, on markers of endothelial cell activation, C2reactive p rotein, and fibrinogen levels in nondiabetic coronary artery disease patients. J Am Coll Cardi ol, 2003, 42(10): 1757-1763.
    
    7. Verrier E, Wang L, Wadham C, et al. PPAR-gamma agonists ameliorate endothelial cell activation via inhibition of diacylglycerol protein kinase C signaling pathway. Role of Diacylglycerol Kinase. Cire Res, 2004, 94(11): 1515-1522.
    
    8. Gervois P, Torra I P, Furchart JC, et al. Regulation of lipid and lipoprotein metabolism by PPAR activators. Clin Chern Lab Med, 2000, 38: 3-11.
    
    9. Law RE, Meehan WP, Xi Xp, et al. Troglitazone inhibits vascular smooth muscle growth and intimal hyperplasia. J Clin Invest, 1996, 98: 1897-1950.
    
    10. Saladin R, Fajas L, Danas S, et al. Differential regulation of perxisome proliferator activated receptor gamma1 (PPARgammal) and PPARgamma2 messenger RNA expression in the early stages of adipogenesis. Cell Growth Differ, 1999, 10: 43-48.
    11. Kersten S, Desvergne B, Wabli W. Roles of PPARs in health and diseasa. Nature,2000, 450: 421-424.
    
    12. Wakino S, Kintscher U, Kim S, et al. Peroxisome proliferator activated receptor gamma ligands inhibits retinoblastoma phosphorylation and G12→S transition in vascular smooth muscle cells. J Biol Chem, 2000, 36: 1529-1535.
    
    13. Abe M, Hasegawm K,Wada H, et al. GATS26 is involved in PPAR2 mediated activation of differentiated phenotype in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 2003, 23: 404-410.
    
    14. Li AC, Brown KK, Silvestre MJ, et al. Peroxisome proliferators activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor deficientmice. J Clin Invest, 2000, 106: 523-531.
    
    15. Ishibashi M, Egashira K, Hiase K, et al. Antiinflammatory and antiatherio sclerotic\ effecs of pioglitazone.Hypertension, 2002, 40(5):687-693.
    
    16. Eberardt W, Akool E, Rebhan J. Inhibition of cytokine inducedmatrix metallop roteinase 9 expression by peroxisome proliferaor activated receptor alpha agonists is indirect and due to a NO mediated reduction of mRNA stability. J Biol Chem.2002, 277 (36): 33518-33528
    
    17. Delerive P, Martin-Nizard F, Chinetti G, et al. Peroxisome proliferator- activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway.Circ Res, 1999, 85(5): 394-402.
    
    18. Delerive P, De Bosscher K, Besnard S, et al . Peroxisome proliferator- activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross=talk with transcription factors NF-KappaB and Ap-1. J Biol Chem,1999, 274: 32048-32054.
    
    19. Marx N, Sukhova GK, Collins T, et al. PPARa activators inhibit cytokine- induced vascular cell adhesion molecule expression in human endothelial cells. Circulation,1999,99:3123-3131.
    
    20. Marx N, Sukhova G, Murphy C, et al. Macrophages in human atheroma contain PPARgamma: differentiation-dependent peroxisome proliferator-activated receptor gamma expression and reduction of MMP-9 activity through PPARgamma activation in mononuclear phagocytes in vitro. Am J Pathol, 1998, 153: 17-23.
    
    21. Eberhardt W, Akool S, Rebhan J, et al. Inhibition of cytokine-induced matrix metalloproteinase 9 expression by peroxisome proliferator- activated receptor alpha agonists is indirect and due to a NO-mediated reduction of mRNA stability. J Biol Chem, 2002, 277(36): 33518-33528.
    
    22. Lin Y, Zhu X, McLntee FL, et al. Interferon regulatory factorl mediates PPAR gamma induced apoptosis in vascular smooth muscle cells. Arterio scler Thromb Vasc Biol. 2004, 24 (2): 257-263.
    
    23. BruemmerD, Yin F, Liu J, et al. Regulation of the growth arrest and DNA damage inducible gene 45 (Gadd45) by peroxisome proliferators activated receptor gamma in vascular smooth muscle cells. CireRes. 2003, 93 (4): 38-47.
    
    24. Santiago R, Emilio R, Carlos G, et al. Pioglitazone Induces Vascular Smooth Muscle Cell Apoptosis Through a Peroxisome Proliferator-Activated Receptor-,Transforming Growth Factor-β1, and a Smad2-Dependent Mechanism. Diabetes,2005,54:811-817.
    
    25. Nagy L, Tontonoz P, Alvarez J G A, et al. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell, 1998, 93:229-240.
    
    26. Vidal PA, Considine RV, Jimenez LM, et al. Peroxisome prolif erateors-activated receptor gene expression in human tissues.Effects of obesity, weight loss, and regulatin by insulin and glucocorticoids. J Clin Invest. 1997, 99: 2416-2422.
    
    27. Chinetti G, Gbaguidi FG, Griglio S, et al. CLS/SR2B I is expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferators activated receptors. Circulation. 2000, 101: 2411-2417.
    
    28. Chawla A, BoisvertWA, Lee CH, et al. PPAR gamma LXR ABCA1 pathway in macrophages is involved cholesterol efflux and atherogenisis. Mol Cell. 2001, 7:161-171
    
    29. Oram JF. ATP binding cassette transporterAl and cholesterol trafficking. Curr Opin Lipidol, 2002, 13: 373-381.
    30. Wang XL, Oosterhof J, Duarte N. Peroxisome proliferators-activated receptor γC161→T polymorphism and coronary artery disease. Circ Res, 1999, 44: 588-594.
    31. Natsuhiko E, Koji H, Koh O, Teruhisa K, et al. Activators of PPARs antagonize protection of cardiac myocytes by endothelin-1. Biochem Biophys Res Commun, 2004, 321 (2): 345-349.
    32. Krempler F, Breban D, Oberkofler H, et al. Leptin, peroxisom proliferator-activated receptor-gamma and CCAAT/enhancer binding protein-alpha mRNA expression in adipose tissue of humans and their relation to cardiovascular risk factors. Arterioscler Thromb Vasc Biol, 2000, 20(2): 443-449.
    33. Barroso I, Gurnell M, Crowley VEF, et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance diabetes mellitus and hypertension. Nature, 1999, 402: 880-883.
    34.李永勤,牛小麟,李少民等.高血压病患者动脉血管组织中PPAR_γ的表达,心脏杂志(Chin Heart J),2005,17(5):416-418.
    35. Diep QN, Mabrouk M, Cohn JS, et al. Structure, Endothelial Function, Cell Growth, and Inflammation in Blood Vessels of Angiotension Ⅱ infused Rats: Role of Peroxisome Proliferator activated Receptor Gamma. Circulation, 2002, 105: 2296-2302.
    36. Kurtz TW, Gardner DG. Transcription modulating Drugs, A New Frontier in the Treatment of Essential Hypertension. Hypertension, 1998, 32: 380-386.
    37. Henke BR, et al. N-(2-Benzoylphenyl)-L-tyrosine PPARgamma agonists, discovery of a novel series of potent antihyperglycemic and antihyperlipidemic agents. J Med Chem, 1998, 41: 5020-5036.
    38.周鹏,陈南衡,王其民.高甘油三酯血症与胰岛素抵抗及糖代谢异常的关系.中华内科杂志,1998,37:447-450.
    39.杨文英,邢小燕,林红等.高甘油三酯血症是非胰岛素依赖型糖尿病发病的危险因素.中华内科杂志,1995,34:583-586.
    40. Jaro Mi, Yoshikazu T, Hiroyuki M, et al. Inhibitory effect of a Proline-to-Alanine substitution at codon 12 of peroxisome proliferator-activated receptor-γ2 on Thiazolidinedione-induced adipogenesis. Biochem Biophys Res. Commun, 2001, 268: 178-182.
    41. Sampson MJ, Davies IR, Braschi S, et al. Increased expression of a scavenger receptor (CD36) in monocytes from subjects with type 2 diabetes. Atherosclerosis, 2003, 167(1): 12921-12934.
    42. Jackson SM, Parhami F, Xi XP. Peroxisome proliferators activated receptor activators target human endothelial cells to inhibit leakocaty endothe lial cell interaction. Arterioscler Thromb vasc Biol, 1999, 19 (10): 2094-2104.
    43.邓志明,陈建勇,曾高峰.罗格列酮对胰岛素控制不良的2型糖尿病患者血浆HbA 1c和IL-6及hsCRP的影响.中国医师杂志,2004,6(6):762-273.
    44. Bavirti S, Ghanaat F, Tayek JA. Peroxisome proliferator-activated recaptor-gamma agonist increases both low-density lipoprotein cholesterol particle size and small high-density lipoprotein cholesterol in patients with type 2 diabetes independent of diabetic control. Endocrine Practice, 2003, 9(6): 487-499.
    45. Sato H, Ishihara S, Kawashima K, Moriyama N, et al. Expression of peroxi some proliferator-activated receptor gamma in gastric cancer and inhibit tory effects of PPAR_γ agonists. British Journal of Cancer, 2000, 83 (10): 1394-1397
    46. Tsubouchi Y, sano H, Kanahitoy, et al. Inhibition of human lung cancer cell growth by the agonists throngh induction of apoptosis. Biochem Biophys commune, 2000, 270(2): 400-411.
    47. Sato H, Ishihara S, Kawashima K, Moriyama N, et al. Expression of peroxisome proliferator-activated receptor gamma in gastric cancer and inhibit ory effects of PPAR_γ agonists. British Journal of Cancer, 2000, 83 (10): 1394-1397.
    48. Peters JM, et al. Role of PPAR alpha in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14643. Carcino genesis, 1997, 18: 2029-2033.
    49. Katoh M, Feldhaus S, Schnitzer T, et al. Limited tumor Growth (HT29) in vivo under RO205-2349 is due to increased apoptosis and reduced cell volume but not to decreased proliferation rate. Cancer Letters, 2003, 210(1): 117-128.
    50. Asami MR, Iseki S, Usui M, et al. Expression and function of PPAR gamma in rat placental development. Biochemical & Biophysical Research Communications,2004, 315(2): 497-498.
    
    51. Takayuki I, Carl WM, Seiji K, et al. Mutational analysis of the peroxisome proliferator-activated receptor gamma gene in human malignancies. Cancer Res,2001,61:5307-5310.
    
    52. Heaney AP, Fernando M, Yong WH, Melmed S. Functional PPAR-gamma receptor is a novel therapeutic target for ACTH-secreting pituitary adenomas. Nature Med,2002, 8: 1281-1287.
    
    53. Nogueiras R, Caminos JE, Ggallego R, et al. Regulation of peroxisome proliferator activated receptor-gamma in rat pituitary. Journal of neuroendocrinology, 2005, 17:292-297
    
    54. Heaney AP, Fernando M, Melmed S. PPAR-gamma receptor ligands: novel therapy for pituitary adenomas. J Clin Invest, 2003, 111: 1381-1388.
    
    55. Heaney AP, Fernando M, Yong WH, Melmed S. Functional PPAR-gamma receptor is a novel therapeutic target for ACTH-secreting pituitary adenomas. Nature Med,2002, 8:1281-1287.
    
    56. MN Emery, C Merulli, SE Bonner, et al. PPAR gamma expression in pituitary tumors, Role of PPaRs in health and disease. Nature, 2000, 405: 421-424.
    
    57. Wayman NS, Hattori Y, McDonald MC, et al. Ligands of the peroxisome proliferator-activated receptors (PPAR-gamma and PPAR-alpha) reduce myocardial infarct size. FASEB J, 2002, 16(9): 1027-1040.
    
    58. Akazawa S, Sun F, Ito M, Kawasaki E, Eguchi K. Efficacy of troglitazone on body fat distribution in type 2 diabetes. Diabetes Care, 2000, 23: 1067-1071.
    
    59. Chen J, Li D, Zhang X, et al. Tumor necrosis factor-alpha-induced apoptosis of human coronary artery endothelial cells: modulation by the peroxisome proliferator-activated receptor-gamma ligand pioglitazone. J Cardiovasc pharmacol Ther,2004, 9(1): 35-41.
    
    60. Zingarelli B. Sheehan M. Hake PW. Peroxisome proliferator activator receptor-gamma ligands, 15-deoxy-Delta (12, 14) - prostaglandin J2 and ciglitazone, reduce systemic inflammation in polymicrobial sepsis by modulation of signal transduction pathways. Journal of Immunology, 2003, 171(12): 6827-6839.
    61. Mueller C. Weaver V. Vanden JP. Peroxisome proliferator-activated receptor gamma ligands attenuate immunological symptoms of experimental allergic asthma. Archives of Biochemistry & Biophysics, 2003, 418(2): 186-192.
    62. Cuzzocrea S, Pisano B, Dugo L, et al. Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute pancreatitis induced by cerulein. Intensive Care Medicine, 2004, 30(5): 951-962.
    63. Haraguchi K, Shimura H, Onaya T. Suppression of experimental crescentic glomerulonephritis by peroxisome proliferator-activated receptor (PPAR) gamma activators. Clinical & Experimental Nephrology, 2003, 7(1): 27-39.
    64.刘章锁,李继昌,程根阳.罗格列酮对环孢素A作用下大鼠肝细胞增殖和分泌TGF-β的影响.郑州大学学报(医学版),2004,39(2):258-260.
    65. Naito Y, Yoshikawa T. Thiazolidinediones: a new class of drugs for the therapy of ischemia-reperfusion injury. Drugs of Today, 2004, 40(5): 423-441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700