bFGF对前脂肪细胞的体外培养、在体移植和自体脂肪微粒注射的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景软组织在维持面部和躯体轮廓中起着重要作用,软组织缺损的修复重建目前仍然是整形外科面临的挑战之一,严重的深度烧伤,肿瘤切除术后,半侧颜面萎缩等先天性缺损疾病等都存在软组织缺损的问题。其中脂肪组织缺损是其主要表现之一。自Neuber在1893年完成了第1例用多个自体游离的小脂肪块填充软组织缺损的脂肪移植手术取得满意的疗效后,到20世纪初脂肪移植手术甚为流行。因此项技术操作简单,不需附加切口,不留瘢痕,组织相容性好,所以在整形及美容外科的许多方面得到广泛的应用.但是因为存在着脂肪细胞成活率低,较高的吸收率和纤维化问题,临床效果并不理想.另外脂肪移植后的吸收率的检查缺乏一个客观的标准。
     对前脂肪细胞性质的认识为将脂肪视为可移植的组织材料奠定了坚实的基础。前脂肪细胞不含脂滴,体积小,有促血管生成特性,在细胞的收集与移植过程中比成熟的脂肪细胞更能耐受缺血与创伤,在脂肪移植后的缺血期,使单个细胞比块状脂肪更易通过细胞融合而成活.如果我们利用现有的理论,首先得到患者的前体脂肪细胞,然后在体外促进其增殖分化成成熟的脂肪细胞,就可以随时用它来填充自身的软组织缺损。这就等于建立了一个无限量的脂肪组织库,我们可以根据需要随时取货。目前对人前脂肪细胞的生物学特性还处于研究阶段。
     目的
     1、通过临床研究建立一个客观脂肪移植成活率的影象学判断标准,并借此观察临床bFGF对注射脂肪成活率的作用;
     2、观察bFGF对体外培养的前脂肪细胞增殖和分化的影响。
     3、观察bFGF对移植于裸鼠体内前脂肪细胞成脂的影响。为脂肪细胞移植的临床应用开辟一条新的思路。
     方法
     (一)1、无菌条件下抽吸的脂肪组织消化、用酶消化法,体外分离培养Pra,并进行传代扩增;观察细胞形态。
     2、将第二代细胞按10~4个/孔(含100μl培养液)接种于96孔板(每板分2组,每组3×8孔,其中1组为对照),实验组加入生长因子(bFGF10 ng/ml),每天以MTT法观测细胞增殖情况,绘制生长曲线。
     3、将第二代细胞按104个/孔(含100μl培养液)接种于96孔板(每板分2组,每组3×8孔,其中1组为对照)。培养2天待细胞融合后后加入分化培养基,实验组加入生长因子(bFGF10 ng/ml),对照组为仅含10%小牛血清的人前脂肪细胞分化培养液。测定脂肪细胞甘油三酯的合成量。
     4、统计学方法处理。
     (二)1、制备前脂肪细胞悬液:第二代前脂肪细胞以3×10~4/ml密度接种培养瓶中,在37℃,5%CO_2培养,第2天,换分化培养基培养2天后,胰酶消化,以普通培养液制成3×10~4/ml细胞悬液,分成两组,A组内含10 ng/ml重组人b FGF;B组不含重组人b FGF。
     2、ADM用15%胎牛血清DMEM/F12培养液浸泡24h待用。
     3、细胞生物支架复合体的制备:将经15%胎牛血清DMEM/F12培养液浸泡过的片状生物支架置于培养板内,每孔1片,共12孔。实验分为三组,每组4孔,a组加入A组细胞悬液100ul;b组加入B组细胞悬液100ul;c组加入不含细胞的普通培养液100ul.各组液体由移液枪均匀滴在ADM表面,静置10分钟。
     4、细胞支架复合体植入裸鼠皮下,8周后取材。
     5、组织学检查:将上述标本材料经10%中性甲醛固定后,石蜡包埋并切片,HE染色,观察其组织学变化。
     6、在200倍光镜下,每张切片选5个视野,记数生成脂肪细胞数目,取平均植(x±s表示)代表脂肪密度,比较三组间差异。
     7、免疫组织化学检查鉴定脂肪组织来源。(三)1、2006年1月-2007年1月,选取女性双侧颞部凹陷要求手术者20例行颗粒脂肪注射填充术。
     2、自体脂肪颗粒的制备:采用注射器针式吸脂法(16号针头),于皮下脂肪层放射状吸取足量脂肪混悬液,过滤、冲洗,每20ml脂肪颗粒中注入碱性成纤维细胞生长因子2000U及庆大霉素8000U,混匀备用。
     3、脂肪颗粒的注射:注射总量约为预测脂肪量×150%+局部浸润麻药量。
     4、注射手术结束后第二天、三月分别照相,CT成像。
     5、3月后技算脂肪吸收率,判断疗效。
     结果
     (一)1、重组人bFGF对前脂肪细胞有明显的促增殖作用,与对照组比较第1,2天差异不明显,随时间的推移,第6-7天到达高峰,与对照组比较差异显著;bFGF刺激前脂肪细胞倍增时间提前12小时。
     2、加入bFGF(10 ng/ml)的前脂肪细胞分化提前,细胞内合成的脂肪小滴更多;诱导分化第3天时,前脂肪细胞中甘油三酯总量轻度升高,到分化6天和9天时,甘油三酯总量明显升高,与对照组相比差异均有显著性
     (二)1、8周后取材的细胞支架复合体HE染色显示
     (1)c组,在裸鼠皮下,脱细胞异体真皮支架表面和真皮内都没有观察到脂肪细胞:
     (2)b组,在裸鼠皮下,脱细胞异体真皮支架表面和真皮内有脂肪细胞存活,但脂肪细胞散在,密度较a组低:
     (3)a组,成活的脂肪细胞较多,在真皮表面有成团的脂肪细胞,脂肪细胞可深入真皮内。在放大200倍镜下a组脂肪细胞的数目(77±56/视野)较b组(66±44/视野)增加明显。支架内有新生血管形成。
     2、免疫组化显示a、b组组都有阳性细胞染色,证明存活的脂肪细胞是人源性的。a组阳性细胞较b组阳性细胞多,c组无阳性细胞染色。
     (三)1、本组20例40个凹陷部位,每部位每次脂肪颗粒注射量10ml~16ml,平均11ml术,后无感染、血肿、脂肪液化、脂肪栓塞发生,1-3月内均可见移植物部分吸收体积变小,3个月后外形基本稳定。一次注射后优16个部位(40%),良20个部位(50%),差4个部位(10%)。
     2、CT检测3月后注射脂肪吸收率27%±5.6%
     结论
     1、b FGF对体外培养的前脂肪细胞的有明显的促增殖分化作用。
     2、b FGF对移植于裸鼠体内的人前脂肪细胞有明显的促成脂作用。其可能原因为bFGF促进了脂肪细胞的在体内的增殖和分化;bFGF缩短了移植组织内形成血管的时间,使移植的脂肪细胞缩短了体内缺血缺氧的时间,有更多的脂肪细胞存活。
     3、脱细胞异体真皮是一种良好的脂肪组织化工程的支架材料
     4、bFGF能够提高临床脂肪移植的成活率。
     5、计算机辅助CT成像技术检测注射脂肪后吸收率这一无创方法客观、准确,值得在临床研究中推广。
Background The reconstruction of soft tissue defects remains as a challenge in plastic and reconstructive surgery.Examples for considerable loss of soft connective tissue especially adipose tissue are extensive deep burns,defects after tumor resection, hereditary defects and congenital defects such as Romberg's disease and Poland syndrome. Soft tissue plays a major role in maintaining contours and also serves as a mechanical cushion for muscles,tendons and bones.Among the various approaches are local and free flaps,dermal fat grafts,collagen injections,the use of synthetic materials and free adipose tissue grafts.Every method shows considerable disadvantages,such as synthetic materials always cause foreign body reactions,biologically derived materials shrink to an unpredictable extend,et.al.Thus,autologous adipose tissue is supposed to be an ideal material,as there usually is sufficient supply for grafting,in spite of the results are generally poor and unpredictable.Studies on free adipose tissue graft showed that most of it was absorbed and replaced by fibrous tissue and oil cysts.These inferior results are thought to be due to the poor rate of revascularization of the graft and the low tolerance of ischemia of fat cells.Even the reviving technique of injecting aspirated fat fragments improved the post-operation results,50%percents of the transplanted tissue shrinked or was totally absorbted.
     Many studies on the establishment of efficient methods for long survival of transplanted autologous fat-tissues have been performed using animal models.It has been reported that some materials and bioactive peptides can improve the graft maintenance. Researched indicated that the addition of dextran beads with bFGF improves postoperative graft weight maintenance.Preadipocytes,scattering among the mature adipocytes in adipose tissue,are a potential seed cell for soft tissue reconstruction.The proliferative activity is high in preadipocytes,whereas fully differentiated adipocytes have lost their capacity of mitosis.Since it was possible to induce adipogenesis by providing transplanted preadipocytes a suitable microenvironment,we examined the effects of bFGF on preadipocytes 'proliferation and differation in vitro,and on forming adipose tissue in nude mice,and finally on autologous fat grafting on human body.
     Most published studies agreed that the evaluation of vitality should be mainly based on photographic alteration at different time course,or histopathologic studies,or fatty acid analysis.Only a few studies have attempted to document the persistence of transplanted fat with imaging techniques.The changes of fatty tissue under CT scan, especially of transplanted fat,over the time course post-transplantation has never been reported.For the first time we tried to access the CT signal behavior of transplanted fat over time and compared it with native subcutaneous facial fat in the patients with temporal lipodystrophy.
     Objectives:
     1.to Isolate and culture preadipocytes from adult human adipose tissue,
     2.to study the effects of bFGF on preadipocytes on proliferation and differation in vitro and on forming adipose tissue in nude mice model;
     3.to study the effects of bFGF on autologous fat grafting;4.to observe the CT signal behavior of transplanted fat over time.
     Methods
     1.In vitro tissue culture
     1.1 Isolation and culture:Preadipocytes were isolated out of fragments of freshly obtained human subcutaneous adipose tissue of adults and cultured.
     1.2 The second passage cells with the density of 10~4 /cm~2were cultured in DMEM containing 10ng/ml bFGF(the control only in DMEM),counting the number of the cells with MTT and making the growth curve of the cells.
     1.3 The second passage cells with the density of 10~4/cm~2were cultured in DMEM for 2 days,After cultured with the presence of 50 nm of insulin,100 nM of dexamethasone,10 mg/ml of transferrin,200 pM of triiodet- hyronine,and bFGF(10ng/ml) for 9 days, examining the TG mass synthesized in 3~(rd),6~(th) and 9~(th).
     2.In vivo experiments
     2.1 Preparation of human preadiocytes/ADM grafts:A suspension of 100 ul, containing 310~4cells/ml was seeded on the upper surface by gentle dropping one the pre-wetted ADM;group a,the suspension containing 10ng/ml bFGF,group b,the suspension without bFGF,group c having not any cells.
     2.2.Transplation and explantion:12 fabricated preadipocyte/ADM constructs were transplanted subcutaneously to the nude mice.After 8 weeks,the mice were killed and the grafts were explanted.
     2.3 Histology/immunohistochemistry:the explanted material was fixed in 4%buffered formaldehyde solution.Embedded,vertically sectioned,and stained.The formalin fixed fragments were dehydrated and embedded in paraffin.Slices were prepared and stained with monoclonal antibodies specific for human vimentin.
     2.4 Cellularity:Microscopic fields of cuts were examined at 200~* magnification.The overall cellularity was assessed.
     3.clinical research
     3.1 20 cases with temporal lipodystrophy underwent fat injection.
     3.2.the concentrated and purified sample containing 8000u/20ml bFGF was injected into the temporal area of both sides.
     3.3 CT was performed preoperation and 2days,3monthes post -operation,respectively..
     3.4 Invested the rate of absorption of the fat.
     Results
     1.In vitro
     1.1 bFGF can improve the proliferation and differentiation of preadipocytes.
     1.2 bFGFcan increase the synthesis of TG of preadipocytes.
     2.In vivo
     2.1 Microscopical examination of the grafts demonstrated viable adipose tissue located on the surfaces of ADM in group a,but group c showed any adipose tissue.
     2.2 The cellularity was 77±56/field in group a while group b showed 66±44/field.
     2.3 Staining for human-vimentin indicated that cells within the grafts were significantly positive and human origin in group a.
     3.clinical application
     3.1 In 20 cases,16 areas showed excellent results,20areas showed good results,4 areas showed poor results
     3.2 the rate of absorption of the fat was alleviated with bFGF treatment.
     Conclusion
     1.bFGF can improve the proliferation and stimulate differentiation of Pra In vitro
     2.bFGF can increase the adipogenesis in vivo
     3.ADM is abetter scaffold for preadipocyte engineer.
     4.bFGF can increase the survival of injection fat grafts
     5.CT imaging has the potential to serve as a follow-up method for fat transplantation or even for inter-study comparisons.
引文
1.Billings Jr E,May Jr JW.Historical review and present status offree fat graft autotransplantation in plastic and reconstructivesurgery.Plast Reconstr Surg 1989;83:368-81.
    2.HartrampfCR,Sche.an M,Black PW.Breast reconstruction with a transverse abdominal island.ap.Plast Reconstr Surg 1982;69:216-25.
    3.Ellenbogen R.Free autogenous pearl fat grafts in the face-apreliminary report of a rediscovered technique.Ann Plast Surg1986;16:179-94.
    4.尤维涛,李东,李健宁,李比,秦荣生,陈育哲。自体脂肪颗粒注射移植治疗面部软组织凹陷 中国微创外科杂志 2003(3);2:131-133
    5.张新合,高建华.脂肪颗粒注射移植.实用美容整形外科杂志 1999;10:148-150.
    6.Ismail Kuran,M.D.,and Burcak Tumerdem,M.D.A New Simple Method Used to Prepare Fat for Injection Aesth.Plast.Surg.2005;27:18-22.
    7.Patrick Jr CW.Tissue engineering strategies for adipose tissue repair.Anat Rec 2001;263(4):361-6.
    8.李青峰.自体脂肪颗粒移植临床应用回顾与分析 中国美容医学杂志 2005;14:17-18
    9.王炜,主编.整形外科学.杭州:浙江科学技术出版社,1999.326-327.
    10.Van RLR,Roncari DA.Complete differentiation of adipocyte pre-cursors:a culture system for studying the cellular nature of adipose tissue.Cell Tissue Res,1978,195:317-324.
    11.Peer LA.Loss of weight and volume in human fat grafts.Plast Reconstr Surg,1950,5:217-219.
    12.Illouz YG.The fat cell "graft":a new technique to fill depressions.Plast Reconstr Surg,1986,78:118-126.
    13.祁佐良,李二恪,王厚滨.颗粒状脂肪组织移植的实验研究 中华整形烧伤杂志1997;13:54-56
    14.Kononas TC,Bueky LP,Hurley C,et al.The fat of suctioned and surgically removed fat after reimplantation for soft-tissue augmentation:a volumetric andhistologic study in the rabbit Plast Reconstr Surg.1993;91(5):763-768
    15.Baran CN,Celebiolu S,Sensoz.The behavior of fat grafts in recipient areas with enhanced vascularity.Plast Reconstr Surg.2002;109(5):1646-1652
    16.Viterbo F,Marques M,Valente M.Fat-tissue injection versus graft:experimental study in rabbits.Ann Plast Surg.1994;33:184-187
    17.戚可名,王雪,熊斌.脂肪颗粒注射移植的实验研究与临床应用。中华烧伤整形外科杂志1994;10:108-120
    18.Chajchir A,Benzaqueen I.Liposuction fat grafts in face wrinkle and hemifacial atrophy.Aesthetic Plast Surg.1986;10(5):55-59
    19.Pereira LH,Radwanski HN.Fat grafting of the buttocks and lower limbs.Aesthetic Plast Surg.1996;20(5):409-416
    20.鲍卫汉。脂肪小珠皮下注射的实验研究和临床应用。中华整形烧伤外科杂志1994,10:361-363
    21.汪良明,王魁然,袁欣。减肥脂肪颗粒移植隆乳术。中华医学美容2000;6:181-183
    22.Yukesel E,Weinfeld AB,leek R,et al.Increased free fat-graft survival with long-term,local delivery of insulin,insulinlike growth factor and basic fribroblast growth factor by PL GA/ PEG micropheres.Plast Reconster Surg,2000,105:1712-1720.
    23.王阳,戚可名,马越波.我院自体脂肪颗粒注射移植十年回顾.中华整形外科杂志,2002.18:95-97.
    24.戚可名,主编.女性整形美容外科学.北京:人民军医出版,2001.673-687.
    25.Van RLR,Bayliss CE,Roncari DAK.Cytological and enzymologi-cal characterization of adult human adipocyte precursors in culture.J clin Invest,1976,58:695-702.
    26.Van RLR,Roncari DAK.Complete differentiation in vivo of implanted cultured adipocyte precursors from adult rats.Cell Tissue Research,1982,225:557-565.
    27.Kaminer MS,Omura ME.Editorial.Comment on Arch Dermatal Arch DermataL 2001;137:812-814
    28.Sadick NS,Hudgins LC.Fatty acid analysis of transplanted adipose tissue.Arch DermataL 2001;137:723-727
    1.王大为,徐惠,郭恩覃,张明利.脂肪移植与整形外科——基础研究综述中国修复重建外科杂志,1997年;11:61-63
    2.王竹晨,刘建中,李燕,杨冬梓,邝健全.人前脂肪细胞的原代培养 中山医科大学学报,2001,22(6):443-446
    3.Nobuko Kawaguchi,Kazuhiro Toriyama,Eleniicodemou-Lena,Kazuhiko Inou,Shuhei Torii,and Yasuo Kitagawa.De novo growth factor adipogenesis in mice at the site of injection of basement membrane and basic fibroblast PNAS;1998;95:1062-1066
    4.Patrick Jr CW,Chauvin PB,Robb GL.Tissue engineered adipose.Fronties in tissue engineering..Oxford Elsevier,Science.1998.369-382
    5.Black MA,Begin-Heick N.Growth and maturation of primary-cultured adipocyres from lean and ob/ob mice.J cell-biochem;1995,58:455-463
    6.D.Kremer W,Mu Hlbauer.Tissue engineering of human fat for soft tissue augmention:in vitro result Eur Plast Surg,2002:24:343-348
    7.Pittenger MF,Mackay AM,Beck SC.Multilineage potential of adult human mesenchymal stem cell.Science,1999;284:143-147.
    8.Kokai IE,Rubin JP,Marra KG.The potential of adipose-derived adult steml cells as a source of neuronal progenitor cells Plast Reconstr Surg,2005;116:1453-1460
    9.张崇本.脂肪细胞的分化及调控生理科学进展,2004;35:7-10
    10.Smith PJ,Wise LS,Berkowitz R,et aI.IGF-I is a essential regulator of the differentiation of 3T3-L adipocytes.J Biol Chem,1988;263(19):9402-9408.
    11.Aiehaud P,Grimaldi R,Negnel.Cellular and molecular aspects of adipose tissue development.Annu Rev Nutr,1992;12:207-233.
    12.SC Butterwith.Molecular events in adipocyte development.Harm Ther,1994;61:399-411.
    13.Schmidt W,Poll-Jordan,Loffler G.Adipose conversion of 3T3-L Cell in a serum free Culture system depends on EGF,IGF-I,cortisoterone and Cyclic AMP.EMBO,1991;10:3787-3793.
    14.Waditsch M,Heinze E,Haunter H,et al.Biological effects of human growth hormone in rat adipocyte precursor cell and newly differentiated adipocytes in primary culture.Metabolism,1996;45(1):34-42
    15.廖天安,谢富生,王琼超.小颗粒脂肪移植缄性成纤维细胞因子及缓释剂浓度的正交筛选.中华整形外科杂志,1998,14:283-285
    1.Kapfer SA;Keshen TH.The use of human acellular dermis in the operative management of giant omphalocele J Pediatr Surg.2006;41(1):216-20
    2.Bannasch H,Momeni A,Knam,F,Stark GB,Fohn M.Tissue engineering of skin substitutes Panminerva-Med.2005;47(1):53-60
    3.Kim JY,Bullocks JM,Basu CB,Bienstock A,Link R,Kozovska M,Hollier L,Yuksel E.Dermal composite flaps reconstructed from acellular dermis:a novel method of neourethral reconstruction.Plast Reconstr Surg.2005;115(7):96e-100e
    4.张立海,胡敏.异体脱细胞真皮基质的研究进展国外医学生物医学程分册2005;28:241-243
    5.王春华,汪昌荣,方林森.脱细胞真皮应用的研究现状安徽医学2004;25:263-265
    6.Sclafani AP,Romo T,Jacono AA.Evaluation of acellular dermal graft in sheet and injectabl forms for soft tissue augmentation:clinical obervation and histological analysis Arch Facial Plast Surg,2000;2:130-136
    7.Rohrich RJ,Reagon BJ,Adams WE Early relsult of vermilion lip augmentation using acellular allogenic:An adjunct in facial rejuvenation Plast Reconstr Surg 2000;205:409-416
    8.Thomas S,Sean L,Gottfried W.Histomorphologicandvolumetricanalysis implanted autologous preadipocyte cultures suspended in fibrin glue:a potential new source for tissue augmentation.Aesth Plast Surg,2001,25:57-63.
    9.Von Heimburg D,Zachariah S,Heschel I.Human preadipocytes seeded on freeze-dried collagen scaffold s investigated in vitro and invivo.Biomaterials2001,22:429-438.
    10.Von Heimburg D.Kuberka Ⅲ,Rendchen R.Preadipocyte-loaded collagen scaffolds with enlarged poresize for improved soft tissue engineering.Int J Artif Organs.2003,26:106421076.
    11.Yuksel E,Weinfeld AB,Cleek R.Increased free fat-graft survival with the long-term,local delivery of insulin,insulin-like growth factor-1,and basic fibroblast growthfactor by PLGA/PEG microspheres.Plast Reconstr Surg,2000,105:1712-1720.
    1.Leong DT,Hutmacher DW,Chew FT,Lira TC.Viability and adipogenic potential of human adipose tissue processed cell population obtained from pump-assisted and syringe-assisted liposuction J-Dermatol-Sci.2005 Mar;37(3):169-76
    2.Tzikas TL.Lipografting:autologous fat grafting for total facial rejuvenation.Facial-Plast-Surg.2004 May;20(2):135-43
    3.孙庆仲,闫红艳,李正维.自体颗粒脂肪移植术的进展 中华医学美学美容杂志,2002;8:28-30
    4.Kaminer MS,Omura ME.Editorial.Comment on Arch Dermatal Arch DermataL 2001;137:812-814
    5.Sadick NS,Hudgins LC.Fatty acid analysis of transplanted adipose tissue.Arch DermataL 2001;137:723-727
    6.Susanne C.Goehde,Hilmar Kuehl,Mark E.Ladd.Magnetic resonance imaging of autologous fat grafting Eur Radiol,2005;15:2423-2426
    7.Borkan Gray A,Gerzof SG,Robbins AH.Assessment of abdominalfat content by computed tomography.The American Journal of ClinicalNutrition,1982,36(7):172-177.
    8.Ferrozzi F,Zuccoli G,Tognini G.An assessment of abdominal fatty tissue distribution in obese children:A comparison betweene chography and computed tomography.Radiol Med,1999;98(6):490-493.
    9.梅媚,张力新,万柏坤.基于CT图像的势函数聚类分割人体脂肪检测.天津大学学报,2004;37:740-744.
    10.Shiffman MA,Mirrafati S.Fat transfer techniques:the effect of harvest and transfer methods on adipocyte viability and review of literature.Dermatol Surg,2001,27(9):819-826.
    11.易成刚,郭树忠,张琳西.血管内皮细胞生长因子基因转染血管内皮祖细胞移植提高脂肪存活率的实验研究.中华整形外科杂志,2005,43(11):730-735.
    12.Shai YH,Lindcnbaum ES,Lazarovich AG.An integrated approach for increasing the survival of autologous fat grafts in the treatment of contour defects Plastic Reconsrt Surg.1999;104(4):945-948
    13.Yukesel E,Weinfeld AB,leek R Increased free fat-graft survival with long-term,local delivery of insulin,insulinlike growth factor and basic fribroblast growth factor by PL GA/ PEG micropheres.Plast Reconster Surg,2000,105:1712-1720.
    14.Yu Kimura,Makoto Ozeki,Takashi Inamoto,Yasuhiko Tabata,Adipose tissue engineering based on human preadipocytes combined with gelatin microspheres containing basic broblast growth factor Biomaterials,2003;24:2513-2521
    15.杜学亮,李庆生,罗少军,郝新光,冯祥生,梁杰.碱性成纤维细胞生长因子对颗粒状脂肪移植存活率及器官功能恢复的影响 中国临床康复,2004;8:3256-3258
    16.程晖.碱性成纤维细胞生长因子用于颗粒脂肪移植术的临床体会四川医学,2005;26:1420-1422
    17.赵焕童,李湘洲,王歧刚.碱性成纤维细胞生长因子对大鼠真皮下血管网皮片愈合的影响 中国临床康复,2002;7:168-170
    18.刘建,常祺,胡蕴玉,碱性成纤维细胞生长因子对兔骨髓基质细胞生物行为的影响中国临床康复,2002;7:184-187
    19.杜俊杰,罗卓荆,胡蕴玉.骨形态发生蛋白a_2、B转化生长因子、碱性 成纤维细胞生长因子在体内诱导成骨中的协同作用 中国临床康复2002;6:262
    20.Weidner N,Semple J,Welch W.Tumor angiogenesis and metastasis-correlation in invasive breast carcinama.N Engl Med,1991,324(64):1-8
    1.Neuber GA.Fat transplantation[J].Dtseh Ges Chir,1893.36:640-643.
    2.Illouz YG.The fat cell graft.,a new technique to fill depressions[J].Plast Recons Surg,1986,78(1):122-123.
    3.Chajchir A,Benzaquen I.Fat-graftinginjection for soft-tissue augmenta- tion.Plast Recons Surg,1989,84(6):921-934.Discussion..935.
    4.Shifman MA,Mirrafati S.Fat transfer techniques.,the efect of harvest and transfer methods on adipocyte viability and review of the literature[J].Dermatol Surg,2001,27(9):819-826.
    5.王大为,徐惠,郭恩覃,等.脂肪移植与整形外科:基础研究综述[J].中国修复重建外科杂志,1997,1(1)61-63.
    6.Langer S,Sinitsina I,Biberthaler P,et al.Revascularization of transplanted adipose tissue:a study in the dorsal skinfold chainber of hamsters[J].Ann Hast Surg,2002,48(1):53-59.
    7.Billings E,May J.Historical review and present status of free fat graft autotrans plantation in plastic and reconstranctive surgery.Plast Reconstr Surg,1989,83:368-381.
    8.王炜,主编.整形外科学.杭州:浙江科学技术出版社,1999.326-327.
    9.Van RLR,Roncari DA.Complete differentiation of adipocyte pre2 cursors:a culture system for studying the cellular nature of adipose tissue.Cell Tissue Res,1978,195:317-324.
    10.Peer LA.Loss of weight and volume in human fat grafts.Plast Reconstr Surg,1950,5:217-219.
    11.Illouz YG.The fat cell graft:a new technique to fill depressions.Plast Reconstr Surg,1986,78:118-126.
    12.Latoni JD,Marshall DM,Wolfe SA.Overgrowth of fat autotransplanted for correction of localized steroid-nduced atrophy[J].Hast Reconstr Surg,2000,106(1):566-569.
    13.Duncan DI.Autologous fat grafting for body contouring.Perspect plast Surg,2001, 15(2):61-70
    14.Znk PA,Zhu M,Mizuno H,et al.Comparative study of survival of autologous adipose tissue taken and transplanted by different techniques.Tissue Engineering,2001,7:211-228
    15.Katz AJ,Llull R.Hedrick MN,et al.Fat transfer techniques:The effect of harvest and transfer methods on adipocyteviability and review of the literature.Clin Plast Surg,1999,26:587-603
    16.Heimburg D,Lemperle G,Dippe B,et al.Free transplantation of fat autografts expanded by tissue expanders in rats[J].Br J Plast Surg.994,47(71):470-476.
    17.朱晓海,何清濂,林子豪.人前脂肪细胞培养及增殖与分化模型的建立[J].中华整形烧伤外科杂志,1999,15(3):199-201
    18.Von Heimburg D,lempede G.Free transplantation of fat autorafts expanded bytissue expandemin rats.Br J Plast Surg,1994,49(7):470-476
    19.Rieck B,Schlaak S.In vivo traking of preadipocytes after mtogous antation.AnnHast surg.2003.51(3):294-302.
    20.Yan H,Aziz E,Shillabeer G,et al.Nitric oxide promotes differentiation of rat white preadipocytes in culture[J].Lipid Res,2002,43,(2):2123-2129.
    21.Zizola CF,Balana ME,Sandoval M,et al.Changes in IGF-Ⅰ receptor and IGF-Ⅰ mRNA during differentiation of 3T3-L1 preadipoeytes[J].Biochimie,2002,84(10):975-980.
    22.Akerblad P,Lind U,Liberg D,et al.Early B-cell factor(O/E-1) is a promoter of adipogenesis and involved in control of genes important for terminal adipoeyte differentiation[J].Mol Cell Biol,2002.22(22):8015-8025.
    23.Bell A,Gagnon A,Dods P,et al.TSH signaling and cell survival in 3T3-L1preadipoeytes[J].Am J Physiol Cell Physiol,2002,283(4):1056-1064.
    24.Evans M,Brown J,Melntosh M.Isomer-specific effects of conjugated linoleic acid on adiposity and lipid metabolism[J].J Nutr Biochem.2002.13(91):508.
    25.Bennett CN,Ross SE,Longo KA,et al.Regulation of Wnt signaling during adipogenesis[J].J Biol Chem,2002,277(34):998-1004.
    26.Siddals KW,Westwood M,Gibson JM,et al.IGF binding protein-1 inhibits IGF efects on adipocyte function:implications for insulin-like actions at the adipocyte[J].J Endocrinol,2002,174(21):289-297.
    27.Moon YS,Smas CM,Lee K,et al.Mice lacking paternally expressed Pref-1/Dlk 1display growth retardation and accelerated adiposity[J].Mol Cell Biol,2002,22(15):5585-5592
    28.Zhang C,Teng L,Shi Y,et al.Effect ot'enn)din on proliferation and diferentiation of 3T3-L1 preadipocyte and FAS activity[J].Chin Med J(Engl),2002.115(7):1035-1038.
    29.Hudson A.A new technique to fill depressions.Plast.Reconstr.Surg.Aesth Plast Surg,1990,14:195-198
    30.Illouz YG.Body sculpturing by lipoplasty.London.New.York.Churchill:Livingstone,1989,53(1):97-102.
    31.Rohfich RJ,Sorokin ES,Brown SA.In search of improved fat transferviability:a quantitative analysis of the role of centrifugation and harvest site.PJlast Reconstr Surg.2004,113(1):391-395.
    32.Sommer B,Sallter G.Current concept off at graft survival:histology of aspirated adipose tissue and review of the literature.Dermatol Sueg,2000,26(12):1159-1166.
    33.Aygit AC,Sarakaya A,Donganay L,el al.The fate of intramuscularly injected fat autografts:an experimental study in rabbits.Aesthetic Plast Surg,2004,28(5):334-339.
    34.Loeb R.Fat-grafting injection for soft-tissue augmentation.Aesth Plsat Surg,1991,15:61-66
    35.Matsudo PK,Toledo CS.Autologous fat transplantation:Long-term follow-up.Aesth Plast Surg,1988,12:35-38
    36.N guyen A,Pasyk KA,Bo uvier TN,et al.Long-term results of fat transplantation:Clinical and histologic studies.Plast Reconstr Surg,1990,85:378-384
    37.张新合,高建华.取脂方法及吸脂压力对脂肪细胞损伤程度的实验研究.中华医学美学美容杂志,2001,7(5):254-257.
    38.Sato K,Nakanishi N,Mitsumoto M.Culture condition supporting adipocyte conversion of stmmal-vascular cells from bovine intramuscur adipocyte tissues[J].Journal of Veterinary Medical Science,1996,58:1073-1078.
    39.Mandrup S,Lane MD.Regulating adipogenesis[J].Biol Chem,1997,272:5367-5370.
    40.Prins,JB,O Rahilly S.Regulation of adipose cell number in man.Clin Sci,1997,92:3-11.
    41.Varzaneh E,Components EG.Shillabeer KL,et al.Extraeellular matrix secreted by miemvaseular endothelial cells stimulate preadipocyte diferentiation in vitro[J].Metabolism,1994,43:906-912.
    42.Cynthia M,Shas,Hei Sook Svl.Control of adipocyte diferentia-tion.Biochemd1995,309:697-710.
    43.Billings Ejr,May Wjr.Historical review and present status of free fat graft autotransplantation in plastic and reconstructive surgery.Plast Reconstr Surg,1989,83:368-378
    44.马越波,戴峥,林君飞.自体脂肪移植乳房隆起术.宁波医学,1999,11:211-213.
    45.Yukesel E,Weinfeld AB,leek R,et al.Increased free fat2graft survival with long2term,local delivery of insulin,insulinlike growth factor and basic fribroblast growth factor by PL GA/ PEG micropheres.Plast Reconster Surg,2000,105:1712-1720_
    46.王阳,戚可名,马越波.我院自体脂肪颗粒注射移植十年回顾.中华整形外科杂志,2002.18:95-97.
    47.戚可名,主编.女性整形美容外科学.北京:人民军医出版社,2001.673-687.
    48.Har-Shai Y,Lindenbaum ES,Gamliel-Lazarovich A,et al.An integrated approach for increasing the survival of autologous fat grafts in the treatment of contour defects[J]Plast Reconstr Surg,1999 104(4):945-954.
    1. Patrick Jr CW. Tissue-engineering strategies for adipose tissue repair. Anat Rec 2001;263(4):361-6.
    2. Langstein HN, Robb GL. Reconstructive approaches in soft tissue sarcoma. Semin Surg Oncol 1999;17(1):52-65.
    3. 2004 American Society of Plastic Surgeons Statistics. Available from: www.plastic surgery.org
    4. Billings Jr E, May Jr JW. Historical review and present status of free fat graft autotransplantation in plastic and reconstructive surgery. Plast Reconstr Surg 1989;83(2):368-81.
    5. von Heimburg D, Kuberka M, Rendchen R, Hemmrich K, Rau G, Pallua N. Preadipocyte-loaded collagen scaffolds with enlarged pore size for improved soft tissue engineering. Int J Artif Organs 2003;26(12): 1064-76.
    6. Ashinoff R. Overview: soft tissue augmentation. Clin Plast Surg 2000;27(4):479-87.
    7. Klein AW, Elson ML. The history of substances for soft tissue augmentation. Dermatol Surg 2000;26(12): 1096-105.
    8. Patrick Jr CW. Adipose tissue engineering: the future of breast and soft tissue reconstruction following tumor resection. Semin Surg Oncol 2000;19(3):302-11.
    9. Katz AJ, Llull R, Hedrick MH, Futrell JW. Emerging approaches to the tissue engineering of fat. Clin Plast Surg 1999;26(4):587-603.
    10. Patrick CW, Mikos AG, McIntire LV. Frontiers in tissue engineering, 1st ed. Oxford, UK and New York: Pergamon; 1998.
    11. Patrick CW. Breast tissue engineering. Annu Rev Biomed Eng 2004;6:109-30.
    12. von Heimburg D, Hemmrich K, Zachariah S, Staiger H, Pallua N. Oxygen consumption in undifferentiated versus differentiated adipogenic mesenchymal precursor cells. Respir Physiol Neurobiol 2005; 146(2-3): 107-16.
    13. Langer R. Tissue engineering: a new .eld and its challenges. Pharm Res 1997;14(7):840-1.
    14. Fuchs JR, Nasseri BA, Vacanti JP. Tissue engineering: a 21~(st) century solution to surgical reconstruction. Ann Thorac Surg 2001;72(2):577-91.
    15. Grif.th LG. Emerging design principles in biomaterials and scaffolds for tissue engineering. Ann N Y Acad Sci 2002;961:83-95.
    16. Stock UA, Vacanti JP. Tissue engineering: current state and prospects. Annu Rev Med 2001;52:443-51.
    17. Walgenbach KJ, Voigt M, Riabikhin AW, Andree C, Schaefer DJ, Galla TJ, et al. Tissue engineering in plastic reconstructive surgery. Anat Rec 2001;263(4):372-8.
    18. Albright A, Stern J. Adipose tissue. Encyclopedia of sports medicine and science. Internet Society for Sport Science; 1998.
    19. Lindsay DT. Functional human anatomy. St. Louis: Mosby; 1996.
    20. Lanza RP, Langer RS, Vacanti J. Principles of tissue engineering. 2nd ed. San Diego, CA: Academic Press; 2000.
    21. Atala A, Lanza RP. Methods of tissue engineering. San Diego, CA: Academic Press; 2002.
    22. Beahm EK, Walton RL, Patrick Jr CW. Progress in adipose tissue construct development. Clin Plast Surg 2003;30(4):547-58.
    23. Hemmrich K, von Heimburg D, Rendchen R, Di Bartolo C, Milella E, Pallua N. Implantation of preadipocyte-loaded hyaluronic acidbased scaffolds into nude mice to evaluate potential for soft tissue engineering. Biomaterials 2005;26(34):7025-37.
    24. De Ugarte DA, Ashjian PH, Elbarbary A, Hedrick MH. Future of fat as raw material for tissue regeneration. Ann Plast Surg 2003;50(2):215-9.
    25. Ailhaud G, Grimaldi P, Negrel R. Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr 1992; 12:207-33.
    26. Patrick Jr CW, Zheng B, Johnston C, Reece GP. Long-term implantation of preadipocyte-seeded PLGA scaffolds. Tissue Eng 2002;8(2):283-93.
    27. Patrick Jr CW, Chauvin PB, Hobley J, Reece GP. Preadipocyte seeded PLGA scaffolds for adipose tissue engineering. Tissue Eng 1999;5(2):139-51.
    28. Cho SW, Kim SS, Rhie JW, Cho HM, Choi CY, Kim BS. Engineering of volume-stable adipose tissues. Biomaterials 2005;26(17):3577-85.
    29. McGlohorn JB, Grimes LW, Webster SS, Burg KJ. Characterization of cellular carriers for use in injectable tissue-engineering composites. J Biomed Mater Res A 2003;66(3):441-9.
    30. McGlohorn JB, Holder Jr WD, Grimes LW, Thomas CB, Burg KJ. Evaluation of smooth muscle cell response using two types of porous polylactide scaffolds with differing pore topography. Tissue Eng 2004;10(3-4):505-14.
    31. Burg KJ, Boland T. Minimally invasive tissue engineering composites and cell printing. IEEE Eng Med Biol Mag 2003;22(5):84-91.
    32. von Heimburg D, Serov G, Oepen T, Pallua N. Fat tissue engineering. In: Ashammakhi N, Ferretti P, editors. Topics in Tissue Engineering. 2003.
    33. Halbleib M, Skurk T, de Luca C, von Heimburg D, Hauner H. Tissue engineering of white adipose tissue using hyaluronic acidbased scaffolds. I: in vitro differentiation of human adipocyte precursor cells on scaffolds. Biomaterials 2003;24(18):3125-32.
    34. Cavin AN, Ellis SE, Burg KJL. Adipocyte Response to injectable breast tissue engineering scaffolds. In: Transactions of the 30th annual meeting of the Society for Biomaterials, Memphis, TN. 2005.
    35. Gomillion C, Cavin AN, Ellis SE, Burg KJL. Evaluation of tissue engineered injectable devices for breast tissue engineering. In: Transactions of the 30th annual meeting of the Society for Biomaterials, Memphis, TN. 2005.
    36. Patel PN, Gobin AS, West JL, Patrick Jr CW. Poly(ethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation. Tissue Eng 2005; 11 (9-10): 1498-505.
    37. Halberstadt C, Austin C, Rowley J, Culberson C, Loebsack A, Wyatt S, et al. A hydrogel material for plastic and reconstructive applications injected into the subcutaneous space of a sheep. Tissue Eng 2002;8(2):309-19.
    38. Loebsack A, Greene K, Wyatt S, Culberson C, Austin C, Beiler R, et al. In vivo characterization of a porous hydrogel material for use as a tissue bulking agent. J Biomed Mater Res 2001;57(4):575-81.
    39. Brey EM, Patrick Jr CW. Tissue engineering applied to reconstructive surgery. IEEE Eng Med Biol Mag 2000;19(5): 122-5.
    40. Eiselt P, Yeh J, Latvala RK, Shea LD, Mooney DJ. Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials 2000;21(19):1921-7.
    41. Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999;20(1): 45-53.
    42. Burg KJ, Holder WD, Culberson CR, Beiler RJ, Greene KG, Loebsack AB, et al. Parameters affecting cellular adhesion to polylactide .lms. J Biomater Sci Polym Ed 1999; 10(2): 147-61.
    43. Burg KJL, Shalaby SW. Biodegradable materials. Austin: R.G. Landes Co.; 1999.
    44. Butterwith SC. Molecular events in adipocyte development. Pharmacol Ther 1994;61(3):399-411.
    45. Cornelius P, MacDougald OA, Lane MD. Regulation of adipocyte development. Annu Rev Nutr 1994; 14:99-129.
    46. Hausman DB, DiGirolamo M, Bartness TJ, Hausman GJ, Martin RJ. The biology of white adipocyte proliferation. Obes Rev 2001;2(4):239-54.
    47. MacDougald OA, Mandrup S. Adipogenesis: forces that tip the scales. Trends Endocrinol Metab 2002;13(1):5-11.
    48. Sugihara H, Funatsumaru S, Yonemitsu N, Miyabara S, Toda S, Hikichi Y. A simple culture method of fat cells from mature fat tissue fragments. J Lipid Res 1989;30(12):1987-95.
    49. Warne JP. Tumour necrosis factor alpha: a key regulator of adipose tissue mass. J Endocrinol 2003; 177(3):351-5.
    50. Burg KJL, Austin CE, Culberson CR, Greene KG, Halberstadt CR, Holder Jr WD, et al. A novel approach to tissue engineering: injectable composites. Transactions of the 2000 world biomaterials congress, Kona, HI, 2000.
    51. Burg KJL, inventor. Tissue engineering composite. United States patent 6,991,652, 2006.
    52. Burg KJL, Halberstadt C, Holder Jr WD, inventors. Absorbable tissue expander. United States patent 6,206,930, 2001.
    53. Masuda T, Furue M, Matsuda T. Novel strategy for soft tissue augmentation based on transplantation of fragmented omentum and preadipocytes. Tissue Eng 2004; 10 (11-12): 1672-83.
    54. Kimura Y, Ozeki M, Inamoto T, Tabata Y. Time course of de novo adipogenesis in matrigel by gelatin microspheres incorporating basic .broblast growth factor. Tissue Eng 2002;8(4):603-13.
    55. Kawaguchi N, Toriyama K, Nicodemou-Lena E, Inou K, Torii S, Kitagawa Y. De novo adipogenesis in mice at the site of injection of basement membrane and basic .broblast growth factor. Proc Natl Acad Sci USA 1998;95(3): 1062-6.
    56. Toriyama K, Kawaguchi N, Kitoh J, Tajima R, Inou K, Kitagawa Y, et al. Endogenous adipocyte precursor cells for regenerative softtissue engineering. Tissue Eng 2002;8(1): 157-65.
    57. Tabata Y, Miyao M, Inamoto T, Ishii T, Hirano Y, Yamaoki Y, et al. De novo formation of adipose tissue by controlled release of basic .broblast growth factor. Tissue Eng 2000;6(3): 279-89.
    58. Masuda T, Furue M, Matsuda T. Photocured, styrenated gelatinbased microspheres for de novo adipogenesis through corelease of basic .broblast growth factor, insulin, and insulin-like growth factor Tissue Eng 2004;10(3-4):523-35.
    59. Croissandeau G, Chretien M, Mbikay M. Involvement of matrix metalloproteinases in the adipose conversion of 3T3-L1 preadipocytes. Biochem J 2002;364(Part 3):739-46.
    60. Mandrup S, Lane MD. Regulating adipogenesis. J Biol Chem 1997;272(9):5367-70.
    61. Yuksel E, Weinfeld AB, Cleek R, Waugh JM, Jensen J, Boutros S, et al. De novo adipose tissue generation through long-term, local delivery of insulin and insulin-like growth factor-1 by PLGA/PEG microshperes in an in vivo rat model: a novel concept and capability. Plast Reconstr Surg 2000; 105:1721-9.
    62. Borges J, Mueller MC, Padron NT, Tegtmeier F, Lang EM, Stark GB. Engineered adipose tissue supplied by functional microvessels. Tissue Eng 2003;9(6): 1263-70.
    63. Brey EM, Uriel S, Greisler HP, McIntire LV. Therapeutic neovascularization: contributions from bioengineering. Tissue Eng 2005; 11(3-4):567-84.
    64. Vats A, Tolley NS, Polak JM, Buttery LD. Stem cells: sources and applications. Clin Otolaryngol Allied Sci 2002;27(4):227-32.
    65. Stem cells: a primer: National Institutes of Health. September 2002.
    66. Ballas CB, Zielske SP, Gerson SL. Adult bone marrow stem cells for cell and gene therapies: implications for greater use. J Cell Biochem Suppl 2002;38:20-8.
    67. Conrad C, Huss R. Adult stem cell lines in regenerative medicine and reconstructive surgery. J Surg Res 2005;124(2):201-8.
    68. Habib NA. Stem cell repair and regeneration. London: Imperial College Press: Distributed by World Scienti.c Publishing; 2005.
    69. Pelled GGT, Asian H, Gazit Z, Gazit D. Mesenchymal stem cells for bone gene therapy and tissue engineering. Curr Pharm Des 2002;8(21): 1917-28.
    70. Zandstra PW, Nagy A. Stem cell bioengineering. Annu Rev Biomed Eng 2001;3:275-305.
    71. Spangrude GJ. When is a stem cell really a stem cell? Bone Marrow Transplant 2003;32(Suppl 1):S7-S11.
    72. Bishop AE, Buttery LD, Polak JM. Embryonic stem cells. J Pathol 2002;197(4):424-9.
    73. Atala A. Tissue engineering and regenerative medicine: concepts for clinical application. Rejuvenat Res 2004;7(1): 15-31.
    74. Suh H. Tissue restoration, tissue engineering and regenerative medicine. Yonsei Med J 2000;41(6):681-4.
    75. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med (Maywood) 2001;226(6):507-20.
    76. Cortesini R. Stem cells, tissue engineering and organogenesis in transplantation. Transpl Immunol 2005; 15(2):81-9.
    77. Kaji EH, Leiden JM. Gene and stem cell therapies. JAMA 2001;285(5):545-50.
    78. Perry D. Patients' voices: the powerful sound in the stem cell debate. Science 2000;287(5457):1423.
    79. Snow NE. Stem cell research: new frontiers in science and ethics. Notre Dame, Ind.: University of Notre Dame Press; 2003.
    80. Young FE. A time for restraint. Science 2000;287(5457): 1424.
    81. Prentice DA. The President's council on bioethics: adult stem cells;2004.
    82. Chung Y, Klimanskaya I, Becker S, Marh J, Lu SJ, Johnson J, et al.Embryonic and extraembryonic stem cell lines derived from singlemouse blastomeres. Nature 2006;439(7073):216-9.
    83. Grompe M. Embryonic stem cells without embryos? Nat Biotechnol 2005;23(12):1496-7.
    84. Meissner A, Jaenisch R. Generation of nuclear transfer-derived pluripotent ES cells from cloned Cdx2-de.cient blastocysts. Nature 2006;439(7073):212-5.
    85. Turksen K. Adult stem cells. Totowa, NJ: Humana Press; 2004.
    86. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 2004;36(4):568-84.
    87. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418(6893):41-9.
    88. Winter A, Breit S, Parsch D, Benz K, Steck E, Hauner H, et al. Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum 2003;48(2):418-29.
    89. Huang JI, Kazmi N, Durbhakula MM, Hering TM, Yoo JU, Johnstone B. Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J Orthop Res 2005;23(6): 1383-9.
    90. Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, et al. Molecular and cellular characterisation of highly puri.ed stromal stem cells derived from human bone marrow. J Cell Sci 2003;116(Part 9): 1827-35.
    91. Lin TM, Tsai JL, Lin SD, Lai CS, Chang CC. Accelerated growth and prolonged lifespan of adipose tissue-derived human mesenchymal stem cells in a medium using reduced calcium and antioxidants. Stem Cells Dev 2005;14(1):92-102.
    92. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13(12):4279-95.
    93. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cellbased therapies. Tissue Eng 2001;7(2):211-28.
    94. Guilak F, Lott KE, Awad HA, Cao Q, Hicok KC, Fermor B, et al. Clonal analysis of the differentiation potential of human adiposederived adult stem cells. J Cell Physiol 2006;206(1):229-37.
    95. Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 2004;6(1):7-14.
    96. Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW,Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 2001;189(1):54-63.
    97. [Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun 2002;290(2):763-9.
    98. Nathan S, Das De S, Thambyah A, Fen C, Goh J, Lee EH. Cellbased therapy in the repair of osteochondral defects: a novel use for adipose tissue. Tissue Eng 2003;9(4):733-44.
    99. Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 2004;25(16):3211-22.
    100. Wang DW, Fermor B, Gimble JM, Awad HA, Guilak F. In.uence of oxygen on the proliferation and metabolism of adipose derived adult stem cells. J Cell Physiol 2005;204(1): 184-91.
    101.Betre H, Ong SR, Guilak F, Chilkoti A, Fermor B, Setton LA. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials 2006;27(1):91-9.
    102.Malafaya PB, Pedro AJ, Peterbauer A, Gabriel C, Redl H. Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells. J Mater Sci Mater Med 2005; 16:1077-85.
    103.Lin Y, Luo E, Chen X, Liu L, Qiao J, Yan Z, et al. Molecular and cellular characterization during chondrogenic differentiation of adipose tissue-derived stromal cells in vitro and cartilage formation in vivo. J Cell Mol Med 2005;9(4):929-39.
    104.Jorgensen C, Gordeladze J, Noel D. Tissue engineering through autologous mesenchymal stem cells. Curr Opin Biotechnol 2004;15(5):406-10.
    105.Knippenberg M, Helder MN, Doulabi BZ, Semeins CM, Wuisman PI, Klein-Nulend J. Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to .uid shear stress on osteogenic stimulation. Tissue Eng 2005; 11(11-12): 1780-8.
    106. Peterson B, Zhang J, Iglesias R, Kabo M, Hedrick M, Benhaim P, et al. Healing of critically sized femoral defects, using genetically modi.ed mesenchymal stem cells from human adipose tissue. Tissue Eng 2005;11(1—2):120—9.
    107.Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 2005;54(3): 132-41.
    108.Tholpady SS, Llull R, Ogle RC, Rubin JP, Futrell JW, Katz AJ. Adipose tissue: stem cells and beyond. Clin Plast Surg 2006;33(1):55-62 vi.
    109.Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 2006.
    110.Gimble JM. Adipose tissue-derived therapeutics. Expert Opin Biol Ther 2003;3(5):705-13.
    111.Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K, et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 2004; 14(4-6):311-24.
    112.Giorgino F, Laviola L, Eriksson JW. Regional differences of insulin action in adipose tissue: insights from in vivo and in vitro studies.Acta Physiol Scand 2005; 183(1):13-30.
    113.Neubauer M, Hacker M, Bauer-Kreisel P, Weiser B, Fischbach C, Schulz MB, et al. Adipose tissue engineering based on mesenchymal stem cells and basic .broblast growth factor in vitro. Tissue Eng 2005; 11(11-12): 1840-51.
    114.Mauney JR, Volloch V, Kaplan DL. Matrix-mediated retention of adipogenic differentiation potential by human adult bone marrowderived mesenchymal stem cells during ex vivo expansion. Biomaterials 2005;26(31):6167-75.
    115.Choi YS, Park SN, Suh H. Adipose tissue engineering using mesenchymal stem cells attached to injectable PLGA spheres. Biomaterials 2005;26(29):5855-63.
    116.Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev 1998;78(3):783-809.
    117.Rodriguez AM, Elabd C, Delteil F, Astier J, Vernochet C, Saint- Marc P, et al. Adipocyte differentiation of multipotent cells established from human adipose tissue. Biochem Biophys Res Commun 2004;315(2):255-63.
    118.Cui Q, Wang GJ, Balian G. Steroid-induced adipogenesis in a pluripotential cell line from bone marrow. J Bone Joint Surg Am 1997;79(7): 1054-63.
    119.Xiong C, Xie CQ, Zhang L, Zhang J, Xu K, Fu M, et al. Derivation of adipocytes from human embryonic stem cells. Stem Cells Dev 2005; 14(6):671-5.
    120. Hong L, Peptan I, Clark P, Mao JJ. Ex vivo adipose tissue engineering by human marrow stromal cell seeded gelatin sponge. Ann Biomed Eng 2005;33(4):511-7.
    121.Alhadlaq A, Tang M, Mao JJ. Engineered adipose tissue from human mesenchymal stem cells maintains prede.ned shape and dimension: implications in soft tissue augmentation and reconstruction. Tissue Eng 2005;11(3-4):556-66.
    122. Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 2005;332(2):370-9.
    123.Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004;109(10):1292-8.
    124.Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 2005;23(3):412-23.
    125.De Ugarte DA, Alfonso Z, Zuk PA, Elbarbary A, Zhu M, Ashjian P, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett 2003;89(2-3):267-70.
    126.Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 2004;8(3):301-16.
    127.Festy F, Hoareau L, Bes-Houtmann S, Pequin AM, Gonthier MP, Munstun A, et al. Surface protein expression between human adipose tissue-derived stromal cells and mature adipocytes. Histochem Cell Biol 2005;124(2): 113-21.
    128.Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrowderived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 1998;176(1):57-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700