人脂肪来源干细胞的可塑性及其在体外脂肪组织构建中的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在组织工程的研究与应用中,种子细胞的来源、功能、规模化扩增、分化能力和老化等是制约组织工程发展的重要瓶颈问题之一。成体干细胞因其具有强大的自我更新、多系分化等特性,给组织工程种子细胞的选择带来了新希望。脂肪组织来源的间充质干细胞因其具有易于自体取材,大量获取、来源广泛的优势现已逐渐成为脂肪组织工程种子细胞的热点研究对象。我们对脂肪间充质干细胞的生物学特性和可塑性进行了初步的研究,并且利用旋转生物反应器和微载体培养技术对其进行了体外规模化扩增的探讨。此外,我们以脂肪间充质干细胞为种子细胞,以可生物降解的聚羟基乙酸/聚乳酸的共聚物(polylactic/glycolic acid polymer,PLGA)或胶原/藻酸盐为支架材料,对体外人工脂肪组织构建也进行了初步的探索。研究表明,脂肪间充质干细胞具有良好的自我增殖和多系分化潜力,不仅能够向脂肪、成骨等组织细胞分化,也能够向肝、内皮组织细胞分化。它能够在旋转生物反应器中规模化扩增并且保持着稳定的生物学特性。这种模拟微重力的旋转反应器有利于细胞聚集体的形成和体外脂肪组织的构建。本研究为脂肪间充质干细胞在以细胞治疗和组织工程为基础的软组织缺损修复中的应用奠定了一定的理论和技术基础。
For cell-based tissue engineering, expansion and maintenance of cell remains a major obstacle in the fields of tissue engineering. Together with the potential of multilineage differentiation and extensive proliferation of adult stem cell, these characteristics may make it a promising source for the tissue engineering. Recent studies showed that adipose-derived stem cells (ADSCs), although a relatively new addition to the growing list of adult stem cells sources, can differentiate into multiple lineages when placed in an appropriate environment. Human adipose tissue is plentiful, easily procured, and appropriate for autologous transplantation, so they could be an alternative and promising stem cell source for tissue engineering strategies in the future. We have investigated and characterized the biology and plasticity of hADSCs. As an important component of tissue engineering, the bioreactor system plays an important role in providing an optimized environment for cell growth, expansion and functional 3-D tissue development. To overcome the scarcity of cells expansion, we have explored the availability of large scale cultivation of hADSCs utilizing collagen-treated microbeads as carrier in a rotary cell culture system (RCCS), a commercially available bioreactor developed by NASA. Moreover, in present study, we examined the potential of polylactic/glycolic acid polymer (PLGA) non-woven meshes, poly (L-lactic acid) polymer (PLLA), and mixture of sodium alginate /gelatin as biodegradable scaffolds to develop a biohybrid construct as well as hADSCs for ex vivo adipose tissue engineering. It was showed that hADSCs possess high capacity for self-replication and multi-differentiate potential, and can be expanded in large scale in RCCS, in which hADSCs can maintain their phenotype and function. It also demonstrated that simulated microgravity culture of cell/scaffolds in RCCS may be beneficial to cell aggregation, formation of 3-dimensional architecture and construction of adipose tissue in vitro. This study would provide the proof of concept of adipose-derived stem cells-based therapy and tissue engineering for soft tissue repair or other clinical applications.
引文
1 Katz AJ, Llull R, Hedrick MH, et al. Emerging approaches to the tissue engineering of fat. Clin Plast Surg, 1999, 26: 587-603
    
    2 Niechajev I, Sevcuk O. Long term results of fat transplantation: clinical and histologic studies. Plast Reconstr Surg, 1994, 94:496-506
    
    3 Gerszten PC. A formal risk assessment of silicone breast implants. Biomaterials, 1999, 20:1063-1069
    
    4 Peters W, Pritzker K, Smith D, et al. Capsular calcification associated with silicone breast implants: incidence, determinants, and characterization. Ann. Plast. Surg, 1998,41:348-360
    
    5 SiggelkowW, Faridi A, Spiritus K, et al. Histological analysis of silicone breast implant capsules and correlation with capsular contracture. Biomaterials, 2003, 24:1101-1109
    
    6 Shenaq SM, Yuksel E. New research in breast reconstruction: adipose tissue engineering. Clin Plast Surg, 2002, 29: 111-125
    
    7 Patrick CW. Breast tissue engineering. Annu Rev Biomed Eng, 2004, 6:109-130
    
    8 Kawaguchi N, Toriyama K, Nicodemou-Lena E, et al. De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. Proc Natl Acad Sci U.S.A, 1998,95: 1062-1066
    
    9 Masuda T, Furue M, Matsuda T. Photocured, styrenated gelatin-based microspheres for de novo adipogenesis through corelease of basic fibroblast growth factor, insulin, and insulin-like growth factor I. Tissue Eng , 2004,10:523-535
    
    10 Kimura Y, Ozeki M, Inamoto T, et al. Adipose tissue engineering based on human preadipocytes combined with gelatin microspheres containing basic fibroblast growth factor. Biomaterials, 2003,24: 2513-2521
    
    11 Patrick CWJr, Zheng B, Johnston C, et al. Long-term implantation of preadipocyte-seeded PLGA scaffolds. Tissue Eng, 2002, 8: 283-293
    
    12 Cho SW, Kim SS, Rhie JW, et al. Engineering of volume-stable adipose tissues. Biomaterials, 2005,26:3577-3585
    
    13 Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002,13: 4279-4295
    
    14 Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 2001, 7: 211-228
    
    15 Morizono K, De Ugarte DA, Zhu M, et al. Multilineage cells from adipose tissue as gene
    delivery vehicles. Hum Gene Ther, 2003, 14(l):59-66
    
    16 Kanemura Y, Mori H, Kobayashi S, et al. Evaluation of in vitro proliferative activity of human fetal neural stem/progenitor cells using indirect measurements of viable cells based on cellular metabolic activity. J Neurosci Res, 2002, 69: 869-879
    
    17 Langer R, Vacanti JP. Tissue engineering. Science, 1993,260(5110):920-926
    
    18 Stock UA, Vacanti JP. Tissue engineering: current state and prospects. Annu Rev Med, 2001, 52:443-451
    
    19 Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411):143-147
    
    20 Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002,418(6893):41-49
    
    21 Horwitz EM, Prockop DJ, Gordon PL, et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood, 2001, 97(5):1227-1231
    
    22 Koc ON, Gerson SL, Cooper BW, et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol, 2000, 18(2):307-316
    
    23 Shahdadfar A, Fronsdal K, Haug T, et al. In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells, 2005,23:1357-1366
    
    24 De Ugarte DA, Alfonso Z, Zuk PA, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett, 2003, 89(2-3):267-270
    
    25 Sen A, Lea2currieYR, Sujkowska D, et al. Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous. J Cell Biochem, 2001,81 :3122319
    
    26 Aust L, Devlin B, Foster SJ, et al. Yield of human adipose derived adult stem cells from liposuction aspirates. Cytotherapy, 2004, 6(1): 7-14
    
    27 Ashjian PH, Elbarbary AS, Edmonds B, et al. In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast Reconstr Surg, 2003,111(6):1922-1931
    
    28 Safford KM, Hicok KC, Safford SD, et al. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun, 2002,294(2):371-379
    
    29 Maciag T, Kadish J, Wilkins L, et al. Organizational behavior of human umbilical vein endothelial cells. J Cell Biol, 1982, 94(3):511-520
    
    30 Hughes SE. Functional characterization of the spontaneously transformed human umbilical
    vein endothelial cell line ECV304: use in an in vitro model of angiogenesis. Exp Cell Res, 1996, 225(1):171-185
    
    31 Galun E, Axelrod JH. The role of cytokines in liver failure and regeneration: potential new molecular therapies. Biochim Biophys Acta, 2002, 1592(3): 345-358
    
    32 OH Sh, Miyazaki M, Kouchi H, et al. Hepatocyte growth factor induces differentiation of adult rat bone marrow cells into a hepatocyte lineage in vitro. Biochem Biophys Res Commun, 2000, 279(2):500-504
    
    33 Schwartz RE, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest, 2002, 109(10):1291-1302
    
    34 Jung J, Zheng M, Goldfarb M, et al. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science, 1999,284(5422):1998-2003
    
    35 Kawanami D, Maemura K, Takeda N, et al. Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine-endothelial cell interactions. Biochem Biophys Res Commun, 2004, 314(2):415-419
    
    36 Kougias P, Chai H, Lin PH, et al. Effects of Adipocyte-Derived Cytokines on Endothelial Functions:Implication of Vascular Disease. J Surg Res, 2005, 126(1):121-129
    
    37 Davis TA, Black AT, Kidwell WR, et al. Conditioned medium from primary porcine endothelial cells alone promotes the growth of primitive human haematopoietic progenitor cells with a high replating potential: evidence for a novel early haematopoietic activity. Cytokine, 1997, 9(4):263-275
    
    38 Hutley LJ, Herington AC, Shurety W, et al. Human adipose tissue endothelial cells promote preadipocyte proliferation. Am J Physiol Endocrinol Metab, 2001, 281(5):E1037-1044
    
    39 Planat-Benard V, Silvestre JS, Cousin B, et al. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation, 2004, 109(5):656-663
    
    40 Martinez-Estrada OM, Munoz-Santos Y, Julve J, et al. Human adipose tissue as a source of Flk-1~+ cells: new method of differentiation and expansion. Cardiovasc Res, 2005, 65(2):328-333
    
    41 Cao Y, Sun Z, Liao L, et al. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun, 2005,332(2):370-379
    
    42 Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med, 2001, 7(4):430 - 436
    
    43 Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial pro-genitor cells for therapeutic neovascularization. Proc Natl Acad Sci, 2000, 97(7):3422-3427
    
    44 Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest, 2002, 109(3):337-346
    
    45 Kaufman DS, Lewis RL, Hanson ET, et al. Functional endothelial cells derived from rhesus monkey embryonic stem cells. Blood, 2004,103(4): 1325-1332
    
    46 Levenberg S, Golub JS, Amit M, et al. Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci, 2002, 99(7):4391-4396
    
    47 Hood JD, Bednarski M, Frausto R, et al. Tumor regression by targeted gene delivery to the neovasculature. Science, 2002,296(5577):2404-2407
    
    48 Van Wezel AL. Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. Nature, 1967,216: 64-65
    
    49 Gooch KJ, Kwon JH, Blunk T, et al. Effects of mixing intensity on tissue-engineered cartilage. Biotechnol Bioeng, 2001, 72: 402-407
    
    50 Griffiths B. Scale-up of suspension and anchorage-dependent animal cells. Mol Biotechnol, 2001, 17(3):225-238
    
    51 Malda J, van Blitterswijk CA, Grojec M, et al. Expansion of bovine chondrocytes on microcarriers enhances redifferentiation. Tissue Eng, 2003, 9(5):939-948
    
    52 Martin Y, Vermette P. Bioreactors for tissue mass culture: design, characterization, and recent advances. Biomaterials, 2005, 26: 7481-7503
    
    53 Zhao F, Ma T. Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and construct development. Biotechnol Bioeng, 2005, 91: 482-493
    
    54 Goodwin TJ, Prewett TL, Wolf DA, et al. Reduced shear stress: a major component in the ability of mammalian tissues to form three-dimensional assemblies in simulated microgravity. J Cell Biochem, 1993,51:301-311
    
    55 Unsworth BR, Lelkes PI. Growing tissues in microgravity. Nat Med, 1998,4: 901 -907
    
    56 Carmeliet G, Nys G, Bouillon R. Microgravity reduces the differentiation of human osteoblastic MG-63 cells. J Bone Miner Res, 1997, 12: 786-794
    
    57 Clejan S, O'Connor K, Rosensweig N. Tri-dimensional prostate cell cultures in simulated microgravity and induced changes in lipid second messengers and signal transduction. J Cell Mol Med, 2001, 5: 60-73
    
    58 Cooper D, Pride MW, Brown EL, et al. Suppression of antigen-specific lymphocyte activationin modeled microgravity. In Vitro Cell Dev Biol Anim, 2001, 37:63-65
    59 Plett PA, Frankovitz SM, Abonour R, et al. Proliferation of human hematopoietic bone marrow cells in simulated microgravity. In Vitro Cell Dev Biol Anim, 2001, 37(2):73-78
    60 Plett PA, Abonour R, Fmnkovitz SM, et al. Impact of modeled microgravity on migration, differentiation, and cell cycle control of primitive human hematopoietic progenitor cells. Exp Hematol, 2004, 32(8):773-781
    61 Slentz DH, Truskey GA, Kraus WE. Effects of chronic exposure to simulated microgravity on skeletal muscle cell proliferation and differentiation. In Vitro Cell Dev Biol Anim, 2001, 37(3):148-156
    62 Qiu Q, Ducheyne P, Gao H, et al. Formation and differentiation of three-dimensional rat marrow stromal cell culture on microcarriers in a rotating-wall vessel. Tissue Eng, 1998, 4: 19-34
    63 Rucci N, Migliaccio S, Zani BM, et al. Characterization of the osteoblast-like cell phenotype under microgravity conditions in the NASA-approved Rotating Wall Vessel bioreactor (RWV). J Cell Biochem, 2002, 85(1):167-179
    64 Crawford-Young SJ. Effects of microgravity on cell cytoskeleton and embryogenesis. Int J Dev Biol, 2006, 50(2-3): 183-191
    65 Cameron DF, Hushen JJ, Nazian SJ, et al. Formation of Sertoli cell-enriched tissue constructs utilizing simulated microgravity technology. Ann N Y Acad Sci, 2001,944:420-428
    66 柴岗,张艳,刘伟,等.组织工程骨在颅颌面骨缺损临床修复中的应用.中华医学杂志,2003,83(19):1676-1681
    67 Patrick CW. Breast tissue engineering. Annu Rev Biomed Eng, 2004, 6:109-130
    68 Patrick CW Jr. Adipose tissue engineering: the future of breast and soft tissue reconstruction following tumor resection. Semin Surg Oncol, 2000, 19(3):302-11
    69 Yue Huimin, Zhang Lei, Wang Yunfang, et al. Proliferation and differentiation into endothelial cells of human bone marrow mesenchymal stem cells (MSCs) on poly DL-lactic-co-glycolic acid (PLGA) films. Chinese Science Bulletin, 2006, 51 (1)1-6.
    70 Nishimura I, Garrell R L, Hedrick M. et al. Precursor tissue analogs as a tissue-engineering strategy. Tissue Engineering, 2003, 9:77~89
    71 Landers R, Htibnerb U, Schmelzeisenb R, et al. Rapid prototyping of scaffolds from thermoreversible hydrogels and tailored for application in tissue engineering. Biomaterials, 2002, 23:4437~4447
    72 颜永年,刘海霞,熊卓,等.细胞直接受控组装技术的实现与研究进展.科学通报,2005,50(11):1159-1160
    73 杨志明,组织工程。化学工业出版社, 2002, 1 th, p250
    
    74 Desgrandchamps F. Biomaterials in functional reconstruction. Curr Opin Urol, 2000, 10(3):201-6
    
    75 Yarlagadda PK, Chandrasekharan M, Shyan JY. Recent advances and current developments in tissue scaffolding. Biomed Mater Eng, 2005, 15(3): 159-177
    
    76 Hemmrich K, von Heimburg D, Rendchen R, et al. Implantation of preadipocyte-loaded hyaluronic acid-based scaffolds into nude mice to evaluate potential for soft tissue engineering. Biomaterials, 2005, 26(34):7025-7037
    
    77 Kang X, Xie Y, Kniss DA. Adipose tissue model using three-dimensional cultivation of preadipocytes seeded onto fibrous polymer scaffolds. Tissue Eng, 2005, 11(3-4):458-468
    
    78 Patrick CW Jr, Zheng B, Johnston C, et al. Long-term implantation of preadipocyte-seeded PLGA scaffolds. Tissue Eng, 2002, 8(2):283-293
    
    79 Patrick CW Jr, Chauvin PB, Hobley J, et al. Preadipocyte seeded PLGA scaffolds for adipose tissue engineering. Tissue Eng, 1999 , 5(2): 139-151
    
    80 Yuksel E, Weinfeld AB, Cleek R, et al. Augmentation of adipofascial flaps using the long-term local delivery of insulin and insulin-like growth factor-1. Plast Reconstr Surg, 2000,106(2):373-382
    
    81 Botchwey EA, Pollack SR, Levine EM, et al. quantitative analysis of three-dimensional fluid flow in rotating bioreactors for tissue engineering. J Biomed Mater Res A, 2004 , 69(2):205-215
    
    82 Altaian GH, Horan RL, Martin I, et al. Cell differentiation by mechanical stress. FASEB J, 2002, 16(2):270-272
    
    83 Freed LE, Langer R, Martin I, et al. Tissue engineering of cartilage in space. Proc Natl Acad Sci U S A, 1997, 94(25): 13885-13890
    
    84 Freed LE, Hollander AP, Martin I, et al. Chondrogenesis in a cell-polymer-bioreactor system. Exp Cell Res, 1998, 240(1):58-65
    
    85 Vunjak-Novakovic G, Martin I, Obradovic B, et al. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res, 1999, 17(1):130-138
    
    86 Hoerstrup SP, Kadner A, Melnitchouk S, et al. Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation, 2002, 106(12 Suppl 1):I143-150
    
    87 Baldwin SP, Saltzman WM. Aggregation enhances catecholamine secretion in cultured cells. Tissue Eng, 2001, 7(2): 179-190
    
    88 Lappa M. Organic tissues in rotating bioreactors: fluid-mechanical aspects, dynamic growthmodels, and morphological evolution. Biotechnol Bioeng, 2003, 84(5):518-532
    89 Xu T, Gregory CA, Molnar P, et al. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials, 2006, 27(19):3580-3588
    90 王韫芳,裴雪涛.成体干细胞的可塑性及其在再生医学应用中的思索.科学通报,2003,48(7):750—754
    91 Sherley JL. Asymmetric cell kinetics genes: the key to expansion of adult stem cells in culture. Stem Cells, 2002, 20(6):561-572.
    92 Ratner BD, Bryant SJ. Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng, 2004, 6:41-75.
    93 Tsonis PA. Regenerative biology: the emerging field of tissue repair and restoration. Differentiation, 2002, 70(8):397-409.
    94 Stocum DL. Stem cells in regenerative biology and medicine. Wound Repair Regen, 2001, 9(6):429-442.1 Zuk P A,zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng, 2001, 7(2): 211—228
    2 Huang J I, Hedrick M H, Lorenz H P, et al. Chondrogenesis of human adipo derived mesodermal stem cells. Surgical Forum, 2000, 51: 583—585
    3 杨立业,郑佳坤,刘向明,等.脂肪组织来源的基质细胞向神经元样细胞分化.四川大学学报(医学版),2003,34(3):381—384
    4 Miranville A,Heeschen C, Sengenes C, et al. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation, 2004, 110(3) : 349—355
    5 Planat-Benard V, Silvestre J S, Cousin B, et al. Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives. Circulation, 2004, 109 (5): 656—663
    6 Pittenger M F,Mackay A M, Beck S C, et al. Multilineage potential of adult human mesenehymal stem cells. Science, 1999, 284:143—147
    7 Katz A J,Llull M D, Hedriek M H, et al. Emerging approaches to the tissue engineering of fat. Clin Plast Surg, 1999, 26: 587—602
    8 王韫芳,南雪,李艳华,等.诱导大鼠骨髓Thy-1~+β2M~-细胞分化为肝脏细胞.中华血液学杂志,2005,26(2):69—73
    9 Ashjian P H,Elbarbary A S, Edmonds B, et al. In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast Reconstr Surg, 2003, 111:1922—1931
    10 De Ugarte D A,Morizono K, Elbarbary A S, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissue Organs, 2003, 174:101—109
    11 Oh S H, Miyazaki M, Kouchi H, et al. Hepatocyte growth factor induces differentiation of adult rat bone marrow cells into a hepatocyte lineage in vitro. Biochem Biophys Res Commun, 2000, 279(2): 500—504
    12 Schwartz R E, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest, 2002, 109 (10) : 1291—1302
    13 Jung J, Zheng M, Goldfarb M, et al. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science, 1999, 284(5422): 1998—2003
    14 孙嫣,断芳龄,陈香宇,等.人骨髓间充质干细胞体外分化为肝细胞样细胞.胃肠病学和肝病学杂志,2004,13(3):244—248

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700