Tankyrase在果蝇生长发育中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Tankyrase,端粒聚合酶是近年发现的一个与端粒长度调节相关的酶,是人端粒复合物中一个重要组分。近十年的研究表明,tankyrase不仅参与端粒长度的调节,同时还在纺锤体组装、葡萄糖转运、中心体调控和Wnt信号通路中发挥重要的作用。到目前为止,在人类和小鼠中共发现两个tankyrases蛋白,分别命名为tankyrase1和tankyrase2,两者在蛋白结构上拥有极高的相似度。研究发现,在人细胞中,tankyrase1和tankyrase2都参与了端粒长度的调控。然而在小鼠内,研究人员发现tankyrase1或tankyrase2敲除的小鼠并没有表现出端粒缩短的现象,但同时敲除tankyrase1和tankyrase2的小鼠则表现为胚胎致死,说明小鼠中tankyrases的功能存在冗余。尽管在人类和小鼠内,tankyrase的作用已经研究得较为透彻详尽,但是tankyrase作为一个高度保守的蛋白,在果蝇发育过程中的作用至今仍未有报道。本论文以果蝇作为模式生物,通过遗传学的手段,揭示了tankyrase在果蝇发育过程中的作用。本论文研究通过果蝇P因子敲除的技术,得到tankyrase缺失的果蝇突变株,研究发现缺失tankyrase蛋白功能的果蝇能够存活,且不会影响Wnt信号通路,同时我们发现缺失tankyrase的果蝇虽然可以存活,但是在代谢和其他方面却存在一定的缺陷。在tankyrase缺失的果蝇中果蝇的产卵效率明显降低,三龄幼虫时期体内的葡萄糖含量显著升高,幼虫和成虫体内的甘油三酯(TAG)含量显著降低,且在饥饿环境压力下的生存能力也显著降低,说明在tankyrase缺陷的果蝇体内,能量的储存和代谢受到影响,但是具体的机制还有待进一步的研究探索。
     同时本论文还探讨了在果蝇体内过表达tankyrase所产生的效应。本论文通过果蝇显微注射获得过表达tankyrase的转基因果蝇株,通过UAS/Gal4双元表达系统,研究在果蝇体内过表达tankyrase的作用。研究发现,在果蝇全身过表达tankyrase会引起果蝇致死,在不同的组织或器官中特异性表达tankyrase也会引起组织和器官的损伤。TUNEL试验发现,在果蝇幼虫的成虫盘后部过表达tankyrase会引起细胞凋亡,这种细胞凋亡的现象可以被过表达抗凋亡蛋白p35抑制。但是,在成蝇的眼睛和翅膀中过表达p35并不能抑制因过表达tankyrase而引起翅膀和眼睛的缺陷,说明过表达tankyrase会引起细胞死亡的发生。Tankyrase作为一个多功能结构域的蛋白,通过构建tankyrase结构域缺失的转基因果蝇,我们发现其Ankyrin结构域在此过程中发挥了重要的功能。
Tankyrases (TRF1-interacting ankyrin related ADP-ribose polymerase) are protein members of the poly (ADP-ribose) polymerase family bearing several ankyrin repeats domains, a SAM domain and a PARP domain, regulating the length of human telomere. They play an important role in telomere maintenance, and are associated with the sister chromatid separation and glucose uptake. Recent research has indicates that tankyrases are also involved in the Wnt signaling. In mouse, neither tankyrasel nor tankyrase2deficiency mice has any observable on telomere length maintenance. However, double knockout of tankyrasel and tankyrase2causes mouse embryonic lethality, suggesting functional redundancy of the two genes. Despite of their important roles in mouse and human, little is known about the function of tankyrase in Drosophila development. In this study, Drosophila was used as a model to examine the function of tankyrase through genetic methods. The mutant flies of tankyrase were generated through the P element-mediated knockout technique. The mutant strain was used to systematically assess possible functions of tankyrase in Drosophila. Animal lacking the activity of tankyrase appear of viable. However, some defects in metabolism and development were observed on the mutant flies These defects include low egg hatchability, high glucose concentration, low TAG concentration and decreased tolerance of starvation. These data suggest that tankyrase is involved in the regulation of energy metabolism.
     We also examined the function of tankyrase by overexpression approach. Overexpression of tankyrase in whole body caused lethality in larvae stage. Overexpression of tankyranse in tissues resulted in tissue damage. The TLTNEL analysis revealed that tankyrase can induce cell apoptosis in wing imagnal discs and this phenomenon can be rescued by co-expression of the Baculoviru protein p35. Nevertheless, in adult eye and wing, co-expression of p35with tankyrase only slightly blocked the defects, indicating that overexpression of tankyrase may produce other effects besides cell apoptosis. We further showed that the ankyrin-repeats domain, but not the PARP domain of tankyrase, played a unique role in fly development.
引文
[1]Smith, S., Giriat, I., Schmitt, A. and de Lange, T. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres[J]. Science.1998,282(5393); 1484-1487.
    [2]Smith, S. and de Lange, T. Tankyrase promotes telomere elongation in human cells[J]. Curr Biol.2000,10(20); 1299-1302.
    [3]Lyons, R. J., Deane. R., Lynch, D. K., Ye, Z. S., Sanderson, G M., Eyre, H. J., Sutherland, G. R. and Daly, R. J. Identification of a novel human tankyrase through its interaction with the adaptor protein Grb14[J]. J Biol Chem. 2001,276(20); 17172-17180.
    [4]Kaminker, P. G., Kim, S. H., Taylor, R. D., Zebarjadian, Y., Funk, W. D., Morin, G. B., Yaswen, P. and Campisi, J. TANK2, a new TRF1-associated poly(ADP-ribose) polymerase, causes rapid induction of cell death upon overexpression[J]. J Biol Chem.2001,276(38):35891-35899.
    [5]Smith, S. and de Lange, T. Cell cycle dependent localization of the telomeric PARP, tankyrase, to nuclear pore complexes and centrosomes[J]. J Cell Sci.1999,112 (Pt 21)(3649-3656.
    [6]Chi, N. W. and Lodish, H. F. Tankyrase is a golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles[J]. J Biol Chem.2000,275(49); 38437-38444.
    [7]Djojosubroto, M. W., Choi, Y. S., Lee, H. W. and Rudolph, K. L. Telomeres and telomerase in aging, regeneration and cancer[J]. Mol Cells.2003,15(2);164-175.
    [8]Chong, L., van Steensel, B., Broccoli, D., Erdjument-Bromage, H., Hanish, J., Tempst, P. and de Lange, T. A human telomeric protein[J]. Science.1995,270(5242); 1663-1667.
    [9]Broccoli, D., Smogorzewska, A., Chong, L. and de Lange, T. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2[J]. Nat Genet.1997,17(2); 231-235.
    [10]van Steensel, B. and de Lange, T. Control of telomere length by the human telomeric protein TRF1[J]. Nature. 1997,385(6618); 740-743.
    [11]Smogorzewska, A., van Steensel, B., Bianchi. A., Oelmann, S.. Schaefer, M. R., Schnapp, G and de Lange, T. Control of human telomere length by TRFl and TRF2[J]. Mol Cell Biol.2000,20(5); 1659-1668.
    [12]Bianchi, A., Smith. S., Chong. L., Elias, P. and de Lange. T. TRFI is a dimer and bends telomeric DNA[J]. EMBOJ.1997,16(7); 1785-1794.
    [13]Chang, W., Dynek, J. N. and Smith, S. TRFI is degraded by ubiquitin-mediated proteolysis after release from telomeres[J]. Genes Dev.2003,17(11); 1328-1333.
    [14]Cook. B. D.. Dynek.J. N., Chang. W.. Shostak. G. and Smith. S. Role for the related poly(ADP-Ribose) polymerases tankyrase 1 and 2 at human telomeres[J]. Mol Cell Biol.2002.22(1):332-342.
    [15]Cleveland. D. W. NuMA:a protein involved in nuclear structure, spindle assembly, and nuclear re-formation [J]. Trends Cell Biol.1995.5(2):60-64.
    [16]Compton. D. A. and Cleveland. D. W. NuMA. a nuclear protein involved in mitosis and nuclear reformation[J]. Curr Opin Cell Biol.1994.6(3):343-346.
    [17]Gaglio, T., Saredi. A. and Compton. D. A. NuMA is required for the organization of microtubules into aster-like mitotic arrays[J]. J Cell Biol.1995,131(3):693-708.
    [18]Yang, C. H. and Snyder. M. The nuclear-mitotic apparatus protein is important in the establishment and maintenance of the bipolar mitotic spindle apparatus[J]. Mol Biol Cell.1992,3(11):1259-1267.
    [19]Chang, W.. Dynek. J. N. and Smith. S. NuMA is a major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis[J]. Biochem J.2005.391(Pt2):177-184.
    [20]Chang. P.. Coughlin. M. and Mitchison. T. J. Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function[J]. Nat Cell Biol.2005.7(11):1133-1139.
    [2I]Yeh. T. Y.. Sbodio. J.1.. Tsun. Z. Y.. Luo. B. and Chi. N. W. Insulin-stimulated exocytosis of GLUT4 is enhanced by 1RAP and its partner tankyrase[J]. Biochem J.2007.402(2):279-290.
    [22]Kozopas. K. M., Yang, T., Buchan. H. L.. Zhou. P. and Craig. R. W. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2[J]. Proc Natl Acad Sci U S A.1993.90(8): 3516-3520.
    [23]Koseki, T., Yamato. K... Krajewski, S., Reed.J. C Tsujimoto. Y. and Nishihara. T. Activin A-induced apoptosis is suppressed by BCL-2[J]. FEBS Lett.1995.376(3):247-250.
    [24]Yang. T., Kozopas. K. M. and Craig. R. W. The intracellular distribution and pattern of expression of Mcl-1 overlap with, but are not identical to. those of Bcl-2[J]. J Cell Biol.1995,128(6):1173-1184.
    [25]Bae. J., Leo. C. P.. Hsu. S. Y. and Hsueh. A. J. MCL-1S. a splicing variant of the antiapoptotic BCL-2 family member MCL-1. encodes a proapoptotic protein possessing only the BH3 domain[J]. J Biol Chem.2000.275(33): 25255-25261.
    [26]Bingle. C. D.. Craig. R. W.. Swales. B. M.. Singleton. V.. Zhou. P. and Whyte. M. K. Exon skipping in Mcl-1 results in a bcl-2 homology domain 3 only gene product that promotes cell death[J]. J Biol Chem.2000.275(29); 22136-22146.
    [27]Bae. J.. Donigian. J. R. and Hsueh. A. J. Tankyrase I interacts with Mcl-1 proteins and inhibits their regulation of apoptosis[J]. J Biol Chem.2003,278(7); 5195-5204.
    [28]Cha, B., Kim, W., Kim, Y. K., Hwang, B. N., Park, S. Y., Yoon, J. W., Park, W. S., Cho, J. W., Bedford, M. T. and Jho, E. H. Methylation by protein arginine methyltransferase I increases stability of Axin. a negative regulator of Wnt signaling[J]. Oncogene.2011,30(20):2379-2389.
    [29]Huang, S. M., Mishina, Y. M., Liu, S., Cheung, A., Stegmeier. F., Michaud, G A., Charlat, O., Wiellette, E.. Zhang, Y., Wiessner, S., Hild, M., Shi, X., Wilson, C. J., Mickanin, C., Myer, V., Fazal, A., Tomlinson, R., Serluca, F., Shao, W., Cheng, H., Shultz, M., Rau, C., Schirle, M., Schlegl, J., Ghidelli, S., Fawell, S., Lu, C., Curtis, D., Kirschner, M. W., Lengauer, C., Finan, P. M., Tallarico, J. A., Bouwmeester, T., Porter, J. A., Bauer, A. and Cong, F. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling[J]. Nature.2009,461(7264); 614-620.
    [30]Hung, L. Y., Tang, C. J. and Tang, T. K. Protein 4.1 R-135 interacts with a novel centrosomal protein (CPAP) which is associated with the gamma-tubulin complex[J]. Mol Cell Biol.2000,20(20):7813-7825.
    [31]Hsu, W. B., Hung. L. Y., Tang, C. J., Su, C. L., Chang, Y. and Tang, T. K. Functional characterization of the microtubule-binding and -destabilizing domains of CPAP and d-SAS-4[J]. Exp Cell Res.2008,314(14); 2591-2602.
    [32]Kleylein-Sohn, J., Westendorf, J., Le Clech, M., Habedanck, R., Stierhof, Y. D. and Nigg. E. A. Plk4-induced centriole biogenesis in human cells[J]. Dev Cell.2007,13(2); 190-202.
    [33]Kohlmaier, G., Loncarek, J., Meng, X., McEwen, B. F., Mogensen, M. M., Spektor, A., Dynlacht, B. D., Khodjakov, A. and Gonczy, P. Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP[J]. Curr Biol.2009,19(12):1012-1018.
    [34]Schmidt, T. I., Kleylein-Sohn, J., Westendorf, J., Le Clech, M., Lavoie, S. B., Stierhof. Y. D. and Nigg, E. A. Control of centriole length by CPAP and CP110[J]. Curr Biol.2009,19(12); 1005-1011.
    [35]Tang, C. J., Fu, R. H., Wu, K. S., Hsu, W. B. and Tang, T. K. CPAP is a cell-cycle regulated protein that controls centriole length[J]. Nat Cell Biol.2009,11(7); 825-831.
    [36]Kim. M. K., Dudognon, C. and Smith, S. Tankyrase 1 regulates centrosome function by controlling CPAP stability[J]. EMBO Rep.2012,13(8):724-732.
    [37]Ozaki. Y, Matsui. H., Asou, H., Nagamachi, A., Aki, D., Honda. H., Yasunaga. S.. Takihara. Y, Yamamoto, T., lzumi. S., Ohsugi, M. and Inaba, T. Poly-ADP ribosylation of Miki by tankyrase-1 promotes centrosome maturation[J]. Mol Cell.2012,47(5); 694-706.
    [38]Keryer. G., Di Fiore, B., Celati, C., Lechtreck, K. F., Mogensen, M., Delouvee, A., Lavia, P., Bornens, M. and Tassin, A. M. Part of Ran is associated with AKAP450 at the centrosome:involvement in microtubule-organizing activity[J]. Mol Biol Cell.2003.14(10):4260-4271.
    [39]Takahashi. M., Yamagiwa. A.. Nishimura, T.. Mukai, H. and Ono, Y. Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex[J]. Mol Biol Cell.2002. 13(9):3235-3245.
    [40]Oshimori, N.. Ohsugi. M. and Yamamoto, T. The Plkl target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity[J]. Nat Cell Biol.2006,8(10):1095-1101.
    [41]Oshimori. N., Li. X., Ohsugi, M. and Yamamoto. T. Cep72 regulates the localization of key centrosomal proteins and proper bipolar spindle formation [J]. EMBO J.2009.28(14):2066-2076.
    [42]Hsiao. S. J., Poitras. M. F.. Cook. B. D.. Liu. Y. and Smith. S. Tankyrase 2 poly(ADP-ribose) polymerase domain-deleted mice exhibit growth defects but have normal telomere length and capping[J]. Mol Cell Bioi.2006. 26(6):2044-2054.
    [43]Sbodio. J. I., Lodish, H. F. and Chi. N. W. Tankyrase-2 oligomerizes with tankyrase-1 and binds to both TRF1 (telomere-repeat-binding factor 1) and IRAP (insulin-responsive aminopeptidase)[J]. Biochem J.2002,361 (Pt 3): 451-459.
    [44]Guo. H. L.. Zhang. C., Liu. Q.. Li. Q.. Lian. G., Wu, D., Li. X., Zhang. W.. Shen. Y.. Ye. Z., Lin. S. Y. and Lin. S. C. The Axin/TNKS complex interacts with KIF3A and is required for insulin-stimulated GLUT4 translocation[J]. Cell Res.2012.22(8):1246-1257.
    [45]Waaler. J., Machon. O.. Tumova. L.. Dinh. H.. Korinek. V., Wilson. S. R.. Paulsen. J. E.. Pedersen. N. M.. Eide. T. J.. Machonova. O., Gradl. D.. Voronkov. A., von Kries.J. P. and Krauss. S. A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice[J]. Cancer Res.2012.
    [46]Kirby. C. A.. Cheung. A.. Fazal. A.. Shultz. M. D. and Stams. T. Structure of human tankyrase 1 in complex with small-molecule inhibitors PJ34 and XAV939[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun.2012. 68(Pt 2):115-118.
    [47]Chiang. Y.1., Nguyen. M. L., Gurunathan. S., Kaminker. P.. Tessarollo. L., Campisi. J. and Hodes. R. J. Generation and characterization of telomere length maintenance in tankyrase 2-deficient mice[J]. Mol Cell Biol. 2006.26(6):2037-2043.
    [48]Chiang. Y. J., Hsiao. S.J., Yver. D., Cushman. S. W., Tessarollo. L.. Smith. S. and Hodes. R. J. Tankyrase 1 and tankyrase 2 are essential but redundant for mouse embryonic development[J]. PLoS One,2008,3(7):e2639.
    [49]White. C., Gagnon. S. N.. St-Laurent. J. F.. Gravel. C., Proulx. L. I. and Desnoyers. S. The DNA damage-inducible C. elegans tankyrase is a nuclear protein closely linked to chromosomes[J]. Mol Cell Biochem. 2009,324(1-2); 73-83.
    [50]Gravel, C., Stergiou, L.. Gagnon, S. N. and Desnoyers, S. The C. elegans gene pme-5:molecular cloning and role in the DNA-damage response of a tankyrase orthologue[J]. DNA Repair (Amst).2004,3(2); 171-182.
    [51]Sulston, J. E., Schierenberg, E., White, J. G. and Thomson. J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans[J]. Dev Biol.1983,100(1); 64-119.
    [52]Pan, G., O'Rourke, K., Chinnaiyan, A. M., Gentz, R., Ebner, R., Ni, J. and Dixit, V. M. The receptor for the cytotoxic ligand TRAIL[J]. Science.1997,276(5309); 111-113.
    [53]Friesen, C., Herr, I., Krammer, P. H. and Debatin, K. M. Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells[J]. Nat Med.1996,2(5):574-577.
    [54]Ashkenazi, A. and Dixit, V. M. Death receptors:signaling and modulation[J]. Science.1998,281(5381): 1305-1308.
    [55]Rubio-Moscardo, F., Blesa, D., Mestre, C., Siebert, R., Balasas, T., Benito, A.. Rosenwald, A., Climent, J.. Martinez, J. I., Schilhabel, M., Karran, E. L., Gesk, S., Esteller, M., deLeeuw, R., Staudt, L. M., Fernandez-Luna. J. L., Pinkel, D., Dyer. M. J. and Martinez-Climent, J. A. Characterization of 8p21.3 chromosomal deletions in B-cell lymphoma:TRA1L-R1 and TRAIL-R2 as candidate dosage-dependent tumor suppressor genes[J]. Blood.2005, 106(9); 3214-3222.
    [56]Suliman, A., Lam, A., Datta. R. and Srivastava, R. K. Intracellular mechanisms of TRAIL:apoptosis through mitochondrial-dependent and -independent pathways[J]. Oncogene.2001,20(17); 2122-2133.
    [57]Hsu, H., Xiong, J. and Goeddel, D. V. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation[J]. Cell.1995,81(4); 495-504.
    [58]Wajant, H. The Fas signaling pathway, more than a paradigm[J]. Science.2002,296(5573); 1635-1636. [59]Kischkel, F. C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita. M., Krammer, P. H. and Peter, M. E. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor[J]. EMBO J.1995,14(22); 5579-5588.
    [60]Scaffidi, C., Schmitz, I., Krammer. P. H. and Peter, M. E. The role of c-FLIP in modulation of CD95-induced apoptosis[J]. J Biol Chem.1999,274(3):1541-1548.
    [61]Kataoka, T, Schroter, M., Hahne, M.. Schneider, P.. Irmler, M., Thome, M., Froelich, C. J. and Tschopp, J. FLIP prevents apoptosis induced by death receptors but not by perforin/granzyme B, chemotherapeutic drugs, and gamma irradiation[J]. J Immunol.1998,161(8); 3936-3942.
    [62]Hitoshi. Y.. Lorens, J., Kitada. S. I., Fisher. J., LaBarge. M.. Ring. H. Z.. Francke. U., Reed. J. C.,Kinoshita, S. and Nolan. G. P. Toso, a cell surface, specific regulator of Fas-induced apoptosis in T cells[J]. Immunity.1998.8(4): 461-471.
    [63]Saelens. X., Festjens. N., Vande Walle, L.. van Gurp. M., van Loo. G. and Vandenabeele. P. Toxic proteins released from mitochondria in cell death[J]. Oncogene.2004.23(16):2861-2874.
    [64]Li, L. Y., Luo. X. and Wang, X. Endonuclease G is an apoptotic DNase when released from mitochondria[J]. Nature.2001.412(6842):95-99.
    [65]Enari. M. Sakahira. H.. Yokoyama. H., Okawa. K., Iwamatsu. A. and Nagata S. A caspase-activated DNase that degrades DNA during apoptosis. and its inhibitor ICAD[J]. Nature.1998,391(6662):43-50.
    [66]Slee. E. A., Adrain. C. and Martin. S. J. Executioner caspase-3,-6, and-7 perform distinct, non-redundant roles during the demolition phase of apoptosis[J]. J Biol Chem.2001.276(10):7320-7326.
    [67]Sakahira, H.. Enari. M. and Nagata. S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis[J]. Nature.1998,391(6662):96-99.
    [68]Ferraro-Peyret. C., Quemeneur. L.. Flacher. M.. Revillard, J. P. and Genestier, L. Caspase-independent phosphatidylserine exposure during apoptosis of primary T lymphocytes[J]. J Immunol.2002,169(9); 4805-4810.
    [69]Mandal. D., Mazumder. A., Das. P.. Kundu. M. and Basu. J. Fas-, caspase 8-. and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes[J]. J Biol Chem.2005.280(47):39460-39467.
    [70]Fadok. V. A., de Cathelineau. A.. Daleke. D. L., Henson. P. M. and Bratton. D. L. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts[J]. J Biol Chem.2001.276(2); 1071-1077.
    [71]Lorenzo. H. K... Susin. S. A., Penninger. J. and Kroemer. G. Apoptosis inducing factor (AIF):a phylogenetically old. caspase-independent effector of cell death[J]. Cell Death Differ.1999.6(6):516-524.
    [72]Denecker. G., Vercammen. D.. Steemans. M., Vanden Berghe. T.. Brouckaert. G. Van Loo. G. Zhivotovsky. B., Fiers. W.. Grooten. J.. Declercq. W. and Vandenabeele. P. Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria[J]. Cell Death Differ.2001.8(8):829-840.
    [73]Vercammen. D.. Brouckaert. G. Denecker. G., Van de Craen. M., Declercq. W.. Fiers. W. and Vandenabeele. P. Dual signaling of the Fas receptor:initiation of both apoptotic and necrotic cell death pathways[J].J Exp Med. 1998.188(5):919-930.
    [74]Schulze-Lohoff. E.. Hugo. C., Rost. S., Arnold. S.. Gruber. A., Brune. B. and Sterzel. R. B. Extracellular ATP causes apoptosis and necrosis of cultured mesangial cells via P2Z/P2X7 receptors[J]. Am J Physiol.1998,275(6 Pt 2);F962-971.
    [75]Hong, J. H., Hur, K. C. and Chung, J. M. Potentiation of early necrotic death of glucose-starved pheochromocytoma 12 cells by nerve growth factor[J]. Mol Cells.2000,10(4):443-451.
    [76]Noh, K. M., Lee, J. C., Ahn, Y. H., Hong, S. H. and Koh, J. Y. Insulin-induced oxidative neuronal injury in cortical culture:mediation by induced N-methyl-D-aspartate receptors[J]. IUBMB Life.1999,48(3); 263-269.
    [77]Yoshioka, A., Yamaya, Y., Saiki, S., Kanemoto, M., Hirose, G., Beesley, J. and Pleasure, D. Non-N-methyl-D-aspartate glutamate receptors mediate oxygen--glucose deprivation-induced oligodendroglial injury[J]. Brain Res.2000,854(1-2); 207-215.
    [78]Lizard, G., Monier, S., Cordelet, C., Gesquiere, L., Deckert, V., Gueldry, S., Lagrost, L. and Gambert, P. Characterization and comparison of the mode of cell death, apoptosis versus necrosis, induced by 7beta-hydroxycholesterol and 7-ketocholesterol in the cells of the vascular wall[J]. Arterioscler Thromb Vasc Biol. 1999,19(5); 1190-1200.
    [79]Kruman, Ⅱ and Mattson, M. P. Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis[J]. J Neurochem.1999,72(2); 529-540.
    [80]Engedal, N. and Saatcioglu, F. Ceramide-induced cell death in the prostate cancer cell line LNCaP has both necrotic and apoptotic features[J]. Prostate.2001,46(4); 289-297.
    [81]Mochizuki, T., Asai, A., Saito, N., Tanaka, S., Katagiri, H., Asano, T., Nakane, M., Tamura, A., Kuchino, Y., Kitanaka, C. and Kirino, T. Akt protein kinase inhibits non-apoptotic programmed cell death induced by ceramide[J]. J Biol Chem.2002,277(4); 2790-2797.
    [82]Davis, R. J. Signal transduction by the JNK group of MAP kinases[J]. Cell.2000,103(2); 239-252.
    [83]Li. S.. Chien, S. and Branemark, P. I. Heat shock-induced necrosis and apoptosis in osteoblasts[J]. J Orthop Res.1999,17(6); 891-899.
    [84]Gabai, V. L., Meriin, A. B., Yaglom, J. A., Wei, J. Y., Mosser, D. D. and Sherman, M. Y. Suppression of stress kinase JNK is involved in HSP72-mediated protection of myogenic cells from transient energy deprivation. HSP72 alleviates the stewss-induced inhibition of JNK dephosphorylation[J]. J Biol Chem.2000,275(48):38088-38094.
    [85]Ma, X. L., Kumar, S., Gao, F., Louden, C. S., Lopez, B. L., Christopher, T. A., Wang, C., Lee, J. C., Feuerstein, G. Z. and Yue, T. L. Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion[J]. Circulation.1999,99(13); 1685-1691.
    [86]Kim, K. S., Takeda, K., Sethi, R., Pracyk, J. B., Tanaka, K., Zhou, Y. F., Yu, Z. X., Ferrans, V. J., Bruder, J. T., Kovesdi. I., Irani. K., Goldschmidt-Clermont. P. and Finkel. T. Protection from reoxygenation injury by inhibition ofracl[J].J Clin Invest.1998,101(9):1821-1826.
    [87]Punn. A.. Mockridge. J. W., Farooqui. S., Marber. M. S. and Heads. R. J. Sustained activation of p42/p44 mitogen-activated protein kinase during recovery from simulated ischaemia mediates adaptive cytoprotection in cardiomyocytes[J]. Biochem J.2000,350 Pt 3(891-899.
    [88]Yue. T. L.. Wang. C., Gu. J. L.. Ma. X. L.. Kumar. S., Lee. J. C., Feuerstein. G. Z., Thomas. H.. Maleeff. B. and Ohlstein. E. H. Inhibition of extracellular signal-regulated kinase enhances Ischemia/Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart[J]. Circ Res. 2000.86(6); 692-699.
    [89]Eliasson. M. J., Sampei. K., Mandir. A. S.. Hum. P. D.. Traystman. R. J., Bao. J.. Pieper. A., Wang. Z. Q.. Dawson. T. M., Snyder. S. H. and Dawson, V. L. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia[J]. Mat Med.1997.3(10); 1089-1095.
    [90]Ha. H. C. and Snyder. S. H. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion[J]. Proc Natl Acad Sci U S A.1999,96(24):13978-13982.
    [91]Walisser. J. A. and Thies. R. L. Poly(ADP-ribose) polymerase inhibition in oxidant-stressed endothelial cells prevents oncosis and permits caspase activation and apoptosis[J]. Exp Cell Res.1999,251(2):401-413.
    [92]Kim.J. W.. Won. J., Sohn. S. and Joe. C. O, DNA-binding activity of the N-terminal cleavage product of poly(ADP-ribose) polymerase is required for UV mediated apoptosis[J].J Cell Sci.2000,113 (Pt 6)(955-961.
    [93]Herceg. Z. and Wang. Z. Q. Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis[J]. Mol Cell Biol.1999,19(7):5124-5133.
    [94]Shah. G. M., Shah. R. G. and Poirier. G. G. Different cleavage pattern for poly(ADP-ribose) polymerase during necrosis and apoptosis in HL-60 cells[J]. Biochem Biophys Res Commun.1996.229(3):838-844.
    [95]Brocheriou. V.. Hagege. A. A.. Oubenaissa. A.. Lambert. M.. Mallet. V. O., Duriez. M., Wassef. M.. Kahn. A.. Menasche. P. and Gilgenkrantz. H. Cardiac functional improvement by a human Bcl-2 transgene in a mouse model of ischemia/reperfusion injury[J].J Gene Med.2000.2(5):326-333.
    [96]Tan. J., Town. T. Placzek. A.. Kundtz. A.. Yu. H. and Mullan. M. Bcl-X(L) inhibits apoptosis and necrosis produced by Alzheimer's beta-amyloidl-40 peptide in PC12 cells[J]. Neurosci Lett.1999.272(1):5-8.
    [97]Single. B.. Leist. M. and Nicotera. P. Differential effects of bcl-2 on cell death triggered under ATP-depleting conditions[J]. Exp Cell Res.2001.262(1):8-16.
    [98]Shinoura. N., Yoshida. Y.. Asai. A.. Kirino. T. and Hamada, H. Relative level of expression of Bax and Bcl-XL determines the cellular fate of apoptosis/necrosis induced by the overexpression of Bax[J]. Oncogene.1999, 18(41); 5703-5713.
    [99]Vande Velde, C., Cizeau, J., Dubik, D., Alimonti, J., Brown, T., Israels, S., Hakem, R. and Greenberg, A. H. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore[J]. Mol Cell Biol.2000,20(15); 5454-5468.
    [100]Jaattela, M. Escaping cell death:survival proteins in cancer[J]. Exp Cell Res.1999,248(1); 30-43. [101]Wang, W., Vinocur, B., Shoseyov, O. and Altman, A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J]. Trends Plant Sci.2004,9(5); 244-252.
    [102]Plumier, J. C., Ross, B. M., Currie, R. W., Angelidis, C. E., Kazlaris, H., Kollias, G and Pagoulatos, G N. Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery[J]. J Clin Invest.1995,95(4); 1854-1860.
    [103]Marber, M. S., Mestril, R., Chi, S. H., Sayen, M. R., Yellon, D. M. and Dillmann, W. H. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury[J]. J Clin Invest.1995,95(4); 1446-1456.
    [104]Hutter, J. J., Mestril, R., Tam, E. K., Sievers, R. E., Dillmann, W. H. and Wolfe, C. L. Overexpression of heat shock protein 72 in transgenic mice decreases infarct size in vivo[J]. Circulation.1996,94(6); 1408-1411.
    [105]Martin, J. L., Mestril, R., Hilal-Dandan, R., Brunton, L. L. and Dillmann, W. H. Small heat shock proteins and protection against ischemic injury in cardiac myocytes[J]. Circulation.1997,96(12); 4343-4348.
    [106]Ray, P. S., Martin, J. L., Swanson, E. A., Otani, H., Dillmann, W. H. and Das, D. K. Transgene overexpression of alphaB crystallin confers simultaneous protection against cardiomyocyte apoptosis and necrosis during myocardial ischemia and reperfusion[J]. FASEB J.2001,15(2):393-402.
    [107]Radford, N. B., Fina, M., Benjamin, I. J., Moreadith, R. W.. Graves, K. H., Zhao, P., Gavva. S., Wiethoff, A., Sherry, A. D., Malloy, C. R. and Williams, R. S. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice[J]. Proc Natl Acad Sci U S A.1996,93(6); 2339-2342.
    [108]Fraser, A. G. and Evan, G I. Identification of a Drosophila melanogaster ICE/CED-3-related protease, drICE[J]. EMBO J.1997,16(10); 2805-2813.
    [109]Song, Z., McCall, K. and Steller, H. DCP-1, a Drosophila cell death protease essential for development[J]. Science.1997,275(5299):536-540.
    [110]Chen, P., Rodriguez, A., Erskine, R., Thach, T. and Abrams, J. M. Dredd, a novel effector of the apoptosis activators reaper, grim, and hid in Drosophila[J]. Dev Biol.1998,201(2); 202-216.
    [111]Dorstyn. L.. Colussi. P. A.. Quinn. L. M., Richardson. H. and Kumar. S. DRONC. an ecdysone-inducible Drosophila caspase[J]. Proc Natl Acad Sci U S A.1999,96(8):4307-4312.
    [112]Dorstyn. L.. Read. S. H.. Quinn, L. M., Richardson, H. and Kumar, S. DECAY, a novel Drosophila caspase related to mammalian caspase-3 and caspase-7[J]..1 Biol Chem.1999.274(43):30778-30783.
    [113]Doumanis. J., Quinn. L.. Richardson. H. and Kumar. S. STRICA. a novel Drosophila melanogaster caspase with an unusual serine/threonine-rich prodomain. interacts with DIAP1 and DIAP2[J]. Cell Death Differ.2001. 8(4):387-394.
    [114]Harvey. N. L., Daish, T., Mills. K., Dorstyn, L.. Quinn. L. M., Read, S. H.. Richardson. H. and Kumar. S. Characterization of the Drosophila caspase. DAMM[J]. J Biol Chem.2001,276(27):25342-25350.
    [115]Leulier. F., Rodriguez, A., Khush. R. S., Abrams. J. M. and Lemaitre. B. The Drosophila caspase Dredd is required to resist gram-negative bacterial infection[J]. EMBO Rep.2000.1(4):353-358.
    [116]Laundrie. B., Peterson. J. S.. Baum. J. S.. Chang.J. C., Fileppo. D.. Thompson. S. R. and McCall. K. Germline cell death is inhibited by P-element insertions disrupting the dcp-1/pita nested gene pair in Drosophila[J]. Genetics.2003,165(4):1881-1888.
    [117]Goyal. L.. McCall. K.. Agapite. J.. Hartwieg. E. and Steller. H. Induction of apoptosis by Drosophila reaper. hid and grim through inhibition of IAP function[J]. EMBO J.2000.19(4):589-597.
    [118]Lisi. S., Mazzon. I. and White. K. Diverse domains of THREAD/D1AP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila[J]. Genetics.2000,154(2):669-678.
    [119]Wang. S. L.. Hawkins. C. J., Yoo. S. J., Muller. H. A. and Hay. B. A. The Drosophila caspase inhibitor DIAP1 is essential for ceil survival and is negatively regulated by HID[J]. Cell.1999.98(4):453-463.
    [120]Robinow. S., Draizen. T. A. and Truman. J. W. Genes that induce apoptosis:transcriptional regulation in identified, doomed neurons of the Drosophila CNS[J]. Dev Biol.1997,190(2):206-213.
    [121]Wing. J. P.. Zhou. L. Schwartz. L. M. and Nambu. J. R. Distinct cell killing properties of the Drosophila reaper, head involution defective, and grim genes[J]. Cell Death Differ.1998,5(11):930-939.
    [122]Baehrecke. E. H. How death shapes life during development[J]. Nat Rev Mol Cell Biol.2002.3(10): 779-787.
    [123]Lohmann. I., McGinnis. N., Bodmer. M. and McGinnis. W. The Drosophila Hox gene deformed sculpts head morphology via direct regulation of the apoptosis activator reaper[J]. Cell.2002.110(4):457-466.
    [124]Manjon. C., Sanchez-Herrero. E. and Suzanne. M. Sharp boundaries of Dpp signalling trigger local cell death required for Drosophila leg morphogenesis[J]. Nat Cell Biol.2007,9(1):57-63.
    [125]Chen, P., Nordstrom, W., Gish, B. and Abrams, J. M. grim, a novel cell death gene in Drosophila[J]. Genes Dev.1996,10(14); 1773-1782.
    [126]Milan, M., Campuzano, S. and Garcia-Bellido, A. Developmental parameters of cell death in the wing disc of Drosophila[J].Proc Natl Acad Sci U S A.1997,94(11); 5691-5696.
    [127]Perez-Garijo, A., Martin, F. A. and Morata, G. Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila[J]. Development.2004,131(22):5591-5598.
    [128]Brodsky, M. H., Weinert, B. T., Tsang, .G, Rong, Y. S., McGinnis, N. M., Golic, K. G., Rio, D. C. and Rubin, G M. Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage[J]. Mol Cell Biol.2004,24(3); 1219-1231.
    [129]Sogame, N., Kim, M. and Abrams, J. M. Drosophila p53 preserves genomic stability by regulating cell death[J]. Proc Natl Acad Sci U S A.2003,100(8):4696-4701.
    [130]McEwen, D. G and Peifer, M. Puckered, a Drosophila MAPK phosphatase, ensures cell viability by antagonizing JNK-induced apoptosis[J]. Development.2005,132(17); 3935-3946.
    [131]Colombani, J., Polesello, C., Josue, F. and Tapon, N. Dmp53 activates the Hippo pathway to promote cell death in response to DNA damage[J]. Curr Biol.2006,16(14); 1453-1458.
    [132]Lee, J. H., Lee, E., Park, J., Kim. E., Kim, J. and Chung, J. In vivo p53 function is indispensable for DNA damage-induced apoptotic signaling in Drosophila[J]. FEBS Lett.2003,550(1-3); 5-10.
    [133]Ollmann, M., Young, L. M., Di Como, C. J., Karim, F., Belvin, M., Robertson, S., Whittaker, K., Demsky, M., Fisher, W. W., Buchman, A., Duyk, G, Friedman, L., Prives, C. and Kopczynski, C. Drosophila p53 is a structural and functional homolog of the tumor suppressor p53[J]. Cell.2000,101(1); 91-101.
    [134]Martin-Blanco, E., Gampel, A., Ring, J., Virdee, K., Kirov, N., Tolkovsky, A. M. and Martinez-Arias, A. puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila[J]. Genes Dev.1998,12(4); 557-570.
    [135]White, K., Grether, M. E., Abrams, J. M., Young, L., Farrell, K. and Steller, H. Genetic control of programmed cell death in Drosophila[J]. Science.1994,264(5159); 677-683.
    [136]Ryoo, H. D., Bergmann, A., Gonen, H.. Ciechanover, A. and Steller, H. Regulation of Drosophila 1AP1 degradation and apoptosis by reaper and ubcDl[J]. Nat Cell Biol.2002,4(6):432-438. [137]Hay, B. A., Wolff, T. and Rubin, G M. Expression of baculovirus P35 prevents cell death in Drosophila[J]. Development.1994,120(8); 2121-2129.
    [138]O'Hare, K. and Rubin, G M. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome[J]. Cell.1983,34(1):25-35.
    [139]Mullins. M. C., Rio. D. C. and Rubin. G. M. cis-acting DNA sequence requirements for P-element transposition[J]. Genes Dev.1989,3(5); 729-738.
    [140]Siebel. C. W. and Rio. D. C. Regulated splicing of the Drosophila P transposable element third intron in vitro: somatic repression[J]. Science.1990.248(4960):1200-1208.
    [141]Laski. F. A., Rio. D. C. and Rubin, G. M. Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing[J]. Cell.1986,44(1):7-19.
    [142]Drosophila Methods and Protocol.
    [143]Gong. W. J. and Golic. K. G. Ends-out, or replacement, gene targeting in Drosophila[J]. Proc Natl Acad Sci U S A.2003,100(5):2556-2561.
    [144]Fischer. J. A.. Giniger. E.. Maniatis. T. and Ptashne. M. GAL4 activates transcription in Drosophila[J]. Nature. 1988,332(6167):853-856.
    [145]Brand, A. H. and Perrimon. N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes[J]. Development.1993.118(2):401-415.
    [146]Lue. N. F.. Chasman. D.I., Buchman. A. R. and Kornberg. R. D. Interaction of GAL4 and GAL80 gene regulatory proteins in vitro[J]. Mol Cell Biol.1987.7(10):3446-3451.
    [147]Lee. T. and Luo. L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis[J]. Neuron.1999,22(3):451-461.
    [148]McGuire. S. E.. Le. P. T., Osborn. A. J., Matsumoto. K. and Davis. R. L. Spatiotemporal rescue of memory dysfunction in Drosophila[J]. Science.2003.302(5651):1765-1768.
    [149]Andrews. B. J., Proteau. G. A.. Beatty, L. G. and Sadowski. P. D. The FLP recombinase of the 2 micron circle DNA of yeast:interaction with its target sequences[J]. Cell.1985,40(4):795-803.
    [150]Golic, K. G. and Lindquist. S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome[J]. Cell.1989.59(3):499-509.
    [151]Xu. T. and Rubin. G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues[J]. Development.1993,117(4):1223-1237.
    [152]Struhl. G. and Basler. K. Organizing activity of wingless protein in Drosophila[J]. Cell.1993.72(4):527-540.
    [153]Pignoni. F. and Zipursky. S. L. Induction of Drosophila eye development by decapentaplegic[J]. Development.1997.124(2):271-278.
    [154]lto. K., Awano. W.. Suzuki. K.. Hiromi. Y. and Yamamoto. D. The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells[J]. Development. 1997,124(4); 761-771.
    [155]Kennerdell, J. R. and Carthew, R. W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway[J]. Cell.1998,95(7); 1017-1026.
    [156]Clemens. J. C., Worby, C. A., Simonson-Leff, N., Muda, M., Maehama, T., Hemmings, B. A. and Dixon, J. E. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathwaysfJ]. Proc Natl Acad Sci U S A.2000,97(12); 6499-6503.
    [157]Kennerdell, J. R. and Carthew, R. W. Heritable gene silencing in Drosophila using double-stranded RNA[J]. Nal Biotechnol.2000,18(8); 896-898.
    [158]Schneider, I. Cell lines derived from late embryonic stages of Drosophila melanogaster[J]. J Embryol Exp Morphol.1972,27(2); 353-365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700