西藏生防芽孢杆菌鉴定及其脂肽化合物分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芽孢杆菌属细菌(Bacillus spp.)是一种革兰氏阳性,产芽孢杆状细菌,好氧或兼性厌氧,广泛分布在自然环境中。其中,芽孢杆菌产生的内生芽孢对高温、干旱、低温和紫外等不良环境有较高的抗逆性。芽孢杆菌作为一类重要的植物根围促生细菌(plant growth promoting rhizobacteria, PGPR),可以产生各种抑菌物质和诱导植物产生系统获得抗性(induced systemic resistance)防治植物病害。其中,脂肽化合物是芽孢杆菌产生的最主要抑菌化合物,包括伊枯草菌素(Iturin)、表面活性素(Surfactin)和芬枯草菌素(Fengycin)三大类,在植物病害防治过程中发挥着重要的作用。
     青藏高原为世界上海拔最高的高原,平均海拔4000米以上,由于其独特的极端环境,如低温、缺氧和强辐射等,在该地区可能孕育着特殊的芽孢杆菌。本研究首先对采自西藏地区的35个土样进行芽孢杆菌的分离,共分离得到1388个菌株。以水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae)和油菜菌核病菌(Sclerotinia sclerotiorum)为指示菌,对分离的1375个菌株进行抑菌效果测定,最后得到311株抑菌效果较好的菌株(抑菌圈直径≥5 mm),然后,对311个抑菌效果好分离菌株进行基因组rep-PCR (repetitive extragenic palindromic PCR)指纹图谱筛选,选取指纹图谱不同的菌株,共得到150个菌株。
     对经过指纹图谱筛选获得的150个菌株进行生理生化鉴定,然后按照Gordon等人描述的经典分类体系将150个菌株分为7个类群,从每个类群中选取代表性的菌株共31个菌株进行脂肪酸甲酯(fatty acid methyl ester, FAME)鉴定。接着对这31菌株进行分子鉴定,首先进行16S rDNA和gyrB基因序列分析鉴定,然后进行基因组rep-PCR指纹图谱鉴定,包括BOX-PCR和ERIC-PCR指纹图谱分析鉴定。综合表型鉴定和一系列分子鉴定的结果,将分离的有生防潜力的31个芽孢杆菌菌株鉴定为短小芽孢杆菌(B. pumilus)11株,蜡样芽孢杆菌(B. cereus)7株,苏云金芽孢杆菌(B. thuringiensis)3株,解淀粉芽孢杆菌(B. amyloliquefaciens)3株,萎缩芽孢杆菌(B. atrophaeus)3株,B. axarquiensis2株,枯草芽孢杆菌(B. subtilis)1株,地衣芽孢杆菌(B. licheniformis)1株。
     从31个菌株中选择有代表性的11个芽孢杆菌菌株进行脂肽化合物MALDI-TOF-MS分析,发现菌株LLCG23能产生surfactin,bacillomycins D和fengycin,菌株NMTD81能产生脂肽类化合物surfactin, iturin和fengycin,菌株YBWC18,LNXM78能产生surfactin和fengycin,菌株NMTD54和GBSW11均能产生bacillomycins L和fengycin两种脂肽类化合物,菌株LSSC22能产生iturin和fengycin两种脂肽类化合物,菌株GBSW2和菌株GBSW19产生了surfactin,菌株DJFZ40只检测到脂肽化合物bacillomycins D,菌株菌株NMSW23在m/z为200-2000的范围内,没有检测到有抑菌活性的脂肽类化合物。并对分离得到的两株对油菜菌核病菌抑菌效果好的菌株YBWC43 (Bacillus amyloliqufaciens)和RJGP18 (Bacillus atrophaeus)进行脂肽类化合物分析发现菌株YBWC43产生BacillomycinD和fengycin,菌株RJGP16产生脂肽化合物surfactin和fengycin,对这两个菌株在油菜离体叶片上进行生防活性检测,菌株YBWC43和RJGP16对油菜菌核病菌的防治效果分别为100%和50.24%。
The genus Bacillus is comprised of Gram-positive, spore-forming, and rod-shaped organisms with an aerobic or facultatively anaerobic metabolism, are ubiquitous in many environments. And their endospores are highly resistant to hostile physical and chemical conditions, such as high temperature, low temperature, arid and UV. The Bacillus spp., which is one of the most important plant growth promoting rhizobacteria(PGPR), can also produce various antibacterial substances or elicit induced systemic resistance of plant. And the lipopeptide compounds are the major antibiotics produced by Bacillus spp., play an very important role in the plant disease controlling, include three categories:iturin, surfactin and fengycin. In this article, the MALDI-TOF-MS was also used to analysis the kinds of lipopeptides produced by the Bacillus isolates.
     Qinghai-Tibet Plateau is the highest plateau in the world, and the average altitude is 4000 meters above sea level. This isolated region has an extremely hostile environment, such as low temperature, hypoxia and strong ultraviolet exposure, and it is likely that may produce abundant Bacillus spp. specific to this region. In this work,1388 isolates were obtained from thirty-five soil samples from rhizospheres of plants were collected from Nyingchi, Lhasa, Shannan and Xigaze in Tibet. Xanthomonas oryzae pv. oryzae and Sclerotinia sclerotinorium were chosen as the indicator bacteria and fungi, respectively, for antagonistic activity screening of bacteria, and a total of 311 isolates were found to be antagonistic (diameter of the inhibition zone≥5mm) to at least one of the two pathogens. 150 isolates were obtained after the genomic fingerprints screening based on results of the rep-PCR (repetitive extragenic palindromic PCR)
     The 150 Bacillus isolates were identified according to the classical classification system described by Gordon et al. (1973), and the isolates were clustered into seven branches. Then 31 Bacillus isolates were chosen for phylogenetic analysis. The phylogenetic trees were constructed using fatty acid methyl ester (FAME),16S rDNA partial sequences, gyrB gene partial sequences, and repetitive extragenic palindromic PCR (rep-PCR). The 31 isolates were identified to be most closely related to Bacillus pumilus (11 isolates), Bacillus cereus (7 isolates), Bacillus thuringiensis (3 isolates), Bacillus amyloliquefaciens (3 isolates), Bacillus atrophaeus (3 isolates), Bacillus axarquiensis (2 isolates), Bacillus subtilis (1 isolate) and Bacillus licheniformis (1 isolate).
     Then 11 representative Bacillus isolates were chosen for lipopeptides compounds analysis by the MALDI-TOF-MS detection. The results showed that strain LLCG23 can produce surfactin, bacillomycins D and fengycin; strain NMTD81 can produce surfactin, iturin and fengycin; strains YBWC18 and LNXM78 can produce surfactin and fengycin; strains NMTD54 and GBSW11 can produce bacillomycins L and fengycin; strain LSSC22 can produce iturin and fengycin; strains GBSW2 and GBSW19 can produce surfactin; strain DJFZ40 can produce bacillomycins D only; strain NMSW23 can not produce surfactin, iturin family(Mycosubtilins, iturin, bacillomycins D and bacillomycins L) or fengycin. Two strains YBWC43 and RJGP16 that have high antagonistic activity towards Sclerotinia sclerotinorium were used for lipopeptides compounds analysis. The result showed that strain YBWC43 produced bacillomycins D and fengycin, strain RJGP16 produced surfactin and fengycin. And biocontrol efficacy of strains YBWC43 and RJGP16 to rape selerotiniose on the detached leaves were 100% and 50.24%, respectively.
引文
1. Adhikari T B, Joseph C M, et al. Evaluation of bacteria isolated from ricefor plant growth promotion and biological control of seeding disease of rice. Microbiology,2001,47:916-924.
    2. AIMomin S, Saleem M, Al-Mutawa Q. The use of an arbitrarily primed PCR product for the specific detection of Brucella. World Journal of Microbiology & Biotechnology,1999,15(3): 381-385.
    3. Algam A S, Xie G L, Li B, et al. Biological control of bacterial wilt of tomato by Bacillus spp. Under greenhouse environment. Acta Phytopathologica sinica,2006,36(1):80-85.
    4. Asaka O, Shoda M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol,1996,62(11):4081-4085.
    5. Ash C, Farrow J A E, Wallbanks S, et al. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol,1991, 13:202-206.
    6. Ash C, Farrow J A, Dorsch M, et al. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol,1991,41,343-346.
    7. Axel G, Stoverand A D. Regulation of synthesis of the Bacillus subtilis transition-phase, spore-associated antibacterial protein TasA. J. Bacteriol.,1999,181(17):5476-5481.
    8. Bader J A, Shoemaker C A, Klesius P H. Rapid detection of columnaris disease in channel catfish (Ictalurus punctatus) with a new species-specific 16S rRNA gene-based PCR primer for Flavobacterium columnare. J Microbiol Methods,2003, (2):209-220.
    9. Baillie L W, Jones M N, Turnbull P C, et al. Evaluation of the Biolog system for the identification of Bacillus anthracis. Lett Appl Microbiol,1995,20(4):209-211.
    10. Baker C J, Stavely J R. Biocontrol of bean rust by Bacillus subtilis under field conditions. Plant Disease,1985,69(9):770-772.
    11. Baker K F. Evolving concepts of biological control of plant pathogens. Ann. Rev. Phytopathol. 1997,25:67-85.
    12. Bavykin S G, Lysov Y P, Zakhariev V, et al. Use of 16S rRNA,23S rRNA, and gyrB gene sequence analysis to determine phylogenetic relationships of Bacillus cereus group microorganisms. J Clin Microbiol,2004,42:3711-3730.
    13. Berber I. Characterization of Bacillus species by numerical analysis of their SDS-PAGE protein profiles. Journal of Cell and Molecular Biology,2004,3:33-37.
    14. Bloch C A, Rode C K. Pathogenicity island evaluation in Escherichia coli Kl by crossing with laboratory strain K-12. Infect. Immun,1996,64:3218-3223.
    15. Bobbie R J, and White D C. Characterization of Benthic Microbial Community Structure by High-Resolution Gas Chromatography of Fatty Acid Methyl Esters. Appl Environ Microbiol,1980, 39:1212-1222.
    16. Chelo I M, Ze-Ze L, Tenreiro R. Congruence of evolutionary relationships inside the Leuconostoc-Oenococcus-Weissella clade assessed by phylogenetic analysis of the 16S rRNA gene, dnaA, gyrB, rpoC and dnaK. Int J Syst Evol Microbiol,2007,57,276-286.
    17. Cherif A, Ettoumi B, Raddadi N, et al. Genomic diversity and relationship of Bacillus thuringiensis and Bacillus cereus by multi-REP-PCR fingerprinting. Can J Microbiol,2007,53:343-350.
    18. Cho S J, Lee S K, Cha B J, et al. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS Microbiology Letters,2003,223:47-51.
    19. Christensen H, Nordentoft S, Olsen J E. Phylogenetic relationships of Salmonella based on rRNA sequences. Int J Syst Bacteriol,1998,48,605-610.
    20. Chun J, Bae K S. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie Van Leeuwenhoek,2000,78:123-127.
    21. Cinto R O, Rivas M, Frade A H. Numerical taxonomy of the genus Bacillus. Rev Argent Microbiol, 1984,16(3):119-144.
    22. Coorevits A V, De Jonghe J, Vandroemme R, et al. Comparative analysis of the diversity of aerobic spore-forming bacteria in raw milk from organic and conventional dairy farms. Syst Appl Microbiol, 2008,31:126-140.
    23. Dalla-Costa L M, Itino K, Rodrigues J, et al. Characterisation of diarrhoeagenic Escherichia coil clones by rihotyping and ERIC-PCR. J Med Microbiol,1998,47(3):227-234.
    24. Elizabeth A B, handelsman J O. Biocontrol of plant disease:a (Gram-) positive perspective. FEMS Microbiol Letters,1999,171:1-9.
    25. Emmert E A B, Handelsman J. Biocontrol of plant disease:a (Gram-) positive perspective. Microbiology,1999,171(1):1-9
    26. Fajardo-Cavazos P, Nicholson W. Bacillus endospores isolated from granite:close molecular relationships to globally distributed Bacillus spp. from endolithic and extreme environments. Appl Environ Microbiol,2006,72:2856-2863.
    27. Freitas D B, Reis M P, Lima-Bittencourt C I, et al. Genotypic and phenotypic diversity of Bacillus spp. isolated from steel plant waste. BMC Res Notes,2008,1:92.
    28. Fritze D. Bacillus identification-traditional approaches. Applications and Systematics of Bacillus and Relatives,2002,8-22.
    29. Fritze, D. Taxonomy of the genus bacillus and related genera:the aerobic endospore-forming bacteria. Phytopathology,2004,94(11):1245-1248.
    30. Fujiu M, Sawairi S, Shimada H, et al. Azoxybacillin, a novel antifungal agent produced by Bacillus cereus NR2991[J]. J. Antibiotics,1994,47:833-835.
    31. Garcia J L, Roussos S, Bensoussan M, et al. Numerical taxonomy of a thermophilic "Bacillus" species isolated from West African rice soils(author's transl). Ann Microbiol (Paris),1982,133(3): 471-488.
    32. Gil M C, de la Rosa M C, Mosso M A, et al. Numerical taxonomy of Bacillus isolated from orally administered drugs. J Appl Bacteriol,1986,61(4):347-356.
    33. Gordon R E, Haynes W C, Pang H N. The Genus Bacillus,1973,107-108.
    34. Ha Y M, Park Y H, Kim Y J. A Taxonomic Study of Bacillus sp. Isolated from Korean Salt-Fermented Anchovy. Molecular Biology Today,2002,3(1):25-29.
    35. Helgason E,(?)kstad O A, Caugant D A, et al. Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis-One species on the basis of genetic evidence. Appl. Environ. Microbiol,2000, 66:2627-2630.
    36. Herman L, Heyndrickx M. The presence of intragenically located REP-like elements in Bacillus sporothermodurans is sufficient for REP-PCR typing. Res Microbiol,2000,151:255-261.
    37. Holmes B, Costas M, Ganner M, et al. Evaluation of biolog systemfor identification of some gram-negative bacteria of clinical importance. J Clin Microbiol,1994, (8):1970-1975.
    38. Houf K, De Zutter L, Van Hoof J, et al. Assessment of the Genetic Diversity among Arcobactera Isolated from Poultry Products by Using Two PCR-Based Typing Methods. Appl Environ Microbiol,2002,68(5):2172-2178.
    39. Jackson P J, Hill K K, Laker M T, et al. Genetic comparison of B. anthracis and its close relatives using AFLP and PCR analysis. J. Appl. Microbiol.,1999,87:263-269.
    40. Joung K B, Cote J C. Evaluation of ribosomal RNA gene restriction patterns for the classification of Bacillus species and related genera. J Appl Microbiol,2002,92,97-108.
    41. Junge H, Krebs B, Kilian M. Strain selection, production and formulation of the biological plant vitality enhancing agent FZB42 Bacillus subtilis. Pflanzenschutz-Nachtichten Bayer,2000, 53(1):94-104.
    42. Kim P I, Bai H, Bai D, et al. Purification and characterization of a lipopeptide produeed by Bacillus thuringiensis CMB26. Journal of Applied Mierobiology,2004,97(5),942-949.
    43. Kleinkauf H, Dohren H. Noribosomal biosynthesis of peptide antibiotics. Eur. J. Biochem., 1990,192:1-15.
    44. Konz D, Doekel S, Marahiel M A. Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide Lichenysin. J. Bacteriol.,1999, 181(1):133-140.
    45. Ko K S, Kim J W, Kim J M, et al. Population structure of the Bacillus cereus group as determined by sequence analysis of six housekeeping genes and the plcR gene. Infect Immun,2004,72, 5253-5261.
    46. Krieg N R, Williams, Wilkins, et al. In Bergey's Mannual of Systemactic Bacteriology.Vol.1,1984.
    47. Krishnamurthy T, Rajamani U, Ross P L, et al. Mass spectral investigations on micro-organisms. Journal of Toxicology-Toxin Reviews.2000,19(1):95-117.
    48. Kumar S, Tamura K and Nei M. MEGA3:Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform,2004,5:150-163.
    49. La Due M T, Satomi M, Agata N, et al. gyrB as a phylogenetic discriminator for members of the Bacillus anthracis-cereus-thuringiensis group. J Microbiol Methods,2004,56:383-394.
    50. Lay J O J. MALDI-TOF mass spectrometry and bacterial taxonomy. Trends Anal Chem,2000, 19:507-516.
    51. Lin T P, Chen C L, Chang L K, et al. Functional and transcriptional analysis of a Fengycin synthetase gene, fenC, from Bacillus subtilis. J. Bacteriol.,1999,181(16):5060-5067.
    52. Lopez A C, Alippi A M. Phenotypic and genotypic diversity of Bacillus cereus isolates recovered from honey. Int J Food Microbiol,2007,117:175-184.
    53. Lopez A C, and Alippi A M. Diversity of Bacillus megaterium isolates cultured from honeys. LWT-Food Science and Technology,2009,42:212-219.
    54. Maget-Dana R, Peypoux F. Iturins, a special class of spore-forming lipopeptides:biological and physicochemical properties. Toxicology,1994,87,151-174.
    55. Martinez-Murcia A J, Benlloch S, Collins M D. Phylogenetic interrelationships of members of the genera Aeromonas and Plesiomonas as determined by 16S ribosomal DNA sequencing:lack of congruence with results of DNA-DNA hybridization. Int J Syst Bacteriol,1992,42,412-421.
    56. Martin D F, Priest F G, Todd C, et al. Distribution of beta-gluconases within the genus Bacillus. Appl. Environ. Microbiol.,1980,40(6):1136-1138.
    57. Nakano M M, Zuber P. Molecular biology of antibiotic production in Bacillus. Cretical Reviews in Biotechnology,1990,10(3):223-240.
    58. Nishikiori T, Naganawa H, Muraoka Y, et al. Plipastatins:new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302Ff67. Ⅲ. Structure elucidations of Plipastatins. J. Antibiotics(Tokyo),1986,39:755-761.
    59. Obagwu J and Korsten L. Integrated control of citrus green and blue molds using Bacillus subtilis in combination with sodium bicarbonate or hotwater. Postharvest Biology and Technology,2003, 28:187-194.
    60. Peypoux F, Bonmatin J M. Recent trends in the biochemistry of surfactins. Appl. Microbiol. Biotechnol,1999,36:515-517.
    61. Pieterse C M J, Van Wees SCM, Van Pelt J A. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant cell,1998,10:1571-1580.
    62. Pretorius I S, de Kock M J, Britz T J, et al. Numerical taxonomy of alpha-amylase producing Bacillus species. J Appl Bacteriol,1986,60(4):351-360.
    63. Quadt-Hallmann A, Kloepper J W. Immunological detection and localization of the cotton endophyte Enterobacter asburiae JM22 in different plant species. Can J Microbiol,1996,42(11): 1144-1154.
    64. Reva O N, Dixelius C, Meijer J, et al. Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis. FEMS Microbiology Ecology,2004,48(2):249-259.
    65. Ryu C M, Farag M A, Hu C H, et al. Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A.2003,100(8):4927-4932.
    66. Ryu C M, Farag M A, Hu C H, et al. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology,2004,134:1017-1026.
    67. Ryu C M, Murphy J F, Mysore K S. Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic vires by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant journal,2004,39(3):381-392.
    68. Senesi S, Celandroni F, Tavanti A, et al. Molecular characterization and identification of Bacillus clausii strains marketed for use in oral bacteriotherapy. Appl. Environ. Microbiol,2001, 67:834-839.
    69. Serrano M, Zilhao R, Ozin J A, et al. A Bacillus subtilis secreted protein with a role in endospore coat assembly and function. Bacteriology,1999,181(12):3632-3643.
    70. Sheppard J D, Jumarie C, Cooper D G. Ionic channels induced by surfactin in planar lipid bilayer membranes. Biochim Biophys Acta,1991,1064:13-23.
    71. Shoda M. Bacterial control of plant diseases. Journal of Bioscience and Bioengineering,2000, 89(6):515-521.
    72. Silo-suh L A, Lethbridge B J, Raffel S J, et al. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol.,1994,60(6):2023-2030.
    73. Stackebrandt E, Frederiksen W, Garrity G M, et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol,2002,52, 1043-1047.
    74. Stackebrandt E, and Swidersky J. From phylogeny to systematics. Applications and Systematics of Bacillus and Relatives,2002,8-22.
    75. STEIN T. Bacillus subtilis antibiotics:structures, syntheses and specific functions. Molec Microbiol, 2005,56(4):845-857.
    76. Tang W H. Advances in biological control of plant diseases:proceeding of the international workshop on biological control of plant diseases. Beijing:China Agricultural Uniersity Press,1996.
    77. Turnbull P C B. Definitive identification of Bacillus anthracis-A review. J. Appl. Microbiol,1999, 87:237-240.
    78. Ukness S, Winter A M, Delaney T. Biological induction of systemic acquired resistance in Arabidopsis. Mol Plant-Microbe Interact,1993,6:692-698.
    79. Vaerewijck M J M, De Vos P, Lebbe L, et al. Occurrence of Bacillus sporothermodurans and other aerobic spore-forming species in feed concentrate for dairy cattle. Journal of Applied Microbiology, 2001,91:1074-1084.
    80. Vandamme P, Pot B, Gillis M, et al. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev,1996,60:407-438.
    81. Van Loon L C, Bakker P A, Pieterse C M. Systemic resistance induced by rhizospere bacteria. Annu Rev Phytopathol,1998,36:453-483.
    82. Vater J, Gao X W, Hitzeroth G, et al. "Whole cell"-matrix-assisted laser desorption ionization-time of flight-mass spectrometry, an emerging technique for efficient screening of biocombinatorial libaries of natural compounds-present state of research. Combinatorial Chemictry & High Throughput Screening,2003,6:557-567.
    83. Vater J, Kablitz B, Wilde C, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol,2002,68(12):6210-6219.
    84. Versalovic J, Koeuth T, Lupski J R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res,1991,19(24):6823-6831.
    85. Versalovic J, Lupski J R. Molecular detection and genotyping pathogens:more accurate and rapid answers. Trends in Microbiology 10 (Supl) A TRENDS Guide to Infectious Diseases,2002:15-21.
    86. Wang L T, Lee F L, Tai C J, et al. Comparison of gyrB gene sequences,16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol,2007, 57:1846-1850.
    87. Wilkens L, Tchinda J, Burkhardt D, et al. Significant hybridization differences in comparative genomic hybridization due to nucleotides used for DNA labelling and to DNA chosen for cohybridization. Pathobiology,2003, (4):204-208.
    88. Woese, C. R. Bacterial evolution. Microbiol Rev,1987,51:221-271.
    89. Yamamoto S, Harayama S. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol,1995,61:1104-1109.
    90. Yamamoto S, Harayama S. Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. Int J Syst Bacteriol,1998,48, 813-819.
    91. Zeigler D R. Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol,2003,53,1893-1900.
    92. Zheng G, Slavik M. Isolation, partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain. Lett. Appl. Bacteriol.,1999,28:363-367.
    93.程亮,游春平,肖爱萍.拮抗细菌的研究进展.江西农业大学学报,2003,25(5):732-737.
    94.陈晓斌,顾振芳,周杭英.黄瓜PGPR菌株根部定殖的扫描电镜研究.上海交通大学学报(农业科学版),2004,22(2):153-156.
    95.蔡学清,何红,胡方平.双抗标记法测定枯草芽抱杆菌BS 2和BS 1在辣椒体内的定殖动态.福建农林大学学报(自然科学版),2003,32(1):41-45.
    96.陈志谊,高太东,倪寿坤,陆凡,史阿宝.枯草芽孢杆菌B-916防治水稻纹枯病的田间试验.中国生物防治,1997,13(2):75-78.
    97.陈志谊.拮抗细菌B-916防治水稻白叶枯病作用机制的研究.南京:南京农业大学,1998.
    98.陈中义,张杰,黄大坊.植物病害生防芽抱杆菌抗菌机制与遗传改良研究.植物病理学报,2003,33(2):97-103.
    99.东秀珠.常见细菌系统鉴定手册.北京:科学出版社,2001.
    100.冯书亮,王容燕,林开春,张用梅,杜立新,范秀华,曹伟平.拮抗细菌Bs-208菌株鉴定及对几种植物病原菌的抑菌测定.中国生物防治,2003,19(4):171-174.
    101.高学文,姚仕义,Huong P, Joachim V,王金生.基因工程枯草芽孢杆菌GEB3产生的脂肽类抗生素及生物活性的研究.中国农业科学,2003,36(12):1496-1501.
    102.何红.辣椒内生枯草芽抱杆菌(Bacillus subtilis)防病促生作用的研究.福建农林大学博士学位论文,2003.
    103.洪永聪,范晓静,来玉宾,胡方平.枯草芽抱菌株TL2在茶树体内的内生定殖.茶叶科学,2006,26(4):270-274.
    104.侯红漫,靳艳,金美芳,虞星炬,张卫.环脂肽类生物表面活性剂结构、功能及生物合成.微生物学通报,2006,33(5):122-128.
    105.姜远良.化学分类法在细菌和真菌系统分类中的应用和发展.辽宁师范大学学报(自然科学版),1995,(2):152-155.
    106.焦振泉,刘秀梅.细菌分类鉴定的分子生物学方法研究进展田.国外医学卫生学分册,1996,23(6):256-361.
    107.焦振泉,刘秀梅.细菌分类与鉴定的新热点:16S-23S rDNA间区.微生物学通报,2001,(1):85-89.
    108.林福呈,李德葆.枯草芽抱杆菌(Bacillus subtilis)S9对植物病原真菌的溶菌作用.植物病理学报,2003,33(2):174-177.
    109.李琳,李槿年,余为一.细菌分类鉴定方法的研究概况.安徽农业科学,2004,32(3):549-551.
    110.牛桂兰,汤显春,刘进学,闫建平.金矿床区蜡状芽孢杆菌孢壁蛋白SDS-PAGE图谱及聚类分析.微生物学,2002,22(2):24-25.
    111.邱思鑫.防病促生植物内生芽抱杆菌.福建农林大学博士学位论文,2004.
    112.王镭,郑茂波.遗传标记的研究进展.生物技术,2002,12(2):41-42.
    113.王益民,唐文华.几丁质酶基因和β-1,3-葡聚糖酶基因的克隆及双价基因在枯草芽孢杆菌B-908中的表达.北京,中国农业大学,1997.
    114.谢关林.水稻病原细菌鉴定方法的比较研究.浙江大学学报(农业与生命科学版),2000,26(4):353-358.
    115.辛玉成,秦淑莲,刘析光,等.枯草芽孢杆菌BL03对苹果霉心病和棉苗病害田间防治效果.中国生物防治,2000,16(1):47.
    116.许亚伟,陆豪杰,杨芃原.蛋白质组学中基质辅助激光解吸电离的基质研究进展.分析化学2007,35(3):455-460.
    117.张学君,凌宏通,李洪连,王金生.生物农药麦丰宁B3对小麦纹枯病的抑制作用.植物病理学报,1994,24(4):361-366.
    118.郑先云,郭亚平,马恩波.AFLP分子标记技术的发展.生命的化学,2003,23(1):65-67.
    119.张建丽,刘志恒.链霉菌的rep-PCR基因指纹分析.微生物学报,2004,44(3):281-285.
    120.张纪忠.微生物分类学.上海:复旦大学出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700