慢性炎症状态下脂质代谢紊乱及肝脏、主动脉损害的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的低度慢性系统性炎症反应是代谢综合征(MS)的核心点和几项组成成份(如血糖、血脂及尿酸等)的连接点,炎症因子参与脂质代谢障碍的全过程。固醇调节元件结合蛋白(SREBPs)是核转录因子,SREBP裂解激活蛋白(SCAP)是内质网上的膜蛋白,SCAP对SREBPs的活性起着重要的调节作用;细胞是通过一个依赖于胞内胆固醇水平的反馈调节系统来控制胆固醇内稳态平衡,即主要通过SCAP-SREBPs-LDLR之间的相互作用实现对细胞内脂质稳态平衡的调节。体外实验证实炎症因子可通过干扰胆固醇介导的低密度脂蛋白受体反馈调节来促进外周细胞,如血管平滑肌细胞(VSMCs)的胆固醇摄入,从而导致胆固醇在外周细胞的异常聚集而形成泡沫细胞。乙酰CoA羧化酶(ACC)与脂肪酸合成酶(FAS)是甘油三酯(TG)合成的关键酶,肝脏TG的代谢是通过SCAP-SREBPs-ACC/FAS途径实现的,肝脏脂质代谢障碍主要是TG在肝细胞内异常聚集而形成以大泡性为主的肝细胞脂肪变性,可伴有炎症细胞浸润和/或纤维组织增生,炎症因子是否干扰ACC与FAS的表达而导致TG代谢障碍的机制目前仍不清楚。本实验在过去体外细胞实验的基础上,建立慢性炎症动物模型,探讨炎症状态下血脂代谢紊乱情况;炎症因子是否通过干扰SCAP-SREBPs介导的LDLR反馈调节促进脂质摄取,从而导致主动脉与肝脏脂质聚集。
     材料和方法利用8周龄C57BL/6J小鼠皮下注射酪蛋白(Casein)制作小鼠慢性炎症模型,分别给予普通饮食、高脂饮食饲养20周左右,提取血液、肝脏及主动脉进行下列实验;用酶学方法检测各组小鼠IL-6及血脂(包括TC、LDL-C、HDL-C及TG)水平;HE染色、ORO染色及Masson三色染色观察肝脏与主动脉形态学改变;根据NAFLD、NASH分级与分期标准对各组小鼠肝脏进行分级和分期;利用Real-time PCR技术定量检测肝脏LDLR、SCAP、SREBP2、SREBP1、ACC及FAS mRNA水平以及主动脉LDLR、SCAP、SREBP2mRNA水平; Western blotting检测肝脏LDLR、SCAP、SREBP1蛋白及主动脉LDLR、SCAP、SREBP2蛋白表达水平。
     结果1. C57BL/6J小鼠皮下注射Casein后,普通饮食和高脂饮食小鼠血清IL-6均显著升高。
     2.在普通饮食组中除单纯普通饮食小鼠血清TC轻微下降外,LDL、HDL、及TG均明显下降;高脂饮食各项血脂指标(TC、LDL、HDL及TG)均明显下降。这些数据说明慢性炎症状态可导致血脂紊乱。
     3.与普通饮食组相比,单纯高脂饮食显著抑制主动脉和肝脏LDLR、SCAP和SREBP2mRNA与蛋白的表达,但在慢性炎症状态下,LDLR、SCAP和SREBP2mRNA与蛋白的显著提高,这提示慢性炎症状态可干扰细胞胆固醇代谢。
     4.单纯高脂饮食组小鼠SREBP1、ACC及FAS基因表达升高,在慢性炎症状态下,SREBP1、ACC及FAS表达进一步提高,肝细胞摄取大量的TG,从而导致肝细胞脂肪变性、气球样变、肝细胞坏死及纤维组织增生,即形成NAFLD或者NASH。
     5.单纯高脂饮食组小鼠主动脉根部内膜明显增厚,大量泡沫细胞形成及动脉粥样硬化斑块形成;在慢性炎症状态下,主动脉根部动脉粥样硬化斑块明显增厚,斑块面积更大,这说明炎症可加重主动脉损害。
     1结论1.IL-6是炎症反应的敏感标记物,IL-6的高低与炎症反应程度密切相关,血清IL-6显著升高提示慢性炎症模型成功建立。
     2.体内慢性炎症状态通过干扰SCAP-SREBP2-LDLR反馈调节系统,促进脂质摄取,从而导致主动脉与肝脏脂质聚集。这些数据表明慢性炎症状态可明显降低血脂水平;慢性炎症状态下没有一个安全的血浆胆固醇浓度,血浆胆固醇水平并不与细胞内胆固醇水平呈正相关。
     3.炎症状态促进SREBP1、ACC及FAS的表达而使肝细胞内大量TG聚集,导致肝细胞脂肪变性,坏死及纤维化,故炎症状态可加重肝脏损害。
Objective The low chronic systematic inflammatory response is thecore and junction point of several composition ingredients(such as bloodglucose, blood lipid and uric acid) about metabolism syndrome (MS).Inflammatory mediators participate in whole process of lipid metabolicdisorder. The Sterol Regulatory Element Binding Proteins (SREBPs) arethe nuclear factors. SREBP Cleavage-activating Protein (SCAP) ismembrane protein on the endoplasmic reticulum. SCAP plays animportant role in regulating SREBPs activity. Intracelluar cholesterolhomeostasis is regulated by a negative feedback system which isdependent on intracellular cholesterol concentration. We havedemonstrated in vitro that inflammatory mediators increased LDL receptor(LDLR)-mediated cholesterol uptake and promoted foam cell formationby disrupting cholesterol-mediated LDLR feedback regulation inperipheral cells, such as vascular smooth muscle cells (VSMCs). Acetylcoenzyme A carboxylase (ACC) and fatty acid synzyme (FAS) are keyenzymes which control triglyceride (TG) synthesis. Both ACC and FAS are regulated by SCAP-SREBP1. The lipid metabolic disorder in liver ismainly characterized by large droplets of fat accumulation, accompaniedby inflammatory cell infiltration and/or fibroplasias. But the mechanismsby which inflammatory mediators disturb ACC and FAS and result in TGmetabolic disorder in liver are still unclear.
     By using an inflamed mouse model, this project was designed toinvestigate whether inflammatory mediators (i) caused dyslipidaemia;(ii)promoted lipid uptake via LDLR by disrupting SCAP-SREBPs mediatednegative feedback regulation of LDLR, thereby resulting lipidaccumulation in aorta and liver.
     Materials and methods Using8-week age C57BL/6J mice fed withnormal or atherogenic diet for20weeks respectively, we induced achronic inflammation in mice by injecting10%of casein subcutaneously.The experiments were terminated after20weeks. Plasma samples,collected at the time of sacrifice, were evaluated for lipid profiles (totalserum cholesterol, triglycerides, LDL, HDL, and VLDL). Activation of theinflammatory response was assessed by measurement of serumInterleukin-6(IL-6). Maximal plaque cross-section, plaque area per aorticcircumference, aortic wall thickness, and all other vascular beds includingrenal artery were determined with oil red O staining (ORO). Massontrichrome staining was used to observe the morphological change of liverand aorta. Histological Criteria for NAFLD/NASH was used to assess the grade and stage of fatty liver disease. Total RNA was isolated from theliver and the aorta, and mRNA of LDLR, SCAP, SREBP1,2, ACC andFAS from the liver and the aorta were examined by real-time quantitativePCR. The protein expression of LDLR, SCAP and SREBP1,2in the liveror the aorta was examined by western blotting.
     Results Serum IL-6was significantly elevated by the caseinsubcutaneous injection in the mice fed by both normal and atherogenic diet.
     In the mice fed with the normal diet, casein injection slightly decreasedTC level and obviously decreased LDL, HDL and TG levels. In the micefed with the atherogenic diet, all lipids in serum (such as TC, LDL, HDLand TG) are obviously decreased by the casein injection. These datasuggest that chronic inflammatory stress induces a metabolic disorder oflipids.
     Comparing to the normal diet, the atherogenic diet significantly inhibitedmRNA and protein expression of LDLR, SCAP and SREBP2in the liverand the aorta, however chronic inflammation induced by the caseininjection overrode the suppression of LDLR, SCAP and SREBPs inducedby high cholesterol diet. These data show IM can interfere withintracellular cholesterol metabolism.
     In the mice fed with atherogenic diet, SREBP1, ACC and FAS mRNAlevels in liver were obviously increased, and these mRNA levels furtherenhanced under the chronic inflammatory condition. Hepatocytes uptaked much TG, resulted in hepatic steatosis, ballooning, cellular necrosis,inflammatory cell infiltration and fibroplasia, namely NAFLD or NASH.
     Morphological figure showed mice aortic root tunica intima thickened,many foam cell and atherosclerotic plaque formation in the mice fed withatherogenic diet. The atherosclerotic plaque of aortic root were furtherthickened and widened in the mice under chronic inflammatory condition.The data suggest that IM aggravates aorta impairment.
     Conclusion Casein injection successfully induced a chronicinflammatory stress in the mice by showing that serum IL-6, aninflammatory marker, was significantly increased. The chronicinflammatory stress induced by casein injection promoted lipidaccumulation in aorta and liver by increasing LDLR mediated cholesteroluptake by disrupting SCAP-SREBP2-LDLR mediated feedback regulation.Meanwhile, inflammatory mediators also reduced blood lipid levels.
     These results suggest that there is not a safe blood plasma cholesterolconcentration under chronic inflammatory condition since the plasmacholesterol level is not associated with intracellular cholesterol extentunder inflammatory stress.
     The inflammatory mediators caused TG accumulation in liver byincreasing SREBP1, ACC and the FAS gene expression, thereby resultingin liver fat degeneration,accompanied by inflammatory cell infiltrationand/or fibroplasias. These data suggest that inflammatory mediators aggravate the liver injury.
引文
[1] Jiang J, Torok N. Nonalcoholic steatohepatitis and the metabolic syndrome [J].Metab Syndr Relat Disord.2008,6(1):1-7.
    [2] Thomann R, Rossinelli N, Keller U, et al. Differences in low-grade chronicinflammation and insulin resistance in women with previous gestational diabetesmellitus and women with polycystic ovary syndrome[J]. Gynecol Endocrinol.2008,24(4):199-206.
    [3] Di Renzo L, Noce A, De Angelis S, et al. Anti-inflammatory effects of combinedtreatment with acetyl salicylic acid and atorvastatin in haemodialysis patientsaffected by Normal Weight Obese syndrome[J]. Pharmacol Res.2008,57(2):93-99.
    [4] Gu D, Reynold K, Wu X, et al. Prevalence of the metabolism syndrome andoverweight among adult in China[J]. Lancet.2005,365:1398-1405.
    [5] Smith S. The animal fatty acid synthase:One gene,one polypeptide,sevenenzymes[J].FASEB J.1994,8(15):1248-1259.
    [6] Loftus TM, Jaworsky DE, Frehywot GL, et a1.Reduced food intake and bodyweight in mice treated with fatty acid synthase inhibitors[J]. Science.2000,288(5475):2379—2381.
    [7] Chen YX, Ruan XZ, Huang AL,et al. Mechanisms of dysregulation of low-densitylipoprotein receptor expression in HepG2cells induced by inflammatorycytokines[J]. Chin Med J.2007,120(24):2185-2190.
    [8] Bruce CR, Dyck DJ. Cytokine regulation of skeletal muscle fatty acid metabolism:effect of interleukin-6and tumor necrosis factor alpha[J]. Am J PhysicalEndocrinal Metab.2004:616—621.
    [9] Goldstein JL, Brown MS. The LDL receptor and the regulation of cellularcholesterol metabolism.J Cell Sci (Suppl).1985,3:131-137.
    [10]Rawson RB. The SREBP pathway--insights from Insigs and insects [J]. Nat RevMol Cell Biol.2003,4:631-640.
    [11]Yang T, Espenshade PJ, Wright ME, et al. Crucial step in cholesterol homeostasis:sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitatesretention of SREBPs in ER [J]. Cell.2002,110:489-500.
    [12]Ross R. Atherosclerosis-an inflammatory disease [J]. N Engl J Med.1999,340:115-126.
    [13]Casscell W, Naghhavi M, Willerson JT.Vulnerable atherosclerotic plaque:amultifocal disease[J]. Circulation.2003,l07:2072-2075.
    [14]Sesso HD, Budng J, Rifai N, et a1. C-reactive protein and the risk of developinghypertension [J]. JAM A.2003,290:2945-2951.
    [15]Weissberg PL. Atherogenesis: current understanding of the causes of atheroma [J].Heart.2000,83(1):217-252.
    [16]Yudkin JS, Kumari M, Humphries SE, et al. Inflammation, obesity, stress andcoronary heart disease: is interleukin-6the link [J]? Atherosclerosis.2000,148:209-214.
    [17]Lowrie EG, Lew NL. Death risk in hemodialysis patients: the predictive value ofcommonly measured variables and an evaluation of death rate differences betweenfacilities [J]. Am.J.Kidney Dis.1990,15:458-482.
    [18]Luger A, Kovarik J, Stummvoll HK, et al: Blood-membrane interaction inhemodialysis leads to increased cytokine production [J]. Kidney Int.1987,32:84-88.
    [19]Wanner C, Zimmermann J, Schwedler S, Metzger T. Inflammation andcardiovascular risk in dialysis patients[J]. Kidney Int Suppl.2002,(80):99-102.
    [20]Weissberg PL. Atherogenesis: current understanding of the causes of atheroma [J].Heart.2000,83(1):217-252.
    [21]Ruan XZ, Varghese Z, Powis SH et al. Dysregulation of LDL receptor under theinfluence of inflammatory cytokines: a new pathway for foam cell formation [J].Kidney Int.2002,60:1716-1725.
    [22]Ruan XZ, Moorhead JF, Fernando R et al. PPAR Agonists Protect Mesangial Cellsfrom Interleukin1beta-Induced Intracellular Lipid Accumulation by Activating theABCA1Cholesterol Efflux Pathway [J]. J Am Soc Nephrol.2003,14:593-600.
    [23]Ruan XZ, Varghese Z, Moorhead JF. Inflammation modifies lipid-mediated renalinjury [J]. Nephrol Dial Transplant.2003,18:27-32.
    [24]Ruan XZ, Moorhead JF, Fernando R et al. Regulation of lipoprotein trafficking inthe kidney: role of inflammatory mediators and transcription factors [J]. BiochemSoc Trans.2004,32:88-91.
    [25]Ruan XZ, Moorhead JF, Tao JL, et al. Mechanisms of dysregulation oflow-density lipoprotein receptor expression in vascular smooth muscle cells byinflammatory cytokines [J]. Arterioscler Thromb Vasc Biol.2006,26(5):1150-1155.
    [26]Chen Y, Ruan XZ, Li Q, et al.Inflammatory cytokines disrupt LDL-receptorfeedback regulation and cause statin resistance: a comparative study in humanhepatic cells and mesangial cells[J]. Am J Physiol Renal Physiol.2007,293(3):680-687.
    [27]Alber DG, Powell K L, Vallance P, et al. Herpesvirus infection acceleratesatherosclerosis in the apolipoprotein E-deficient mouse [J]. Circulation.2000,102:779-785.
    [28]Hrabák A, Csuka I, Bajor T, et al. The cytotoxic anti-tumor effect of MTH-68/H, alive attenuated Newcastle Disease Virus is mediated by the induction of nitric oxidesynthesis in rat peritoneal macrophages in vitro[J]. Cancer Lett.2006,231:279–289.
    [29]Schirrmacher V, Bai L, Umansky V, et al. Newcastle disease virus activatesmacrophages for anti-tumor activity [J]. Int J Oncol.2000,16:363–373.
    [30]Baltz, ML, Gomer, K, Davies AJ, et al. Differences in the acute phase responses ofserum amyloid P-component (SAP) and C3to injections of casein or bovine serumalbumin in amyloid-susceptible and-resistant mouse strains [J]. Clin Exp Immunol.1980,39:355-360.
    [31]Hrabák A, Bajor T, Csuka I. The effects of various inflammatory agents on thealternative metabolic pathways of arginine in mouse and rat macrophages [J].Inflamm Res.2006,55:23–31.
    [32]Miyamoto M, Sato EF, Nishikawa M, et al. Effect of endogenously generated nitricoxide on the energy metabolism of peritoneal macrophages [J]. Physiol Chem PhysMed NMR.2003,35:1–11.
    [33]Davies JQ, Gordon S. Isolation and culture of murine macrophages [J]. Methods inMol Biol.2005,290:91–103.
    [34]Nacife VP, Soeiro MN, Gomes RN, et al. Morphological and biochemicalcharacterization of macrophages activated by carrageenan and lipopolysaccharidein vivo[J]. Cell Struct Func.2004,29:27–34.
    [35]Pedersen BK,Bruunsgaard H.Possible beneficial role of exercise in modulatinglow-grade inflammation in the elderly[J].Scand J Med Sci Spots.2003,13(1):56-62.
    [36]Ludwig J, Viggiano TR, McGill DB, et al. Non-alcoholic steatohepatitis: MayoClinic experiences with a hitherto unnamed disease [J]. Mayo Clin Proc.1980,55:434-438.
    [37]Mehta K, Van Thiel DH, Shah N, et a1. Nonalcoholic fatty liver disease:pathogenesis and the role of antioxidants [J]. Nutr Rev.2002,60:289-293.
    [38]Clark JM, Brancati FI, Diehl AM. The prevalence and etiology of elevatedaminotransferase levels in the United States [J]. Am J Gastroenterol.2003,98:960-967.
    [39]范建高.非酒精性脂肪肝的临床流行病学研究[J].中华消化杂志.2002,22:106-107.
    [40]Cortez-Pinto H, de Moura MC, Day CP. Non-alcoholic steatohepatitis: from cellbiology to clinical practice [J]. J Hepatol.2006,44;197–208.
    [41]Bedogni G, Miglioli L, Masutti F, et al. Bellentani S. Prevalence of and risk factorsfor nonalcoholic fatty liver disease: the Dionysos nutrition and liver study [J].Hepatology.2005,42:44–52.
    [42]McCullough AJ. The clinical features, diagnosis and natural history ofnon-alcoholic fatty liver disease [J]. Clin Liver Dis.2004,8:521-533.
    [43]Caldwell SH, Oelsner DH, Iezzoni JC, et al. Cryptogenic cirrhosis: linicalcharacterization and risk factors for underlying disease [J]. Hepatology.1999,29:664–669.
    [44]Day CP, James OF. Steatohepatitis: a tale of two ‘hits’[J]? Gastroenterology1998,114;842–845.
    [45]Diehl AM, Li ZP, Lin HZ, Yang SQ. Cytokines and the pathogenesis of non-alcoholic steatohepatitis [J]. Gut.2005,54:303–306.
    [46]Reid AE. Nonalcoholic steatohepatitis [J]. Gastroenterology,2001,121:710–723.
    [47]Adams LA, Angulo P. Recent concepts in non-alcoholic fatty liver disease [J].Diabet Med.2005,22:1129–1133.
    [48]Chitturi S, Farrell GC. Etiopathogenesis of nonalcoholic steatohepatitis [J]. SeminLiver Dis.2001,21:27–41.
    [49]Chen YX, Huang AL, Ruan XZ, et al. Nuclear transcription factors and lipidhomeostasis in liver[J].Chin Med J.2007,120(24):2290-2296.
    [50]Brunt EM, Janney CG, Di Bisceglie AM, et a1. Nonalcoholic steatohepatitis: aproposal for grading and staging the histological lesions[J]. Am J Gastroenterol.1999,94(9):2467-2474.
    [51]Hübscher SG. Histological assessment of non-alcoholic fatty liver disease [J].Histopathology.2006,49:450–465.
    [52]Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histologicalscoring system for nonalcoholic fatty liver disease [J]. Hepatology.2005,41:1313–1321.
    [53]Wolfbauer G, Glick JM, Minor LK, et al. Development of the smooth muscle foamcell: uptake of macrophage lipid inclusions [J]. Proc Natl Acad Sci.1986,83:7760-7764.
    [54]Rong JX, Shapiro M, Trogan E, et al. Transdifferentiation of mouse aortic smoothmuscle cells to a macrophage-like state after cholesterol loading [J]. Proc NatlAcad Sci.2003,100:13531-13536.
    [55]Rosenfeld ME, Ross R. Macrophage and smooth muscle cell proliferation inatherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fedrabbits [J]. Arteriosclerosis.1990,10:680-687.
    1. Thomann R, Rossinelli N, Keller U, et al. Differences in low-grade chronicinflammation and insulin resistance in women with previous gestational diabetesmellitus and women with polycystic ovary syndrome. Gynecol Endocrinol.2008,24(4):199-206.
    2. Di Renzo L, Noce A, De Angelis S, et al. Anti-inflammatory effects of combinedtreatment with acetyl salicylic acid and atorvastatin in haemodialysis patientsaffected by Normal Weight Obese syndrome. Pharmacol Res.2008,57(2):93-99.
    3. Pedersen BK, Bruunsgaard H. Possible beneficial role of exercise in modulatinglow-grade inflammation in the elderly. Scand J Med Sci Spots.2003,13(1):56-62.
    4. Bruce CR, Dyck DJ. Cytokine regulation of skeletal muscle fatty acid metabolism:effect of interleukin-6and tumor necrosis factor alpha[J].Am J PhysicalEndocrinal Metab.2004:616-621.
    5. Ruan XZ, Moorhead JF, Tao JL, et al. Mechanisms of dysregulation oflow-density lipoprotein receptor expression in vascular smooth muscle cells byinflammatory cytokines [J]. Arterioscler Thromb Vasc Biol.2006,26(5):1150-1155.
    6. Ruan XZ, Varghese Z, Powis SH, et al. Dysregulation of LDL receptor under theinfluence of inflammatory cytokines: a new pathway for foam cell formation.Kidney Int.2002,60:1716-25.
    7. Ruan XZ, Moorhead JF, Fernando R, et al. PPAR Agonists Protect MesangialCells from Interleukin1beta-Induced Intracellular Lipid Accumulation byActivating the ABCA1Cholesterol Efflux Pathway. J Am Soc Nephrol.2003,14:593-600.
    8. Ruan XZ, Moorhead JF, Fernando R., et al. Regulation of lipoprotein trafficking inthe kidney: role of inflammatory mediators and transcription factors. Biochem SocTrans.2004,32:88-91.
    9. Ross, R. Atherosclerosis--an inflammatory disease. N Engl J Med.1999,340:115-126.
    10. Pasceri V, Cheng JS, Wilerson J, et a1. Modulation of C-reactive protein mediatedmonocyte chemoattractant protein-l induction in human endothelial cells by antiatherosclemsis drugs[J].Circulation.2001,103(21):2531-2534.
    11. Devaraj S, Xu DY, Jialat I. C-reactive protein inCrses plasminogen activatorinhibitor-1expreesin and activity in human aortic edothelial cells: implications forthe metabolic syndrome and atherosclerosis[J].Circulation。2003,107(3):398-404.
    12. Wolfbauer, G, Glick JM, Minor LK, et al. Development of the smooth musclefoam cell: uptake of macrophage lipid inclusions. Proc Natl Acad Sci USA.1986,83:7760-7764.
    13. Rong JX., Shapiro M, Trogan E, et al. Transdifferentiation of mouse aortic smoothmuscle cells to a macrophage-like state after cholesterol loading. Proc Natl AcadSci USA.2003,100:13531-13536.
    14. Deneke T,Langner K,Grewe PH,et a1.Ossification in atherosclerotic carotidarteries.Z Kardiol.,2001,90(Suppl3):106-115.
    15. Pan CS,Qi YF,Wang SH,et a1.Alterations0f adrenomedu1lin and its receptorsystem components in calcified vascular smooth muscle cells.Regulalory Peptides.2OO4,120:77-85.
    16. Goodman WG, Goldin J, Kuizon BD, et al. Coronaryartery calcification in youngadults with end-stage renal disease who are undergoing dialysis. N Engl J Med.2000;342:1478–1483.
    17. Oh J, Wunsch R, Turzer M, et al. Advanced coronary and carotid arteriopathy inyoung adults with childhood-onset chronic renal failure. Circulation.2002,106:100-105.
    18. Moe SM, O’Neill KD, Fineberg N, et al. Assessment of vascular calcification inESRD patients using spiral CT. Nephrol Dial Transplant.2003,18:1152-1158
    19. Moe SM, Chen NX. Pathophysiology of Vascular Calcification in Chronic KidneyDisease. Circ Res.2004,95:560-567.
    20. Ishimura E, Okuno S, Kitatani K, et al.C-reative protein is a significant predictorof vascular calcification of both aorta and hand arteries. Semin Nephron,2004,24:408-412.
    21. Lowrie EG, Lew NL. Death risk in hemodialysis patients: the predictive value ofcommonly measured variables and an evaluation of death rate differences betweenfacilities. Am J Kidney Dis.1990,15:458-482.
    22. Bostrom K. Insights into the mechanism of vascular calcification.Am J Cardid.2001,88:20-32.
    23. Coffman JA. Runx transcription factors and the developmental balance betweencell proliferation and differentiation. Cell Biology International.2003,27:315-324.
    24. Cebtrella M, Christakos S, Mccarthy TL. Skeletal hormones and the C/EBP andRUNX transcription factors: Interactions and integrate and redefine geneexpression. Gene.2004,342:13-24.
    25. Xiao G, Jiang D, Ge C, et al. Cooperative interactions between activatingtranscription factor4and Runx2/Cbfa1stimulate osteoblastspecific osteocalcingene expression. J Biol Chem.2005,280:30689–30696.
    26. Franceschi RT, Xiao G. Regulation of the osteoblast-specific transcription factor,Runx2: responsiveness to multiple signal ransduction pathways. J Cell Biochem.2003,88:446–454.
    27. Otto F, Thornell AP, Crompton T. Cbfa1, a Candidate Gene for EleidocranialDysplasia Syndrome, is Essential for Osteoblast Differentiation and BoneDevelopment. Cell.1997,89:765–771.
    28. Bostrom K, Watson KE, Horn S, et al. Bone Morphogenetic Protein Expression inHuman Atherosclerotic Lesions. J Clin Invest.1993,91:1800–1809.
    29. Shanahan CM, Proudfoot D, Tyson KL, et al. Expression ofMineralisation-regulating Proteins in Association with Human VascularCalcification. Z Kardiol.2000,89(suppl2):63–68.
    30. Proudfoot D, Skepper JN, Shanahan CM, et al. Calcification of human vascularcells in vitro is correlated with high levels of matrix Gla protein and low levels ofosteopontin expression. Arterioscler Thromb Vasc Biol.1998,18:379–388.
    31. Shigematsu T,Kono T,Satoh K,et a1.Phosphate overload accelerates vascularcalcium deposition in, end-stage renal disease patients. Nephrol DialTransplant.2003,18(Suppl3):86-95.
    32. Proudfoot D, Davies JD, Skepper JN, et al. Acetylated Low-Density LipoproteinStimulates Human Vascular Smooth Muscle Cell Calcification by PromotingOsteoblastic Differentiation and Inhibiting Phagocytosis. Circulation.2002,106:3044-3050.
    33. Intut Y, Patel J, Territo M, et al. Monocyte/macrophage regulation of vascularcalcification in vitro. Circulation.2002,105:650-655.
    34. Zannettino AC, Holding CA, Diamond P, et al. Osteoprotegerin (OPG) is localizedto the Weibel-Palade bodies of human vascular endothelial cells and is physicallyassociated with von Willebrand factor. J Cell Physion,2005,204:714-723.
    35. Shioi A, Katagi M, Okuno Y, et al. Inducion of bone-type alkaline phosphatase inhuman vascular smooth muscle cells; roles of tumor neciosis factor-alpha andoncostatin M derived from macrophages. Circulation Reseach.2002,91:1-16.
    36. Tintut Y, Patel J, Parhami F, et al. Tumor necrosis factor-alpha promotes in vitrocalcification of vascular cells via the cAMP pathway. Circulation.2000,102:2636-2642.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700