复杂系统脆性理论及其在电力系统风险分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近20年来,电力工业通过解除管制、引入竞争,实现提高发电、输电、配电经济效益的目的。随着我国经济建设的深入发展,我国电力工业市场化改革在稳步推进的同时,保证解除管制的电力系统安全可靠的运行至关重要。
     解除管制的电力系统及电力市场是一个复杂系统,在运行中会受到各种各样的风险的影响,根据复杂系统脆性理论,除了复杂系统所具有的一般特性之外,还具有脆性。本文以解除管制的电力系统作为研究对象,采用复杂系统脆性理论和方法,针对解除管制的电力系统及电力市场的风险进行研究。
     首先,以复杂系统作为研究对象,研究复杂系统的复杂性及其度量。在所提出的脆性是复杂系统的一个基本特性的理论基础之上,综合现有的复杂系统脆性研究成果,深入研究脆性的定义、特点和模型。
     其次,对解除管制的电力系统风险及其脆性的研究。在解除管制的电力系统环境下,独立发电商、输电系统运行机构、独立电能零售商可以被认为是一个脆性基元内的三个子系统。并且,按照复杂系统脆性理论,他们之间是非合作博弈的关系。为了保证系统正常运行,他们都需要负熵的注入。例如:风险会引起电力系统熵增,而信息是一种负熵,信息的不完全,将导致他们负熵的缺乏。在系统无外界干扰的情况下,他们彼此之间通过信息交换,可以保证熵增在一定范围内,而保持稳定状态。在一个脆性基元内,当外界干扰作用于一个子系统时,导致此系统的熵迅速增加,若无负熵补充,此系统会因此崩溃,根据复杂系统脆性理论,其他的两个子系统也会崩溃。同时,研究电力信息系统的脆性。
     再次,基于核独立分量分析方法,分析风险对电力市场影响的估计的研究。在不完全系统参数,仅仅了解部分风险对系统的综合影响的情况下,完成了独立风险对电力市场影响的估计的研究。
     核独立分量分析KICA (Kernel Independent component analysis) ,即白化的核主分量分析加上独立分量分析算法,提供了一条途径将线性PCA扩展到观察数据的非线性子空间。KICA先通过一个函数将原观察数据空间,或称输入空间映射到一个高维的线性空间,称为特征空间,然后PCA在这个高维的特征空间进行。经过处理过的数据,在白化的空间使数据尽可能呈现非高斯性。
     最后,通过的仿真实验可以看出,在不知道系统结构的情况下,KICA算法可以通过部分数据估计出独立的电力市场风险影响曲线。
In the past twenty years, the electric power industry has realized its aims at improving the economic performance of generating, transmission and distribution of the electricity by means of deregulation and competition. Along with the development of economy construction and the gradual reform of power market in China, it is very important to guarantee the safety and stable operation of the deregulated electric power system.
     Under the influence of different kinds of risk, deregulated electric power system and power market can be regarded as a complex system, which should has the brittleness besides the other characteristics owned by complex system based on complex system brittle theory. In this dissertation, the deregulated electric power system is considered as the object, and the researches have been carried out according to the risk of the deregulated electric power system applying complex system brittle methods and theories.
     Firstly, complex system is considered as object, which complexity and its measurement have been studied. Further researches about the definition, characteristics and models of brittleness have been emphasized depending on the integration of latest researches about it on the ground that it is one of basic characteristic of complex system.
     Secondly, study on the risk and brittleness of deregulated electric power system and its power market.Under the deregulated environment of electric power system, the independent power producer, operation utility of electric transmission system and independent electric retail can be considered as three subsystems in one brittle element. In addition, their relationship between each other should be non cooperative game according to the complex system brittle theory. They all need the injection of negative entropy in order to be in good operation state. However, for example,risk can induce the entropy increase of system, while information is one kind of negative entropy, which incomplete information will result in the deficiency of them. Because they can keep the increase of entropy in the bounded range by means of information exchange among them, they are in stable state. When one subsystem in the brittle element is collapsed owing to the inference outside and its entropy increase, the other two subsystems will face the same collapsed result because of the deficiency of negative entropy. At the same time brittleness of information system of electric power system has been studied.
     Thirdly, on the basis of the kernel independent component analysis algorithm, the research for estimating the influences of power market brought from risk has been studied. The estimation on the influences of power market brought from single risk has been finished by means of only part of knowledge of system and integrated influences of power market induced by some kinds of risks. Kernel principal component analysis (KPCA), i.e. whitened kernel primary component and independent component analysis algorithm, provides one way to use linear principal component analysis in the expanded nonlinear subspace of the observed data. That is, KPCA maps the original data space to a high dimension space called feature space through a kernel function, which PCA is carried out in this feature space. The distribution of the projected data can be made as non-Gaussian as possible.
     Finally, results of simulation experiments show that KICA can be used for estimating the individual risk influence profile of power market by the means of part of data of system without the knowledge of structure of system.
引文
[1]贝塔朗菲.一般系统论——基础、发展、应用.秋同,袁嘉新译.北京:社会科学文献出版社,1987:25-32页
    [2]维纳.控制论.郝季仁译.北京:科学出版社,1963:1-10页
    [3]钱学森,宋健.工程控制论(修订版).北京:科学出版社,1980:2-8页
    [4]哈肯.高等协同学.郭治安译.北京:科学出版社,1989:1-20页
    [5] Holland J.H. Escaping Brittleness: The possibilities of General Purpose Learning Algorithms Applied to Parallel Rule-Based Systems.In: Michals Ki R S,Carbonell J G, Mitchell T M(Eds), Machine LearningⅡ, Los Altos,CA: Morgan Kaufmann.1986: 593-623P
    [6] Lind, Niels C. Measure of vulnerability and damage tolerance. Reliability Engineering & System Safety.1995,48(1):1-6P
    [7]钱学森,于景元,戴汝为.一个科学的新领域——开放的复杂巨系统及其方法论.自然杂志. 1990,13(3):3-10页
    [8]李夏,戴汝为.系统科学与复杂性.自动化学报.1998,24(2):200-207页
    [9]张嗣赢.复杂系统与复杂性科学简介.青岛大学学报.2001,16(4):25-28页
    [10] Holland, J.H. Hidden Order: How Adaptation Builds Complexity. Perseus Books, Reading, Massachusetts, 1995:185P
    [11] Holland, J.H. Emergence: From Chaos to Order. HelixBooks, Reading, Massachusetts, 1998: 258P
    [12] Keel,L.H. ,Bhattacharyya, S.P. Robust, fragile, or optimal? IEEE Trans. On Auto.Control. 1997,42(87):1098-1115P
    [13] WEI Qi, JIN Hongzhang, JI Ming. The Research on Brittle Catastrophe of Complex Giant System. Proceedings of IEEE Region 10th Technical Conference on Computers, Communications, Control and Power Engineering, Beijing, China, 2002: 1435-1438P
    [14] Qi Wei,Hongzhang Jin, Jin Guo. Study On Complex System Based On The Brittleness. Proceedings of 2003 IEEE International Conference on Systems,Man and Cybernetics, Washington, USA, 2003: 3056-3061P
    [15]韦琦,金鸿章,姚绪梁等.基于脆性的复杂系统崩溃的初探.哈尔滨工程大学学报.2003,24(2):161-165页
    [16]韦琦,金鸿章,郭健.复杂系统崩溃的脆性致因的研究.系统工程.2003,21(4):1-5页
    [17]金鸿章,郭健,韦琦等.基于滑动检验法的非典型性肺炎疫情的脆性分析.哈尔滨工程大学学报. 2003,24(6):640-645页
    [18] Qi Wei, Hongzhang Jin, Jin Guo, et al. Research On The Complex System Based On The Brittle Characteristic. Proceedings of Annual Conference of the Society of Instrument and Control Engineers, Fukui, Japan, 2003: 669-674P
    [19]韦琦,金鸿章,郭健,吉明.基于脆性的复杂系统研究.系统工程学报.2004,19(3): 326-328页
    [20]金鸿章,阎丽梅,徐建军.基于FAHP的复杂系统的脆性过程分析.系统工程. 2004, 22(6): 1-4.
    [21] Jin Hongzhang, Guo Jian, Wei Qi. Research on Basic Characteristics of Complex System Brittleness. Journal of Marine Science and Application.2004, 3(1): 57-63P
    [22]金鸿章,郭健,韦琦.基于尖点突变模型对复杂系统脆性问题的研究.舰船电子工程. 2004,24(2):1-3,8页
    [23] Lin Deming, Jin Hongzhang, Li Qi, Wu Hongmei. The Brittleness Model of Complex System Based On Cellular Automata. Journal of Marine Science and Application.2004, 3(2), 69-72P
    [24]金鸿章,林德明,韦琦,郭建.基于复杂系统脆性的传染病扩散研究.系统工程. 2004, 22(10): 5-8页
    [25] Guo Jian, Li Wanchen, Wu Dongjian. Research on the Brittleness of Complex System Based on Brittleness Potential Function., Proceedings of 2004 IEEE International Conference on Systems, Man and Cybernetics, Hague, Netherlands, 2004: 2735-2740P
    [26]徐建军,阎丽梅,刘小斌.模糊层次分析法在变压器脆性分析中的应用.电工技术学报. 2005, 20(2):94-98页
    [27]金鸿章,李琦,吴红梅.基于脆性因子的复杂系统脆性分析.哈尔滨工程大学学报. 2005, 26(6):739-743页
    [28] Jin Hongzhang, Yan Limei, Rong Panxiang, Lin Xiaobin, Li Mengda. Brittleness analysis of Electric Network. Proceedings of 4th International Conference on Engineering Applications and Computational Algorithms, Ontario, Canada, 2005: 32-36P
    [29]林德明,金鸿章,韦琦.基于元胞自动机的复杂系统脆性仿真.系统工程学报.2005, 20(2): 167-171页
    [30]阎丽梅,金鸿章,荣盘祥等.变压器脆性的传播源分析.仪器仪表学报. 2006,27(9): 1024-1028页
    [31] Hui Wang, Hongzhang Jin. Brittleness Theory Analysis of Complex System by Calculus on Manifolds. Journal of Information and Decision Science, 2007, 2 (1): 1-6P
    [32] Qin Zhou, J. Davidson, A. A. Fouad. Application of Artificial Neural Networks in Power System Security and Vulnerability Assessment. IEEE Transactions on Power Systems. 1994, 9(1): 525-532P
    [33] A. A. Fouad, Zhou Qin, V. Vittal. System Vulnerability as a concept to Assess Power Dynamic Security. IEEE Transactions on Power Systems. 1994, 9(2): 1009-1015P
    [34] R Albert, A.L Barabasi, Jeong H. The Internet’s Achilles Heel: Error and Attack Tolerance of Complex Networks. Nature, 2000, (406): 378-382P
    [35] Holme P, Kim B J, Yoon C N, Han S K. Attack Vulnerability of Complex Networks. Phys. Rev. E, 2002, 65: 056109P
    [36] B. Bollobas, O. Riordan. Robustness and Vulnerability of Scale-free Random graphs. Internet Math., 2003, 1: 1-35P
    [37] I. Dobson, J Chen, J S. Thorp, et al. Examining Criticality of Blackouts in Power System Models With Cascading Events. Proceedings of 34th Hawaii International Conference on System Sciences, Hawaii, USA, 2002: 63-72P
    [38] B.A Carreras, V.E Lynch, I Dobson, et al. Dynamics, Criticality andSelf-organization in A Model for Blackouts in Power Transmission Systems. Proceedings of 34th Hawaii International Conference on System Sciences, Hawaii, USA, 2002: 1-9P
    [39] P Crucitti, V Latora, M Marchiori. Model for Cascading Failures in Complex Networks. Phys. Rev. E. 2004, 69: 045104(R)P
    [40] R Kinney, P Crucitti, R Albert, et al. Modeling Cascading Failures in The North American Power Grid. Eur. Phys. J. B, 2005, 46:101-107P
    [41] Lee D S, Goh K I, Kahng B, Kim D. Sandpile Avalanche Dynamics on Scale-free Networks. Physica A, 2004, 338: 84-91P
    [42] Wang X F, Xu J. Cascading Failures in Coupled Map Lattices. Phys. Rev. E, 2004,70: 056113P
    [43] Xu J, Wang X F. Cascading Failures in Scale-Free Coupled Map Lattices. Physica A, 2005, 349: 685-692P
    [44]钟波,谢挺.供应链系统的脆性模型研究.中国管理科学. 2005, 13(10): 443-446页
    [45]孙庆荣,韩传峰,陈建业等.基于FAHP的黄河中下游灾害系统脆性评价.自然灾害学报. 2005, 14(3): 105-109页
    [46]韩传峰,陈建业,孙庆荣等.黄河中下游灾害系统的脆性源控制.系统工程理论与实践. 2006, 26(6): 135-140页
    [47]张江,应俊,王琼,张立伟.基于FAHP的电力变压器系统的脆性分析.自动化技术与应用.2004,23(7):9-12页.
    [48]刘明,王德明,刘维亭.基于FAHP的舰船电力系统脆性分析.舰船科学技术.2007,29(4):57-60页.
    [49]刘明,刘维亭.基于脆性熵理论的船舶电力系统脆性评价.船舶工程.2007,29(5):5-8页.
    [50]陈俊英,张冰.基于熵的复杂系统的脆性理论研究基础.微计算机信息.2008,24(2-1):309-311页.
    [51]刘明,刘维亭.基于熵理论的船舶电力系统脆性分析.江苏科技大学学报(自然科学版).2007,21(2):58-61页.
    [52]张志霞,陆秋琴,邵必林.矿井通风安全系统的脆性关联分析.金属矿山.2006, 6: 68-71页
    [53]蒲传金.基于FAHP的溜井平硐运输系统的脆性分析.矿山机械.2007,35(9):63-65页.
    [54]严太华,艾向军.基于复杂系统脆性理论的金融体系脆弱性结构模型的建立.重庆广播电视大学学报.2007,19(2):36-37页
    [55]李正辉.金融系统脆弱性理论研究.统计与信息论坛.2006,21(3):39-44页
    [56]刁力,刘西林.基于蚁群算法的供应链系统脆性研究.华东交通大学学报.2007,24(1):82-84页.
    [57]刘金霞.农业风险管理理论方法及其应用研究.天津大学博士学位论文.2004
    [58]胡映月.基于复杂系统脆性的危机检测.计算技术与自动化.2006,25(4):17-20页.
    [59]郭亚军,郭亚平,吕君英.一般系统的脆性研究.自动化技术与应用.2005, 24(2):1-3,12页
    [60]曹宇辉,张瑜,王辉.有储备的可修复子系统脆性故障的研究.哈尔滨师范大学自然科学学报.2007,23(2):17-20页
    [61]唐琮沅,张明玉,周俊杰.基于经营难度系数的我国机场企业领导人员薪酬设计.生产力研究,2006,(1):192-194页
    [62] J. D. McCalley, A. A. Fouad, V. Vittal, A. A. Irizarry-Rivera, B. L. Agrawal, and R.G. Farmer,“A risk-based security index for determining operating limits in stability limitedelectric power systems.”IEEE Transactions on Power Systems, Vol. 12, No. 3, August 1997: 1210-1219P
    [63] W. Fu, J. D. McCalley, V. Vittal,“Risk Assessment for Transformer Loading,”IEEE Transactions on Power Systems, Vol. 16, No. 3, August 2001: 346-353P
    [64] Y. Dai, Framework for Power System Annual Risk Assessment, Ph.D. dissertation,Ames, Iowa: Iowa State University, 1999
    [65] S. Zhao, Influence of Generator Rejection System Reliability on Risked- based Security Assessment, M.S. thesis, Ames, Iowa: Iowa State University,1998
    [66] J. S. Thorp, A.G. Phadke, S.H. Horowitz, and C. Tamronglak,“Anatomy of Power System Disturbances: Important Sampling,”International Journal of Electrical Power & Energy Systems, vol. 20, No. 2, February 1998, pp. 147-152P
    [67] K. Bae and J.S. Thorp,“A Stochastic Study of Hidden Failures in Power System Protection,”Decision Support Systems, Vol. 24, No. 3&4, January 1999: 259-268P
    [68] H. Wang and J. S. Thorp, "Optimal Locations for Protection System Enhancement:A Simulation of Cascading Outages," IEEE Transactions on Power Delivery, Vol.16, No. 4, October 2001
    [69] NERC, Planning Standards, September 1997.
    [70] NERC, Operating Manual, January 1998. [On line]. Available: http://www.nerc.com/~oc/pds.html.
    [71] H. G. Stoll, Least-cost Electric Utility Planning, John Willey & Sons, 1989
    [72] P. Haase,“Charting Power System Security,”EPRI Journal, September/ October, 1998: 27-31P
    [73] Y. Y. Haimes, Risk Modeling, Assessment and Management, John Willey & Sons,1998
    [74] Y. Haimes, D. Li, and V. Tulsiani,“Multi-objective Decision Tree Analysis,”Risk Analysis 10(1), pp. 111-129, 1990.
    [75] V. Chankong, Y. Haimes, Multiobjective Decision Making: Theory and Methodology, New York: Elsevier-North Holland, 1983.
    [76] Aapo Hyv?rinen,Juha Karhunen,Erkki Oja;Independent Component Analysis [M].A Wiley-Interscience Publication. JOHN WILEY&SONS,INC.2001
    [77] Hyv?rinen A. Survey on independent component analysis[J]. Neural Computation, 1999,2:94-12P
    [78] A. Hyv?rinen and E. Oja. Independent Component Analysis: Algorithms and Applications[J]. Neural Networks, 13(4-5):411-430, 2000
    [79]J. Himberg and A. Hyv¨arinen. Independent component analysis for binarydata:An experimental study[R]. In Proc. Int. Workshop on Independent Component Analysis and Blind Signal Separation (ICA2001), San Diego, California, 2001
    [80]Bell Anthony J, Sejnowski Terrence J. An information-maximization approach to blind separation and blind deconvolution.Neural Computation[J], 1995,7(6):1004-1034P
    [81]P.O. Hoyer and A. Hyv?rinen. Independent Component Analysis Applied to Feature Extraction from Colour and Stereo Images[J]. Network: Computation in Neural Systems, 2000,11(3):191-210P
    [82]A. Hyv¨arinen and P. O. Hoyer. Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces[J]. Neural Computation, 2000,12(7):1705-1720P
    [83]A. Hyv¨arinen. Blind source separation by nonstationarity of variance: A cumulantbased approach[J].IEEE Transactions on Neural Networks, 2001,12(6):1471-1474P
    [84]Mika S, SchKolkopf B, Smola A, et la. Kernel PCA and de-noising in feature spaces, in: Kearns M. S., Solla, S. A. Cohn D. A. (Eds.), Adv. Neural Inform. Processing Systems[M]. MIT Press, Cambridge, MA, 1999
    [85] Yang Jian, Gao Xiumei, Zhang David,et al. Kernel ICA:An alternative formulation and its application to face recognition [J]. Pattern Recognition, 2005,38: 1784-1787P
    [86] Hermann Weyl, Symmetry. Princeton, UK:Princeton Univ. Press, 1952: 168P
    [87]Teuvo Kohonen, Self-Organization and Associative Memory. New York, NY: Springer-Verlag, 1988 (2nd ed.), 312P [88Teuvo Kohonen, Self-Organizing Maps. New York, NY: Springer-Verlag, 1997 (2nd ed.), 426P
    [89] Ivan M. Havel,“Scale dimensions in nature,”Intern. J. General Systems, vol. 24, February, no. 3, 1996:295-324P
    [90] Stuart Kauffman, The Origins of Order: Self-Organization and Selection in Evolution. Oxford, UK:Oxford Univ. Press, 1993:734P
    [91] Duncan J. Watts, Six Degrees: The Science of Connected Age. New York, NY: W.W. Norton, 2003:368P
    [92]John H. Holland, Hidden Order: How Adaptation Builds Complexity. Reading, MA: Addison-Wesley, 1995:185P
    [93] Pentti O.A. Haikonen, The Cognitive Approach to Conscious Machines. New York, NY: Academic,2003:294P
    [94] Charles H. Bennett,“How to define complexity in physics, and why,”in [Zure90] 1990:37-148P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700