长江干线船撞桥事件机理及风险评估方法集成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着长江干线跨河桥梁日益增多和长江黄金水道建设的快速发展,桥区水域的船舶通航安全问题日益突出。因此,船撞桥事件的机理分析和风险评估研究显得日益重要。目前,船撞桥研究多集中在船撞概率模型和船撞力有限元计算两个方面,侧重于船舶与桥墩的相互关系。整体上,现阶段的桥梁工程船撞风险研究仍处于参照现行规范的被动防护设计阶段,基于风险的主动防船撞研究尚处于初期研究阶段。本选题正是在长江干线跨河桥梁工程集中建设和加强桥区通航安全管理的背景下,对船撞桥事件机理展开研究,探索适合长江干线桥梁船撞风险评估的论证技术。本文以复杂性科学理论为手段,运用事故致因理论、模糊层次分析法和集成理论等,对船撞桥事件机理和风险评估方法等内容进行了多角度的研究和论证。全文内容概括如下:
     (1)提出和定义了船舶航行过桥系统(HSCM, "Human- Ship- Channel-Management")的概念。本文在详细分析国内外相近领域船撞桥(SBC, Ship-bridge collision)研究内容基础上,提出基于系统安全的船舶航行过桥系统。其次,确立了船舶航行过桥系统的构成要素,并阐述了长江干线船舶航行过桥系统的基本特征。
     (2)阐明了HSCM的风险辨识因素,提出和构建了三维耦合致因机理模型。基于系统工程理论,将管理因素作为人因素的一个组成部分,论述了HSCM系统中产生SBC风险因素的识别方法。在分析单因素、双因素和三因素耦合致因机理以及现有船舶偏航和失控漂移理论基础上,提出了三维轨迹交汇致因机理,并建立了耦合致因模型。该模型揭示了HSCM的因素之间的内在耦合关系,进一步的SBC数据统计证实:通航桥孔跨距偏小是导致桥梁易发生SBC的主要风险源。
     (3)在桥梁通航风险评估方面,开展了长江干线桥梁通航风险源数据库的统计工作;结合桥梁通航环境复杂性特征,建立了HSCM的等级全息模型。运用等级全息建模方法对桥梁船舶通航环境复杂系统进行了风险识别,对HSCM进行复杂性分析后指出:气象环境等自然条件和桥梁因素数据危险源;人为因素和管理因素属于事故隐患;船舶因素和桥区航道属于脆性源。HSCM的脆性联系符合层次脆性关系。在运用复杂性理论对HSCM脆性定义的基础上,明确了系统的脆性源和脆性接受者,建立了HSCM脆性结构。运用模糊层次分析法,通过苏通长江大桥的实例分析了基于FAHP的系统脆性风险评价,该评价方法构建了苏通长江大桥的系统脆性层次性指标。评价结果表明:影响苏通大桥的主要脆性因子是船舶交通流和自然条件。
     (4)船舶交通流是桥区SBC致因复杂性产生的直接诱因。以荆州长江大桥为例,本文运用数理统计方法对船舶到达规律进行了实证研究,指出船舶到达桥区符合泊松分布,船舶到达间隔时间符合二次分布。结合桥区航道数据建立了基于优先级的船舶避让规则,应用计算机模拟实现了船舶过桥的三维动态模拟。模型将桥墩视为静止船舶,以船舶交通流组成单元之间无碰撞为目标,在满足船舶顺利过桥的前提下,对不同类型船舶过桥进行了优化调度。在简化船舶交通流的情况下,建立了基于碰撞势态的直航路船撞桥概率简化模型。该简化模型能够较好地解释长江干线船撞桥事故在洪水期、航道宽度窄和桥墩形状等因素条件下影响事故频度的事故机理。
     (5)构建了基于风险设计的桥梁通航论证集成综合评价方法。在桥梁通航净宽尺度设计阶段,提出了通航论证技术框架。以武汉鹦鹉洲长江大桥通航风险评估为实例,探讨了基于规范设计、漂移计算和操纵模拟在通航论证中的具体应用,验证了桥梁工程领域风险评估的技术方法。最后,由于长江干线桥梁所处河段的差异性,在进行桥梁通航净宽尺度论证和风险评估时,需要针对具体问题选择合适的评估论证技术。
he safety passage of vessels under bridges becomes a key issue in the Yangtze River with more and more bridges coming up as well as the booming shipping industry. As for ship-bridge collision risk, it is necessary to study the complex causing mechanism and integration methods of risk assessment from different angles. So far, the collision probability modeling and impact calculation are two main directions in Ship-bridge collision (SBC) research field. All in all, the current research focus on passive study on the rule-based bridge clearance design and pier collide prevention. Recently, risk-based design comes to this field. Thus, ship-bridge emergency event is chosen as a research object by this paper, which aims to find the complex causing mechanism and risk assessment methods from an active prevention point of view. In this research, the theory and methodologies of science of complex are applied, such as accident causing theory, AHP methodology and integration theory.
     First of all, concept and structure of Complex system of "Human- Ship-Channel-Management (HSCM)" is put forward as well as defined by this dissertation based on Yangtze River situation. It set up a simplified HSCM system based on systematic safety. Secondly, it defined key elements of HSCM system and characters of ship across bridge, which integrated a lot of analyzing result of similar researches.
     A three-dimensional orbit intersecting Causes-Results Theory is promoted to explain the risk identification system. In accordance with Systematic Engineering Theory, risk elements is utilized to illuminate mechanism of SBC with single-factors, double factors and three-dimensional factors Causes-Results Theory by combining ship drifting theory, which extend the ship deviation theory.
     With Hierarchal Holographic Modeling (HHM) method, the SBC causing HHM is set up in accordance with a navigational risk resource data of Yangtze River for the further research. The HSCM system is a typical brittle system. By defining the brittleness source and system structure, the fault tree is used to identify the causing factors. Then a systematic brittleness assessment is studied by using FAHP method with the survey data of Sutong Yangtze Bridge.
     The ship traffic flow is one of the fundamental causing factors of SBC. As for ship arriving principal, a Poisson distribution is proved by the Jingzhou Yangtze bridge ship traffic data observation. The pier of bridge is considered as a relative static ship and therefore a simplified ship's avoiding collision model is set up based on priority level. By using computer simulation, an active ship passing bridge channel is demonstrated under the ship traffic flow management. In this case, a straight-channel SBC probability modeling is brought out with a ship-ship impact distribution.
     Method integration is applied on the bridge navigable assessment on risk-based design aspect. Bridge clearance is a key brittleness factor, therefore, a combination method such as rule-based design; drifting calculation and navigation simulation are put into use in the Wuhan Yingwuzhou Yangtze Bridge navigable risk assessment. As for various channel, it is necessary to verify the effectiveness and applicability of methods.
引文
[1]刘明俊,方建华.苏通大桥防船撞预控技术研究[M].武汉:武汉理工大学出版社,2009.
    [2]王君杰,耿波.桥梁船撞概率风险评估与措施[M].北京:人民交通出版社,2010.
    [3]国际桥梁和结构工程协会(IABSE)航行船舶与桥梁结构的相互影响(综述与指南)[S].1991.
    [4]中华人民共和国交通部.JTG D60-2004公路桥涵设计通用规范[S].北京:人民交通出版社,2004.
    [5]中华人民共和国铁道部.TB 10002.1-99铁路桥涵设计基本规范[S].北京:中国铁道出版社,2000.
    [6]戴彤宇.船撞桥及其风险分析[D].哈尔滨工程大学,2002.
    [7]林铁良,王君杰,陈艾荣,干宏程.基于事故记录的船撞桥故障树建立[J].同济大学学报(自然科学版),2006,34(04):467-471.
    [8]张圣坤,白勇,唐文勇.船舶与海洋工程风险评估[M].北京:国防工业出版社,2003.
    [9]耿波.桥梁船撞安全评估[D].同济大学,2007
    [10]耿波,王君杰,汪宏,范立础.桥梁船撞风险评估系统总体研究[J].土木工程学报,2007,40(05):34-40.
    [11]林铁良.船舶撞击桥梁风险评价[D].同济大学,2007.
    [12]阮欣.桥梁工程风险评估体系及关键问题[D].同济大学,2006.
    [13]戴彤宇,刘伟力,聂武.船撞桥概率分析与预报[J].哈尔滨工程大学学报,2003,24(01):23-25.
    [14]戴彤宇,聂武,刘伟力.长江干线船撞桥事故分析[J].中国航海,2002.53(4):44-47.
    [15]S.E.van Manen.Ship Collisions due to the Presence of Bridges [R]. Brussels:PIANC General Secretariat,2001.
    [16]Gucma L. (2005) Methods for bridge safety assessments with respect to ship collisions. K. Kolowrocki (edt.) Safety and Reliability. Balkema. Rotterdam 2005.
    [17]Gucma, L. Methods of Ship-bridge Collision Safety Evaluation. K. Kolowrocki (edt.) Safety and Reliability (Vol.2). Balkema. Rotterdam 2009.50-63.
    [18]O.D.Larsen. Ship Collision with Bridges[M]. Denmark:IABSE,1993.
    [19]P.T.Pedersen, S.Zhang. The Mechanics of Ship Impacts against Bridge [A]. Proceedings of Int. Symposium advances on ship collision analysis(C). Copenhagen:1998,41-52.
    [20]齐传新.内河船舶运输安全学[M].大连海运学院出版社,1991.
    [21]刘明俊,刘先栋,齐传新.船舶(队)通过黄石大桥引航方法探讨[J].武汉交通科技大学学报,1996,20(04):372-376.
    [22]刘明俊,齐传新.船舶(队)通过黄石大桥引航技术研究[J].航海技术,1999(01):17-21.
    [23]甘浪雄.桥区河段船舶航迹数学分析及引航方法研究[D].武汉理工大学硕士学位论文,2002.
    [24]甘浪雄.船舶在桥区安全航行可靠性分析[J].武汉理工大学学报(交通科学与工程版),2003,27(4):455-458.
    [25]吕习道.桥区通航论证与研究[D].武汉理工大学硕士学位论文,2005.
    [26]刘明俊,吕习道.船舶过弯所需航宽建模[J].武汉理工大学学报(交通科学与工程版).2006,30(01):178-179.
    [27]刘明俊,艾万政,程志友.苏通大桥桥区水域船舶通航能力研究[J].船海工程,2006(04):80-82.
    [28]肖亮希.桥区水域通航评估的内容与方法研究[D].武汉理工大学硕士学位论文,2007.
    [29]邓顺江.内河桥区水域风、流、船速对船舶领域边界的影响及应用[D].武汉理工大学硕士学位论文,2009.
    [30]王再明.长江干线大桥水域通航环境安全评价的研究[D].武汉理工大学硕士学位论文,2005.
    [31]赵劲松.船-桥碰撞与南京长江大桥的防碰问题[J].大连海运学院学报,1992,18(01):77-81
    [32]项海帆,范立础,王君杰.船撞桥设计理论的现状与需要进一步研究的问题[J].同济大学学报(自然科学版),2002,30(4):386-392.
    [33]昆兹.1993.防止船舶碰撞桥梁安全度的评价[J].汉堡:HANSA出版.内河航运与航道,1993(6).
    [34]昆兹.通航河流中的船撞桥、分析和设计决策[A].船撞桥论文集[C].上海:海洋钢结构研究所,2000.
    [35]庄元.桥梁通航论证关键技术研究[D].武汉理工大学博十论文,2008.
    [36]徐言民.基于操纵模拟的桥区水域船舶通航安全预控研究[D].上海交通大学博十论文,2010.
    [37]程细得.内河船舶操纵及避碰决策优化研究[D].武汉理工大学,2007.
    [38]Will Duckett. Risk Analysis and the Acceptable Probability of Failure. Risk Analysis. 2004(7):1-5.
    [39]林铁良,王君杰,陈艾荣.基于事故记录的船撞桥墩概率模型建立[J].同济大学学报(自然科学版),2007,35(2):181-186.
    [40]牛宏.大跨度连续刚构桥建设期风险分析研究[D].长安大学博十学位论文,2009.
    [41]王自力.船舶碰撞损伤机理与结构耐撞性研究[D].上海交通大学博十学位论文,2000.
    [41]季永青,牟军敏,刘明俊.基于Logistic模型的船舶撞桥概率研究[J].中国航海学会,2005:249-252
    [42]罗伟林,邹早建.船撞桥最小二乘支持向量机预测方法[J].交通运输工程学报.2007,7(4):30-33
    [43]李冰.内河水域船舶失控撞桥概率研究[D].武汉理工大学硕士学位论文,2010.
    [44]汪宏,姚建军,王君杰.重庆忠县康家沱长江大桥抗船舶撞击安全性评价[J].公路交通科技,2007(07):51-57.
    [45]胡旭跃,陈健强.桥位河段的航道整治工程[M].长沙:中南大学出版社,2006.
    [46]许保华.桥墩周围通航宽度影响研究[D].河海大学硕士学位论文,2007.
    [47]欧阳飞.桥墩周围紊流区宽度及桥梁通航孔净宽研究[D].长沙理工大学硕士学位论文,2005.
    [48]何小花,陈立,王鑫.桥墩紊流宽度的试验研究[J].水利水运工程学报,2006(9):49-53.
    [49]沈小雄,程永舟,胡旭跃,欧阳飞.航道边线与桥墩之间安全距离的研究[J].水运工程,2004(11):85-87
    [50]陈国虞,王礼立.船撞桥及其防御[M].北京:中国铁道出版社,2006.
    [51]陈明栋,陈明,陈国虞,郑丹.安庆长江铁路大桥防船撞研究[J].重庆交通大学学报(自然科学版).2009,28(2):203-207
    [52]陈明栋,王多银.探讨跨江桥梁通航净空尺度和通航安全保障措施[J].水运工程.2001,327(4):42-43.
    [53]胡旭跃,欧阳飞,沈小雄,程永舟.桥梁通航问题及对策研究综述[J].水道港口.2005,26(3):167-171.
    [54]徐言民,刘明俊.桥区水域船舶临界失控水动力干扰区与船舶领域的对比研究[J].中国水运.2008,8(3):20-22
    [55]Doughety E M. Human Reliability Anlysis. Wiley-Interscience, NY,1988.
    [56]Robert G Bea. The Role of Human Error in Design, Construction and Reliability of the marine structure. SSC378, U.S.A. Ship Structure Committee Report,1994.
    [57]Miller D P, Swain A D. Human error and human reliabiltiy.Handbook of Human Factors,Wiley, New York,1987.
    [58]谭志荣,李勇.武汉港作业区船舶安全通过能力浅析[J].交通科技,2002(1):62-64.
    [59]张婷婷.灵江大桥风险评估体系、方法及应用研究[D].浙江大学硕士学位论文,2010.
    [60]陈明栋,王多银.探讨跨江桥梁通航净空尺度和通航安全保障措施[J].水运工程,2001(4):42-43.
    [61]钟敏雄,谢永彰.通航桥孔跨度的计算方法探讨[J].中南公路工程,2005(3):185-187.
    [62]庄元,刘祖源.桥墩紊流宽度的实验研究[J].中国航海,2007(3):5-9.
    [63]黄平明,张征文.直航路上船舶碰撞桥墩概率分析[C].第十四届全国桥梁学术论文集,2000.
    [64]Devooght J, Smidts. Probabilistic Reactor Dynamics-Ⅰ:The Theory of Continuous Event Trees[J]. Nuclear Science and Engineering.1992(111):229-240
    [65]Vinnem J E. Evaluation of methodology for QRA in offshore operations[J].Reliability Engineering and System Safety.1998(61):39-52
    [66]张健.复杂性科学几个新兴的应用研究方向[J].复杂系统与复杂性科学,2004,1(3)33-40
    [67]于景元,周晓纪.系统科学与系统工程的发展[J].复杂系统与复杂性科学,2004,1(3):4-9
    [68]于景元,周晓纪.综合集成法与总部设计部[J].复杂系统与复杂性科学,2004,1(1):20-26
    [69]Y Fujii, N Mizuki. Design of VTS systems for water with bridges. Ship Collision Analysis.1998.
    [70]Kunz C U. Ship Bridge Collision in River Traffic, Analysis and Design Practice. Ship Collision Analysis.1998.
    [71]荣盘祥.复杂系统脆性及其理论框架的研究[D].哈尔滨工业大学博士学位论文,2006.
    [72]Jin J L, Wang S J, Wei Y M. Ideal interval method based model for water quality evaluation [J].Nature and Science,2004,2(1):24-28.
    [73]Jin J L,Zhang Y, Zhang L B. Flood disaster loss evaluation model based on projection pursuit[J]. Nature and Science,2003,1(1):82-85.
    [73]金鸿章,韦琦,郭健.复杂系统的脆性理论及应用[M].西安:西北工业大学出版社,2010.
    [74]李夏,戴汝为.系统科学与复杂性[J].自动化学报,1998,24(2):200-207.
    [75]姜璐.系统的层次结构.自然辨证法研究,1994,24(2):16-21.
    [76]王莲芬,许树柏.层次分析引论[M].北京:中国人民大学出版社,1990.
    [77]刘骥.重大危险源分级方法探讨[J].中国安全科学学报,2008.18(02):162-165.
    [78]钱新明,陈宝智.事故致因的突变模型[J].中国安全科学学报,1995(02):2-4.
    [79]吴红梅.突发性事故系统的脆性风险分析及其在煤矿中的应用[J].系统工程,2007(08):74-78.
    [80]吴彤.复杂性概念研究及其意义[J].中国人民大学学报,2004(05):2-9.
    [81]苗东升.钱学森复杂性研究述评[J].西安交通大学学报(社会科学版),2004.24(04):67-71,80
    [82]荣盘祥.复杂系统脆性及其理论框架的研究[D].哈尔滨工程大学,2006.
    [83]杨伦标,高英仪.模糊数学原理及其应用[M].广州:华南理工大学出版社,1998:32-39.
    [84]凌复华.突变理论及其应用[M].上海:上海交通大学出版社,1987.
    [85]何平,赵子都.突变理论及其应用[M].大连:大连理工大学出版社,1989.
    [86]张伟年.动力系统基础[M].北京:高等教育出版社,2001.
    [87]盛昭瀚,马军海.非线性动力系统分析引论[M].北京:科学出版社,2001.
    [88]钱学森.再谈开放的复杂巨系统[J].模式识别与人工智能,1991,4(1):1-4.
    [89]袁海庆,杨燕,范剑锋,刘文龙.模糊层次分析法在桥梁综合评估中的应用.武汉理工大学学报(交通科学与工程版).2005,29(6):906-909.
    [90]钱学森,王寿云.系统思想和系统工程[M].//钱学森,等.论系统工程(增订本).长沙:湖南科学技术出版社,1983.
    [91]许国志,顾基发,车宏安.系统科学[M].上海:上海科技教育出版社,2000.
    [92]戴汝为,李耀东.基于综合集成的研讨厅体系与系统复杂性[J].复杂系统与复杂性科学,2004,1(4):1-24.
    [93]金菊良,魏一鸣.复杂系统广义智能评价方法与应用[M].北京:科学出版社,2008.
    [94]TAN Zhrong, YAN Xinping. Risk Assessment of Water level Effect on Ship-Bridge Collision [C]//Progress in Safety Science and Technology (Vol. VII).Science Press/Science Press USA Inc,2008:290-294.
    [95]Bai Y, Pederson P Terndrup. Elastic-Plastic Behavior of Offshore Steel Structures under Earthquake Impact Loads [J].International Journal of Impact Engineering.1993,13(1):99-115.
    [96]郭亚军.综合评价理论与方法[M].北京:科学出版社,2002.
    [97]陈国宏,李美娟.基于方法集的综合评价方法集化研究[J].中国管理科学,2004,12(1):101-105.
    [98]Macduff. T.1974. The Probability of Vessel Collisions, Ocean Industry.144-148.
    [99]Fujii,Y. Shiobara,R. The Analysis of Traffic Accidents, Journal of Navigation, Vol.24, Oct.1971
    [100]Fujii,Y. Shiobara,R. The Estimation of Losses Resulting From Marine Accidents, Journal of Navigation, Vol.31, No.1,1978
    [101]PEDERSEN P Terndrup, ZHANG Shengming. On Impact Mechanics in Ship Collisions [J]. Marine Structures,1998(11):429-449.
    [102]Gucma, L.(2009).Methods of Ship-Bridge Collision Safety Evaluation [A], Proc. of Navigational Congress IAIN[C], Berlin.50-63.
    [103]Tan ZR, Wang WL, Huang M, Yan Xinping. Formal Safety Assessment and its application to maritime[C]. PROGRESS IN SAFETY SCIENCE AND TECHNOLOGY, PTS A AND B,2004,4:2252-2257.
    [104]樊红.船舶综合安全评估(FSA)方法研究[D].武汉理工大学,2004.
    [105]于景元.关于综合集成研究[J].交通运输系统工程与信息,2005,5(1):3-10.
    (?)琦,吴红梅.基于脆性因子的复杂系统脆性分析[J].哈尔滨工程大学学报,(?)26(6):739-744.
    (?)rov A G, Vityazev A V. Information entropy and power-law distributions for chaotic (?)[J]. Physica A,2000(277):136-145.
    (?)X. Ioannidis G, Kounadis A N. Non-linear buckling of simple models with tilted (?)catastrophe[J]. International Journal of Non-Linear Mechanics,2003(38):1163-1172.
    (?)K. Kazemi M. Ant colony algorithm for the shortest loop design problem[J]. Computers & Industrial Engineering,2006(50):358-366.
    (?)等.内河跨河建筑物通航净空尺度与技术要求专题研究报告[R].长江航道规划(?)研究院.2001.
    [110]武汉汉理工大学.武汉鹦鹉洲长江大桥船舶通航仿真模拟研究[R].2009.9.
    [111]长江航道规划设计研究院.武汉鹦鹉洲长江大桥水流条件与船舶航行数值模拟及船舶通航实船试验研究[R].2009.
    (?)W(?)an E. Spangler, James M, et al. A model of distributed knowledge and action in complex systems[J]. Decision Support Systems,2001(31):103-125.
    [1(?)XIAO Feng, WANG Long. Dynamic behavior of discrete-time multiagent systems with eneral communication structures. Physica A,2006(370):364-380.
    [1(?)son I, Carreras B A, et al. A loading-dependent model of probabilistic cascading (?)lure. Probability in the Engineering and Informational Sciences,2005,19(1):1-20.
    [11(?)sabeth M, et al. Unceratianty in risk analysis:Six Levels of Treatment Engineering and (?)ystem Safety.1996:54.
    [1(?) M V. Risk-Significant Functional Dependencies in Pressurized Water Reactors[J]. (?)liability Engineering and System Safety.1991 (34):293-308.
    [117]邓学文等.长江干线船舶交通管理系统(VTS)总体建设方案论证[R].交通部规划研究院.2001.
    [118]向阳,王征,于长锐.复杂问题决策支持模式研究[M].北京:科学出版社,2008.
    [11(?)ASHTO 1994. Guide Specifications and Commentary for Vessle Collision Design of Highway Bridges[S]. American Association of State highway and Transportation Officail, Washington D.C.
    [120]David Vose(郑增忍,李明,陈茂盛译).风险分析(第2版)[M].北京:中国农业出版社,2008.
    [121]Bottelberghs P H. Risk Analysis and Safety Plicy Developments in the Netherlands [J]. Journal of Hazardous Meterials.2000(71):59-84.
    [122]T.Vrouwenvelder. Stochasitc Modeling of Extreme Action Events in Structural Engineering [J]. Probabilistic Engineering Mechanniscs.2000(15):109-117.
    [123]T. Vrouwenvelder, Roger Lovegrve. Risk Assessment and Risk Communication in Civil Engineering. Safety, Risk, Reliability-Trends in Engineering. Malta:IABSE.2001.
    [124]Vrijling J.K. Voortman H.G. Pandey M.D. A Framework for Risk Criterial for Critical Infrastructures. Fundamentals and case studies in the Neterlands [R].Journal of Risk Research.2003(7):569-579.
    [125]JCSS. Probabilistic Model code [S]. The Joint Committee on Structural Safety,2001.
    [126]S.E.Van Manen., Ship Collisions due to the Presence of Bridges [R]. Brussels:PIANC General Secretariat,2001.
    [127]Gluver, Olsen. Ship Collision Analysis [R], Balkema, Rotterdam,1998.
    [128]DNV. DNV Standard for Certification of Maritime Simulator Systems [R].1999.
    [129]Lin,S.C, Pun,C.P.."Analysis of Fuzzy Theory", The Third Wave Culture,1994:330-334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700